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Recently, it has been demonstrated that a Vibro-Impact type Nonlinear Energy Sink (VI-NES) can be used efficiently to mitigate vibration of a Linear Oscillator (LO) under transient loading and harmonic force. In this paper, a design optimization procedure of an optimal VI-NES coupled to LO for energy pumping is presented theoretically and numerically. Due to the small mass ratio between the flying mass of the VI-NES and LO, the obtained equation of motion is possible to use the method of multiple scales in the case of 1:1 resonance. It is showed that there exist different response regimes like Strongly Modulated Response (SMR) proved to be the most efficient reponse regime for vibration reduction. An optimization procedure is presented and the results are verified numerically.

Introduction

Targeted Energy Transfer (TET) has been widely studied during the last decade. In this context, a small mass, Nonlinear Energy Sink( NES), is used to mitigate any unwanted disturbance introduced in a primary system (i.e. LO) by efficiently transferring and eliminating energy from the main system to the NES.

Energy pumping under transient loading has been extensively studied. In [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators: Part i-dynamics of the underlying hamiltonian systems[END_REF][START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part ii-resonance capture[END_REF] it has been shown that the main phenomena allowing TET is based on the 1 : 1 resonance capture. Experimental verifications are presented in [START_REF] Mcfarland | Experimental study of non-linear energy pumping occurring at a single fast frequency[END_REF][START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF][START_REF] Kerschen | Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators[END_REF].

TET under external forcing has also been studied. Introduction of a suitable asymptotic procedure based on the invariant manifold approach [START_REF] Gendelman | Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment[END_REF] has shown that in addition to periodic regimes, system with NES can exhibit beating response, referred as strongly modulated response [START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF]. This type of response has been verified experimentally in [START_REF] Gourc | Experimental investigation and design optimization of targeted energy transfer under periodic forcing[END_REF]. The use of NES to passively control instability is also a growing interest. In [START_REF] Gendelman | Bifurcations of self-excitation regimes in a van der pol oscillator with a nonlinear energy sink[END_REF], a NES is used to control limit cycle oscillation of a Van der Pol system. The effectiveness of a NES to suppress aeroelastic instability is studied in [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF][START_REF] Lee | Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[END_REF][START_REF] Gendelman | Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow[END_REF][START_REF] Vaurigaud | Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer[END_REF]. In [START_REF] Gourc | Delayed dynamical sytem strongly coupled to a nonlinear energy sink: application to machining chatter[END_REF] , it is shown that a NES can be used to control chatter instability in turning.

All the aforementioned studies deal with NES with cubic non-linearity. Recent studies have enlightened that non-smooth system can be used as NES. One of the main advantages of this type of NES over classic NES is that they are often easier to build. Gendelman investigated energy transfer in system with non-polynomial nonlinearity [START_REF] Gendelman | Targeted energy transfer in systems with non-polynomial nonlinearity[END_REF]. NES with piecewise linear stiffness have been studied in [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF] under transient and periodic forcing. The case of a vertical NES, considering its own weight has been reported in [START_REF] Savadkoohi | Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity[END_REF]. Vibro-impact type NES (VI-NES) have been studied in [START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF][START_REF] Nucera | Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results[END_REF][START_REF] Lee | Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments[END_REF]. However, these studies were concentrated around numerical simulations. In [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF], the invariant manifold approach has been extended to VI-NES under transient loading. In a recent study, the potential of a VI-NES to mitigate vibrations of a LO subjected to a harmonic excitation is investigated theoretically and experimentally in [START_REF] Gourc | Theoretical and experimental study of an harmonically forced vibro-impact nonlinear energy sink[END_REF], however the optimization of the TET and presentation of an optimal VI-NES are left to be done.

The objective of the paper is to present a design procedure of an optimal VI-NES. The structure of the paper is organized as follows. The first part is devoted to the theoretical treatment of the equation of motion. In the second part, four typical response regimes are observed by changing parameters and their efficiency of TET is compared. In the next section, a VI-NES optimization procedure is presented. Section 4 incorporates the concluding remarks.

Mechanical model

The system considered is composed of a linear oscillator (LO) with an embedded Vibro-Impact Nonlinear Energy Sink (VI-NES). The LO is subjected to an imposed base displacement. The system is presented in Fig. 1.

