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Abstract :

Recently, it has been demonstrated that a Vibro-Impact type Nonlinear En-
ergy Sink (VI-NES) can be used efficiently to mitigate vibration of a Linear
Oscillator (LO) under transient loading and harmonic force. In this paper, a
design optimization procedure of an optimal VI-NES coupled to LO for energy
pumping is presented theoretically and numerically. Due to the small mass ratio
between the flying mass of the VI-NES and LO, the obtained equation of motion
is possible to use the method of multiple scales in the case of 1:1 resonance.
It is showed that there exist different response regimes like Strongly Modulated
Response (SMR) proved to be the most efficient reponse regime for vibration
reduction. An optimization procedure is presented and the results are verified
numerically.

Key words: Dynamics, Nonlinear Energy Sink, Vibro-
Impact,Targeted Energy Transfer

1 Introduction

Targeted Energy Transfer (TET) has been widely studied during the last decade.
In this context, a small mass, Nonlinear Energy Sink( NES), is used to mitigate
any unwanted disturbance introduced in a primary system (i.e. LO) by effi-
ciently transferring and eliminating energy from the main system to the NES.
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Energy pumping under transient loading has been extensively studied. In
[1, 2] it has been shown that the main phenomena allowing TET is based on the
1 : 1 resonance capture. Experimental verifications are presented in [3, 4, 5].

TET under external forcing has also been studied. Introduction of a suitable
asymptotic procedure based on the invariant manifold approach [6] has shown
that in addition to periodic regimes, system with NES can exhibit beating re-
sponse, referred as strongly modulated response [7]. This type of response has
been verified experimentally in [8]. The use of NES to passively control insta-
bility is also a growing interest. In [9], a NES is used to control limit cycle
oscillation of a Van der Pol system. The effectiveness of a NES to suppress
aeroelastic instability is studied in [10, 11, 12, 13]. In [14] , it is shown that a
NES can be used to control chatter instability in turning.

All the aforementioned studies deal with NES with cubic non-linearity. Re-
cent studies have enlightened that non-smooth system can be used as NES. One
of the main advantages of this type of NES over classic NES is that they are
often easier to build. Gendelman investigated energy transfer in system with
non-polynomial nonlinearity [15]. NES with piecewise linear stiffness have been
studied in [16] under transient and periodic forcing. The case of a vertical NES,
considering its own weight has been reported in [17]. Vibro-impact type NES
(VI-NES) have been studied in [18, 19, 20]. However, these studies were concen-
trated around numerical simulations. In [21], the invariant manifold approach
has been extended to VI-NES under transient loading. In a recent study, the
potential of a VI-NES to mitigate vibrations of a LO subjected to a harmonic
excitation is investigated theoretically and experimentally in [22], however the
optimization of the TET and presentation of an optimal VI-NES are left to be
done.

The objective of the paper is to present a design procedure of an optimal
VI-NES. The structure of the paper is organized as follows. The first part is
devoted to the theoretical treatment of the equation of motion. In the second
part, four typical response regimes are observed by changing parameters and
their efficiency of TET is compared. In the next section, a VI-NES optimization
procedure is presented. Section 4 incorporates the concluding remarks.

2 Mechanical model

The system considered is composed of a linear oscillator (LO) with an embedded
Vibro-Impact Nonlinear Energy Sink (VI-NES). The LO is subjected to an
imposed base displacement. The system is presented in Fig.1.

The governing equations of motion between impacts are expressed as:
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Figure 1: Schema of a LO coupled to VI-NES

m1
d2

dt2
x (t) + c1

d

dt
x (t) + k1x (t) = k1xe (t) + c1

d

dt
xe (t)

m2
d2

dt2
y (t) = 0

∀ |x− y| < b

(1)

Where x and y are the displacement of LO and VI-NES respectively. xe is
the displacement imposed by the exciting base in the following way:

xe (t) = F sin (Ω t) (2)

When |x− y| = b, an impact takes place. The state of the system after
impact is obtained using the simplified shock theory and the condition of total
momentum conservation:

x+ = x−, y+ = y−

m1ẋ+ +m2ẏ+ = m1ẋ− +m2ẏ−

ẋ+ − ẏ+ = R(ẋ− − ẏ−)

for |x− y| = b

(3)

The dots denote differentiation with respect to t, indices + and - denote the
instant immediately after and before the impact. R ∈ [0, 1] is the restitution
coefficient of impact. Change of variables is introduced in the following way:

ε =
m2

m1
, ω0

2 =
k1
m1

, τ = ω0t, λ =
c1

m2ω0
, ω1 =

ω

ω0

F

b
= εG, x = Xb, y = Y b

(4)
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The reduced governing equation of motion between impact are as follow:

d2

dτ2
X (τ) + ελ

d

dτ
X (τ) +X (τ) = εG sin (ω1τ) + λ ε2Gω1 cos (ω1τ)

ε
d2

dτ2
Y (τ) = 0

∀ |X − Y | < 1

(5)

The reduced governing equation of collision are expressed as:

X+ = X−, Y+ = Y−

Ẋ+ − Ẏ+ = R(Ẋ− − Ẏ−)

m1Ẋ+ +m2Ẏ+ = m1Ẋ− +m2Ẏ−

for |X − Y | = 1

(6)

New variables representing the displacement of the center of mass and the
internal displacement of VI-NES are introduced as follow:

v (τ) = X (τ) + ε Y (τ) , w (τ) = X (τ)− Y (τ) (7)

Substituting of (7) into the equation (5) and (6) , equations between impact
become:

d2

dτ2
v (τ) +

λ ε
(
d
dτ v (τ) + ε d

dτw (τ)
)

1 + ε
+
v (τ) ε+ w (τ)

1 + ε

= εG sin (ω1τ) + λ ε2Gω1 cos (ω1τ)

d2

dτ2
w (τ) +

λ ε
(
d
dτ v (τ) + ε d

dτw (τ)
)

1 + ε
+
v (τ) + εw (τ)

1 + ε

= εG sin (ω1τ) + λ ε2Gω1 cos (ω1τ)

∀ |w| < 1

(8)

and the impact condition equation (6) is rewritten as follows:

w+ = w−, v+ = v−

w+ = Rw−, v+ = v−

for |w| = 1

(9)

In the context of energy pumping, the mass ratio ε is supposed to be small
(≈ 1%). In this case,Eq.(8) may be analyzed by Mutiple Scales Method with
respect to this small parameter. The solutions are searched to the second order
as follow:

v (τ, ε) = v0 (τ0, τ1) + ε v1 (τ0, τ1)

w (τ, ε) = w0 (τ0, τ1) + εw1 (τ0, τ1)

τk = ε0τ + ε1τ

(10)
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Substituting of (10) into (9) and (8), and after cancel the same power of ε,
gives:

ε0 :

∂2

∂T0
2 v0 (T0, T1) + v0 (T0, T1) = 0

∂2

∂T0
2w0 (T0, T1) + v0 (T0, T1) = 0,∀ |w| < 1

D0v0+ = D0v0−, D0w0+ = −RD0w0−, for |w| = 1

(11)

ε1 :

∂2

∂T0
2 v1 (T0, T1) + v1 (T0, T1) = −2

∂2

∂T0∂T1
v0 (T0, T1)− λ ∂

∂T0
v0 (T0, T1)

+A sin (ΩT0)− w0 (T0, T1) + v0 (T0, T1)

∂2

∂T0
2w1 (T0, T1) + v1 (T0, T1) = −2

∂2

∂T0∂T1
w0 (T0, T1)− λ ∂

∂T0
v0 (T0, T1)

+A sin (ΩT0)− w0 (T0, T1) + v0 (T0, T1) ,∀ |w| < 1

v1+ = v1−, w1+ = w1−

D0v1+ +D1v0+ = D0v1− +D1v0−

D0w1+ +D1w0+ = −R(D0w1− +D1w0−), for |w| = 1
(12)

According to (11), the solution of v0 and w0 can be expressed in the following
way:

v0 (T0, T1) = A (T1) sin (T0 + θ (T1)) (13)

w0 (T0, T1) = A (T1) sin (T0 + θ (T1)) +B (T1)T0 + C (T1) (14)

The time dependance is omitted for simplification of notation. Solutions
with two symmetrical impacts per period are studied herein. The conditions of
periodicity are as follows:

w0 (0) = 1, w0 (π) = −w0 (0) , D0w0+ (π)) = −D0w0+ (0)) (15)

After introduction of (13) and (14) into (15), it becomes:

B1 = −2
C1

π
, sin (θ) =

1− C1

A
, cos (θ) = 2

σ C1

πA
(16)

where σ = (1 − R)/(1 + R), the second and third equation are combined,a
relation between the slow variables A and C is obtained as follow:

A2 = (1− C)
2

+ 4
C2σ2

π2
(17)
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It represents the slow invariant manifold (SIM) of the system, its stability is
showed in Fig.2:

Figure 2: SIM of the problem for R=0.6, b=0.015. Stable (thick) and unstable
(thin) branches.

