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Abstract

We introduce a probabilistic generative model for disentangling spatio-temporal disease
trajectories from collections of high-dimensional brain images. The model is based on spatio-
temporal matrix factorization, where inference on the sources is constrained by anatomically
plausible statistical priors. To model realistic trajectories, the temporal sources are defined as
monotonic and time-reparameterized Gaussian Processes. To account for the non-stationarity
of brain images, we model the spatial sources as sparse codes convolved at multiple scales.
The method was tested on synthetic data favourably comparing with standard blind source
separation approaches. The application on large-scale imaging data from a clinical study
allows to disentangle differential temporal progression patterns mapping brain regions key
to neurodegeneration, while revealing a disease-specific time scale associated to the clinical
diagnosis.

Keywords: Alzheimer’s disease, Disease progression modeling, Gaussian Process, Bayesian
modeling, Stochastic variational inference, Clinical trials

1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized by morpho-
logical and molecular changes of the brain, ultimately leading to cognitive and behavioral
decline. Clinicians suggested hypothetical models of the disease evolution, showing how
different types of biomarkers interact and lead to the final dementia stage [14]. In the past
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years, efforts have been made in order to collect large databases of imaging and clinical
measures, hoping to obtain more insights about the disease progression through data-driven
models describing the trajectory of the disease over time. This kind of models are of critical
importance for understanding the pathological progression in large scale data, and would
represent a valuable reference for improving the individual diagnosis. Within this context, we
propose a spatio-temporal generative model of disease progression, aimed at disentangling and
quantifying the independent dynamics of changes observed in datasets of multi-modal data.
With this term we indicate data acquired via different imaging modalities such as Magnetic
Resonance Imaging (MRI) or Positron-Emission Tomography (PET), as well as non-imaging
data such as clinical scores assessed by physicians. Moreover, we aim at automatically
inferring the disease severity of a patient with respect to the estimated trajectory. Defining
such a disease progression model raises a number of methodological challenges.

AD spreads over decades with a temporal mismatch between the onset of the disease and the
moment where the clinical symptoms appear. Either age of diagnosis, or the chronological
age, are therefore not suitable as a temporal reference to describe the disease progression in
time. Moreover, as the follow-up of patients doesn’t exceed a few years, the development of
a model of long-term pathological changes requires to integrate cross-sectional data from
different individuals, in order to consider a longer period of time. In virtue of the lack of a
well defined temporal reference, observations from different individuals are characterized by
large and unknown variability in the onset and speed of the disease. It is therefore necessary
to account for a time-reparameterization function, mapping each individuals’ observations to
a common temporal axis associated to the absolute disease trajectory [15, 33]. This would
allow to estimate an absolute time-reference related to the natural history of the pathology.

The analysis of MRI and PET data, requires to account for spatio-temporally correlated
features (voxels, i.e. volumetric pixels) defined over arrays of more than a million entries.
The development of inference schemes jointly considering these correlation properties thus
raises scalability issues, especially when accounting for the non-stationarity of the image
signal. Furthermore, the brain regions involved in AD exhibit various dynamics in time,
and evolve at different speeds [35]. From a modeling perspective, accounting for differential
trajectories over space and time raises the problem of source identification and separation.
This issue has been widely addressed in neuroimaging via Independent Component Analysis
(ICA) [8], especially on functional MRI (fMRI) data [7]. Nevertheless, while fMRI time-series
are usually defined over a few hundreds of time points acquired per subject, our problem
consists in jointly analyzing short-term and cross-sectional data observations with respect
to an unknown time-line. This problem cannot be tackled with standard ICA, as time is
generally an independent variable on which inference is not required. Moreover, ICA retrieves
spatial sources based on the assumption of statistical independence. This assumption does
not necessarily lead to clinically interpretable findings. Indeed, dependency across temporal
patterns can be still highly relevant to the pathology, for example when modeling temporal
delay across similar sources.
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The problem of providing a realistic description of the biological processes is critical when
analyzing biomedical data, such as medical images. For example, to describe a plausible evo-
lution of AD from normal to pathological stages, smoothness and monotonicity are commonly
assumed for the temporal sources. It is also necessary to account for the non-stationarity of
changes affecting the brain from global to localized spatio-temporal processes. As a result,
spatial sources need to account for different resolutions at which these changes take place.
While several multi-scale analysis approaches have been proposed to model spatio-temporal
signals [23, 6, 13], extending this type of methods to the high-dimension of medical images is
generally not trivial due to scalability issues. Finally, the noisy nature of medical images,
along with the large signal variability across observations, requires a modeling framework
robust to bias and noise.