The governing equations of motion between impacts are expressed as: 

m 1 d 2 dt 2 x (t) + c 1 d dt x (t) + k 1 x (t) = k 1 x e (t) + c 1 d dt x e (t) m 2 d 2 dt 2 y (t) = 0 ∀ |x -y| < b (1) 
Where x and y are the displacement of LO and VI-NES respectively. x e is the displacement imposed by the exciting base in the following way:

x e (t) = F sin (Ω t) (2) 
When |x -y| = b, an impact takes place. The state of the system after impact is obtained using the simplified shock theory and the condition of total momentum conservation:

x + = x -, y + = y - m 1 ẋ+ + m 2 ẏ+ = m 1 ẋ-+ m 2 ẏ- ẋ+ -ẏ+ = R( ẋ--ẏ-) f or |x -y| = b (3) 
The dots denote differentiation with respect to t, indices + and -denote the instant immediately after and before the impact. R ∈ [0, 1] is the restitution coefficient of impact. Change of variables is introduced in the following way:

= m 2 m 1 , ω 0 2 = k 1 m 1 , τ = ω 0 t, λ = c 1 m 2 ω 0 , ω 1 = ω ω 0 F b = G, x = Xb, y = Y b (4) 
The reduced governing equation of motion between impact are as follow:

d 2 dτ 2 X (τ ) + ελ d dτ X (τ ) + X (τ ) = G sin (ω 1 τ ) + λ 2 Gω 1 cos (ω 1 τ ) d 2 dτ 2 Y (τ ) = 0 ∀ |X -Y | < 1 (5)
The reduced governing equation of collision are expressed as:

X + = X -, Y + = Y - Ẋ+ -Ẏ+ = R( Ẋ--Ẏ-) m 1 Ẋ+ + m 2 Ẏ+ = m 1 Ẋ-+ m 2 Ẏ- f or |X -Y | = 1 (6)
New variables representing the displacement of the center of mass and the internal displacement of VI-NES are introduced as follow:

v (τ ) = X (τ ) + Y (τ ) , w (τ ) = X (τ ) -Y (τ ) (7) 
Substituting of ( 7) into the equation ( 5) and ( 6) , equations between impact become:

d 2 dτ 2 v (τ ) + λ d dτ v (τ ) + d dτ w (τ ) 1 + + v (τ ) + w (τ ) 1 + = G sin (ω 1 τ ) + λ 2 Gω 1 cos (ω 1 τ ) d 2 dτ 2 w (τ ) + λ d dτ v (τ ) + d dτ w (τ ) 1 + + v (τ ) + w (τ ) 1 + = G sin (ω 1 τ ) + λ 2 Gω 1 cos (ω 1 τ ) ∀ |w| < 1 (8)
and the impact condition equation ( 6) is rewritten as follows:

w + = w -, v + = v - w + = Rw -, v + = v - f or |w| = 1 (9)
In the context of energy pumping, the mass ratio is supposed to be small (≈ 1%). In this case,Eq.( 8) may be analyzed by Mutiple Scales Method with respect to this small parameter. The solutions are searched to the second order as follow:

v (τ, ) = v 0 (τ 0 , τ 1 ) + v 1 (τ 0 , τ 1 )
w (τ, ) = w 0 (τ 0 , τ 1 ) + w 1 (τ 0 , τ 1 )

τ k = 0 τ + 1 τ (10) 
Substituting of ( 10) into ( 9) and ( 8), and after cancel the same power of , gives:

0 : ∂ 2 ∂T 0 2 v 0 (T 0 , T 1 ) + v 0 (T 0 , T 1 ) = 0 ∂ 2 ∂T 0 2 w 0 (T 0 , T 1 ) + v 0 (T 0 , T 1 ) = 0, ∀ |w| < 1 D 0 v 0+ = D 0 v 0-, D 0 w 0+ = -RD 0 w 0-, f or |w| = 1 (11) 
1 :

∂ 2 ∂T 0 2 v 1 (T 0 , T 1 ) + v 1 (T 0 , T 1 ) = -2 ∂ 2 ∂T 0 ∂T 1 v 0 (T 0 , T 1 ) -λ ∂ ∂T 0 v 0 (T 0 , T 1 ) + A sin (Ω T 0 ) -w 0 (T 0 , T 1 ) + v 0 (T 0 , T 1 ) ∂ 2 ∂T 0 2 w 1 (T 0 , T 1 ) + v 1 (T 0 , T 1 ) = -2 ∂ 2 ∂T 0 ∂T 1 w 0 (T 0 , T 1 ) -λ ∂ ∂T 0 v 0 (T 0 , T 1 ) + A sin (Ω T 0 ) -w 0 (T 0 , T 1 ) + v 0 (T 0 , T 1 ) , ∀ |w| < 1 v 1+ = v 1-, w 1+ = w 1- D 0 v 1+ + D 1 v 0+ = D 0 v 1-+ D 1 v 0- D 0 w 1+ + D 1 w 0+ = -R(D 0 w 1-+ D 1 w 0-), f or |w| = 1 (12 
) According to [START_REF] Lee | Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[END_REF], the solution of v 0 and w 0 can be expressed in the following way:

v 0 (T 0 , T 1 ) = A (T 1 ) sin (T 0 + θ (T 1 )) (13) 
w 0 (T 0 , T 1 ) = A (T 1 ) sin (T 0 + θ (T 1 )) + B (T 1 ) T 0 + C (T 1 ) (14) 
The time dependance is omitted for simplification of notation. Solutions with two symmetrical impacts per period are studied herein. The conditions of periodicity are as follows:

w 0 (0) = 1, w 0 (π) = -w 0 (0) , D 0 w 0+ (π)) = -D 0 w 0+ (0)) (15) 
After introduction of ( 13) and ( 14) into [START_REF] Gendelman | Targeted energy transfer in systems with non-polynomial nonlinearity[END_REF], it becomes:

B 1 = -2 C 1 π , sin (θ) = 1 -C 1 A , cos (θ) = 2 σ C 1 πA (16) 
where σ = (1 -R)/(1 + R), the second and third equation are combined,a relation between the slow variables A and C is obtained as follow:

A 2 = (1 -C) 2 + 4 C 2 σ 2 π 2 (17) 
It represents the slow invariant manifold (SIM) of the system, its stability is showed in Fig. 2: In order to study the dynamics of the system under harmonic forcing, Eq. ( 12) is analyzed. To identify terms that produce secular terms, the equation of motion of the VI-NES is developed in Fourier series:

B (T 1 ) T 0 + C (T 1 ) = F (T 1 ) sin (T 0 + ζ (T 1 )) + N SF (18) 
Eq. ( 18) has two components: the first one is that with the same frequency with LO and the second one are those that do not have the same frequency with the LO denoted by NSF and donot produce secular terms in the following analysis.

We are interested in the behavior of the system in the vicinity of the 1:1 resonance where LO oscillates with a frequency close to external forcing while the VI-NES operates with two symmetric impact per cycle. A detuning parameter(δ) representing the nearness of the excitation frequency Ω to the reduced natural frequency of the LO is introduced:

Ω = 1 + δ ( 19 
)
After substitution of ( 18) and ( 19) into [START_REF] Gendelman | Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow[END_REF] and eliminating terms that produce secular terms give:

∂ 2 ∂T 0 2 v 1 (T 0 , T 1 ) + v 1 (T 0 , T 1 ) = -2 d dT 1 C (T 1 ) cos (T 0 + θ (T 1 )) + 2 C (T 1 ) sin (T 0 + θ (T 1 )) d dT 1 θ (T 1 ) -λ C (T 1 ) cos (T 0 + θ (T 1 )) + A sin (Ω T 0 ) -F (T 1 ) sin (T 0 + ζ (T 1 )) + NFW (20) 
Substitution of ( 19) into [START_REF] Lee | Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments[END_REF] and then elimination of the secular terms:

-2 d dT 1 C (T 1 ) cos (θ (T 1 )) + 2 C (T 1 ) d dT 1 θ (T 1 ) sin (θ (T 1 )) -λ C (T 1 ) cos (θ (T 1 )) + A sin (T 1 σ) -F (T 1 ) sin (ζ (T 1 )) = 0 2 d dT 1 C (T 1 ) sin (θ (T 1 )) + 2 C (T 1 ) d dT 1 θ (T 1 ) cos (θ (T 1 )) + λ C (T 1 ) sin (θ (T 1 )) + A cos (T 1 σ) -F (T 1 ) cos (ζ (T 1 )) = 0 (21) 
After rearrangement, it becomes:

d dT 1 C (T 1 ) = -1/2 λ C (T 1 ) + 1/2 A sin (-θ (T 1 ) + T 1 σ) -1/2 F (T 1 ) sin (-θ (T 1 ) + ζ (T 1 )) d dT 1 θ (T 1 ) = 1/2 -A cos (-θ (T 1 ) + T 1 σ) + F (T 1 ) cos (-θ (T 1 ) + ζ (T 1 )) C (T 1 ) (22) 
Introducing γ (T 1 ) = -θ (T 1 ) + T 1 σ and eliminating the derivative of C and γ to zero, the following relations between C and B are obtained, K 1 and K 2 are not expressed here because of there lengths.

A 2 = K 1 C, A 2 = K 2 C, (23) 
Then the fixed points of system can be obtained by solving Eq. ( 17) and Eq. ( 23).

VI-NES optimization

In this section, various response regimes with respect to the length of cavity are identified and then a criteria is defined for the optimization of the VI-NES, in which the energy pumping is the most efficient. 3 demonstrates the variance of the amplitude of the LS with respect to length of cavity in Tab.1, which is obtained by FFT when the responses enter into a stable state by time simulation. It is seen that the amplitude of LO decreases at the first place until some point and then increases again with the decrease of the length of the cavity.