In order to study the dynamics of the system under harmonic forcing, Eq.
(12) is analyzed. To identify terms that produce secular terms, the equation of
motion of the VI-NES is developed in Fourier series:

B (T1)T0 + C (T1) = F (T1) sin (T0 + ζ (T1)) + NSF (18)

Eq. (18) has two components: the first one is that with the same frequency
with LO and the second one are those that do not have the same frequency
with the LO denoted by NSF and donot produce secular terms in the following
analysis.

We are interested in the behavior of the system in the vicinity of the 1:1 reso-
nance where LO oscillates with a frequency close to external forcing while the VI-
NES operates with two symmetric impact per cycle. A detuning parameter(δ)
representing the nearness of the excitation frequency Ω to the reduced natural
frequency of the LO is introduced:

Ω = 1 + ε δ (19)

After substitution of (18) and (19) into (12) and eliminating terms that
produce secular terms give:
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∂2

∂T0
2 v1 (T0, T1) + v1 (T0, T1) = −2

(
d

dT1
C (T1)

)
cos (T0 + θ (T1))

+ 2C (T1) sin (T0 + θ (T1))
d

dT1
θ (T1)

− λC (T1) cos (T0 + θ (T1)) +A sin (ΩT0)

− F (T1) sin (T0 + ζ (T1)) + NFW

(20)

Substitution of (19) into (20) and then elimination of the secular terms:

− 2

(
d

dT1
C (T1)

)
cos (θ (T1)) + 2C (T1)

(
d

dT1
θ (T1)

)
sin (θ (T1))

− λC (T1) cos (θ (T1)) +A sin (T1σ)− F (T1) sin (ζ (T1)) = 0

2

(
d

dT1
C (T1)

)
sin (θ (T1)) + 2C (T1)

(
d

dT1
θ (T1)

)
cos (θ (T1))

+ λC (T1) sin (θ (T1)) +A cos (T1σ)− F (T1) cos (ζ (T1)) = 0

(21)

After rearrangement, it becomes:
d

dT1
C (T1)

= −1/2λC (T1) + 1/2A sin (−θ (T1) + T1σ)

− 1/2F (T1) sin (−θ (T1) + ζ (T1))

d

dT1
θ (T1)

= 1/2
−A cos (−θ (T1) + T1σ) + F (T1) cos (−θ (T1) + ζ (T1))

C (T1)

(22)

Introducing γ (T1) = −θ (T1) + T1σ and eliminating the derivative of C and
γ to zero, the following relations between C and B are obtained, K1 and K2 are
not expressed here because of there lengths.

A2 = K1C,A
2 = K2C, (23)

Then the fixed points of system can be obtained by solving Eq. (17) and
Eq. (23).

3 VI-NES optimization

In this section, various response regimes with respect to the length of cavity are
identified and then a criteria is defined for the optimization of the VI-NES, in
which the energy pumping is the most efficient.
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The parameters for simulation are as follows:

m1 = 3.807kg, c1 = 2.53Ns/m, k1 = 11.68 ∗ 103N/m,

m2 = 0.032kg, b = 0.015m,R = 0.6, ε = 0.84%, λ = 1.43, σ = 0
(24)

N0 is the number of simulation, b and b0 are the value and reference value of
length of cavity respectively. G and G0 are corresponding nondimensional value
and reference value of force respectively. Parameters decided by b are showed
in Tab.1.

value b0 = 0.015m/G0 = 1.0131
N0 8 (a) 3 (b) 4 (c) 1 (d) 2 (e) 5 (f) 6 (g) 7 (h)
G/G0 2.4 1.6 1.1 1 0.95 0.75 0.5 0.1
b/b0 1/2.4 1/1.6 1/1.1 1/1 1/0.95 1/0.75 1/0.5 1/0.1

Table 1: Simulation parameters

Fig.3 demonstrates the variance of the amplitude of the LS with respect to
length of cavity in Tab.1, which is obtained by FFT when the responses enter
into a stable state by time simulation. It is seen that the amplitude of LO
decreases at the first place until some point and then increases again with the
decrease of the length of the cavity.