From the above simulations, the following six regimes can be expected in Fig. 4 among which four regimes are observed and case 1: as b → ∞ ,VI-NES has no influence in LO. case 2: with decrease of b, the response regime with less than two impacts per cycle of LO occurs, the typical time response is showed in Fig. 5(a). case 3: the regime 1:1 symmetric resonance occurs with further decrease of b, which can be analyzed through previous introdued procedure, the time typical response is showed in Fig. 5(b). case 4: further increase of b cause exist the occurence of SMR, in which one part of response is in 1:1 resonance, and the other part is like case 2. It is correspondant to Fig. 3 (e) and the typical time response is showed in Fig. 5(c). case 5: when the value of b is decreased small enough, regime with more than two impacts per period of LO occurs and the typical time response is showed in Fig. 5(d).

case 6: b → 0, VI-NES will become one part of LO. From Tab.1, Fig. 3 and Fig4, we can conclude that the reponse regime of SMR (case 4) is the most efficient regime for energy pumping between LO and VI-NES, although which point during the SMR zone is the most efficient is not clear. Therefore, the idea of optimization is to find the most efficient zone. 3 is studied here in detail, and initial conditions are selected around SIM. It is showed that there does not exist any stable or unstable points which is demonstrated in Fig. 6 (a) and the time simulation results is presented in Fig. 6 (b)(c).

When only the value of G instead of b is changed, there exist only two situations which can be represented by σ = 0 and σ = -2 as follows: situation 1: σ = 0

The stable response of resonance 1:1 will disappear with the decrease of G and then the SMR will occur. The limit point in this situation is showed in the Fig. 7 (c In this situation, as the value of G decreases, the two points, one stable and one unstable, meet with each other in the left stable branch of the curve and then disappear together, as is demonstrated in Fig. 8 (c). Then there must be a critical value σ between the two case, where these two situations encounter together.

Therefore, for any parameters of LO, there must exist a relationship between σ,b and G to trigger the occurrence of SMR which is calculated with the theoretical results and is showed in Fig. 9. Some further simulations have been done around the curve, among which rose pentagram represents case5, rose circle represents case 2, red diamond represents case 4 and blue square represents case3.

According to the Fig. 9, the optimization procedure can be done in the following way: step1: measure of the parameters and the working conditions of LO like intervals of the amplitude and frequency of exciting force.

step2: calculate the optimization boundary curve as reference to design the paramters of VI-NES.

step3: for the known interval of σ, choose G to get the SMR the most wide possible, then according to the relationship between G , F and b, design b the length of the cavity to let the G to meet the requirement in Fig. 9. 

Conclusion

The dynamic response of a two degrees of freedom system comprising a linear oscillator, subjected to an imposed harmonic displacement, with embedded vibro-impact nonlinear energy sink (VI-NES) is studied already theoretical and experimental. Therefore this paper is focused on the design optimization of VI-NES for the most efficient energy pumping. Firstly, four typical response regimes have been observed with respect to the variance of the length of cavity and the SMR is proved to be the most efficient regime for vibration reduction. Secondly, two different limits between the regime 1:1 resonance and SMR can be obtained analytically, in which the SMR starts to exist. Based on this idea, a relationship between parameters and the occurrence of SMR is established, which is proved numerically. For future experiment and application, one optimization procedure for the design of VI-NES is presented.
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 1 Figure 1: Schema of a LO coupled to VI-NES

Figure 2 :

 2 Figure 2: SIM of the problem for R=0.6, b=0.015. Stable (thick) and unstable (thin) branches.

  The parameters for simulation are as follows:m1 = 3.807kg, c1 = 2.53N s/m, k1 = 11.68 * 103N/m, m2 = 0.032kg, b = 0.015m, R = 0.6, = 0.84%, λ = 1.43, σ = 0 (24) N 0 is the number of simulation, b and b0 are the value and reference value of length of cavity respectively. G and G0 are corresponding nondimensional value and reference value of force respectively. Parameters decided by b are showed in Tab.1. value b0 = 0.015m/G0 = 1.0131 N 0 8 (a) 3 (b) 4 (c)
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 3 Figure 3: Influence of cavity's length to the LO's amplitude
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 4 Figure 4: Response regime of LO with respect to the length of cavity
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 5 Figure 5: Typical reponse regime of LO coupled with VI-NES

  ), in which the stable point (red circle) reaches the lowest point of the curve

Figure 6 :

 6 Figure 6: Analysis for the case b=b0/0.75: (a) fixed points, (b) time response, (c) response trace between LO and VI-NES

Figure 7 :Figure 8 :

 78 Figure 7: The first case entering into SMR: stable (circle) and unstable (cross) fixed points.

Figure 9 :

 9 Figure 9: Boundary optimization for SMR with a VI-NES

Table 1 :

 1 Simulation parametersFig.

					1 (d)	2 (e)	5 (f)	6 (g) 7 (h)
	G/G0	2.4	1.6	1.1	1	0.95	0.75	0.5	0.1
	b/b0	1/2.4 1/1.6 1/1.1	1/1	1/0.95 1/0.75 1/0.5 1/0.1