From the above simulations, the following six regimes can be expected in
Fig.4 among which four regimes are observed and

case 1: as b→∞ ,VI-NES has no influence in LO.
case 2: with decrease of b, the response regime with less than two impacts

per cycle of LO occurs, the typical time response is showed in Fig.5(a).
case 3: the regime 1:1 symmetric resonance occurs with further decrease of b,

which can be analyzed through previous introdued procedure, the time typical
response is showed in Fig.5(b).

case 4: further increase of b cause exist the occurence of SMR, in which
one part of response is in 1:1 resonance, and the other part is like case 2. It is
correspondant to Fig.3 (e) and the typical time response is showed in Fig.5(c).

case 5: when the value of b is decreased small enough, regime with more than
two impacts per period of LO occurs and the typical time response is showed in
Fig.5(d).

case 6: b→ 0, VI-NES will become one part of LO.
From Tab.1, Fig.3 and Fig4, we can conclude that the reponse regime of

SMR (case 4) is the most efficient regime for energy pumping between LO and
VI-NES, although which point during the SMR zone is the most efficient is not
clear. Therefore, the idea of optimization is to find the most efficient zone.
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Figure 3: Influence of cavity’s length to the LO’s amplitude

4 VI-NES optimization

In this part, a detailed simulation about SMR is showed in the first place. Then
the existence conditions of SMR are studied. A SMR (b = b0/0.75) with the



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

Figure 4: Response regime of LO with respect to the length of cavity

1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

t

1400 1600 1800 2000
−2

−1

0

1

2

t

y

(a) case 2

580 585 590 595 600
−1

−0.5

0

0.5

1

t

v
580 585 590 595 600
−2

−1

0

1

2

t

y

(b) case 3

200 300 400 500 600
−0.4

−0.2

0

0.2

0.4

t

v

200 300 400 500 600
−2

−1

0

1

2

t

y

(c) case 4

580 585 590 595 600
−1

−0.5

0

0.5

1

t

v

580 585 590 595 600
−2

−1

0

1

2

t

y

(d) case 5

Figure 5: Typical reponse regime of LO coupled with VI-NES

same parameters in the previous part of Fig.3 is studied here in detail, and
initial conditions are selected around SIM. It is showed that there does not
exist any stable or unstable points which is demonstrated in Fig. 6 (a) and the
time simulation results is presented in Fig. 6 (b)(c).

When only the value of G instead of b is changed, there exist only two
situations which can be represented by σ = 0 and σ = −2 as follows:

situation 1: σ = 0

The stable response of resonance 1:1 will disappear with the decrease of G
and then the SMR will occur. The limit point in this situation is showed in the
Fig. 7 (c), in which the stable point (red circle) reaches the lowest point of the
curve.

Situation 2: σ = −2
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Figure 6: Analysis for the case b=b0/0.75: (a) fixed points, (b) time response,
(c) response trace between LO and VI-NES
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Figure 7: The first case entering into SMR: stable (circle) and unstable (cross)
fixed points.
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Figure 8: The second case entering into SMR: stable (circle) and unstable (cross)
fixed points.

In this situation, as the value of G decreases, the two points, one stable and
one unstable, meet with each other in the left stable branch of the curve and
then disappear together, as is demonstrated in Fig. 8 (c). Then there must be
a critical value σ between the two case, where these two situations encounter
together.

Therefore, for any parameters of LO, there must exist a relationship be-
tween σ,b and G to trigger the occurrence of SMR which is calculated with the
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theoretical results and is showed in Fig.9.
Some further simulations have been done around the curve, among which

rose pentagram represents case5, rose circle represents case 2, red diamond
represents case 4 and blue square represents case3.

According to the Fig.9, the optimization procedure can be done in the fol-
lowing way:

step1: measure of the parameters and the working conditions of LO like
intervals of the amplitude and frequency of exciting force.

step2: calculate the optimization boundary curve as reference to design the
paramters of VI-NES.

step3: for the known interval of σ, choose G to get the SMR the most wide
possible, then according to the relationship between G , F and b, design b the
length of the cavity to let the G to meet the requirement in Fig.9.
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Figure 9: Boundary optimization for SMR with a VI-NES

5 Conclusion

The dynamic response of a two degrees of freedom system comprising a lin-
ear oscillator, subjected to an imposed harmonic displacement, with embedded
vibro-impact nonlinear energy sink (VI-NES) is studied already theoretical and
experimental. Therefore this paper is focused on the design optimization of
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VI-NES for the most efficient energy pumping. Firstly, four typical response
regimes have been observed with respect to the variance of the length of cavity
and the SMR is proved to be the most efficient regime for vibration reduction.
Secondly, two different limits between the regime 1:1 resonance and SMR can be
obtained analytically, in which the SMR starts to exist. Based on this idea, a re-
lationship between parameters and the occurrence of SMR is established, which
is proved numerically. For future experiment and application, one optimization
procedure for the design of VI-NES is presented.
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