In this work, we propose to jointly address these issues within a Bayesian framework
for the spatio-temporal analysis of large-scale collections of multi-modal brain data. We
show that this framework allows us to naturally encode plausibility constraints through
clinically-inspired priors, while accounting for the uncertainty of the temporal profiles and
brain structures we wish to estimate. Similarly to the ICA setting, we formulate the problem
of trajectory modeling through matrix factorization across temporal and spatial sources.
This is done for each modality by inferring their specific spatio-temporal sources. To promote
smoothness in time and avoid any unnecessary hypothesis on the temporal trajectories, we
rely on non-parametric modeling based on Gaussian Process (GP). We account for a plausible
evolution from healthy to pathological stages thanks to a monotonicity constraint applied on
the GP. Moreover, individuals’ observations are temporally re-aligned on a common scale
via a time-warping function. In the case of imaging data, to model the non-stationarity of
the spatial signal, the spatial sources are defined as sparse activation maps convolved at
different scales. We show that our framework can be efficiently optimized through stochastic
variational inference, allowing to exploit automatic differentiation and GPU support to speed
up computations.

The paper is organized as follows: Section 2 analyzes related work on spatio-temporal
modeling of neurodegeneration, while Section 3 details our method. In Section 4 we present
experiments on synthetic data in which we compare our model to standard blind source
separation approaches. We finally provide a demonstration of our method on the modeling
of imaging data from a large scale clinical study. Prospects for future work and conclusions
are drawn in section 5. Derivations that we could not fit in the paper are detailed in the
Appendices.

2. Related Work in Neurodegeneration Modeling

To deal with the uncertainty of the time-line of neurodegenerative pathologies, the concept
of time-reparameterization of imaging-derived features has been used in several works. The
underlying principle consists in estimating an absolute time-scale of disease progression by
temporally re-aligning data from different subjects. For instance, in [36] the time-evolution
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was approximated as a sequence of events which need to be re-ordered for each patient.
This approach thus considers the evolution of neurodegenerative diseases as a collection of
transitions between discrete stages. This hypothesis is however limiting, as it doesn’t reflect
the continuity of changes affecting the brain along the course of the pathology.

To address this limitation, we rely on a continuous parameterization of the time-axis as in
[21, 10]. In particular, individuals’ observations are time-realigned on a common temporal
scale via a time-warping function. Using a set of relevant scalar biomarkers, this kind of
approach allows to learn a time-scale describing the pathology evolution, and to estimate a
data-driven time-line markedly correlated with the decline of cognitive abilities. Similarly,
in [4] a disease progression score was estimated using biomarkers from molecular imaging.
These methods are however based on the analysis of low-dimensional measures, such as
collections of clinical variables. Therefore, they do not allow to scale to the high dimension
of multi-modal medical images. Our work tackles this shortcoming thanks to a scalable
inference scheme based on stochastic variational inference.

Concerning the spatio-temporal representation of neurodegeneration, a mixed-effect model
was proposed by [19] to learn an average spatio-temporal trajectory of brain evolution on
cortical thickness data. The fixed-effect describes the average trajectory, while random
effects are estimated through individual spatio-temporal warping functions, modeling how
each subject differs from the global progression. Still, the extension of this approach to
image volumes raises scalability issues. It has also to be noted that, to allow computational
tractability, the brain evolution was assumed to be stationary both in space and time, thus
limiting the ability of the model to disentangle the multiple dynamics of the brain structures
involved in AD.

An attempt to source separation is proposed in [24], through the decomposition of cor-
tical thickness measurements as a mixture of spatio-temporal processes. This is performed
by associating to each cortical vertex a temporal progression modeled by a sigmoid function,
which may be however too simplistic to describe the progression of AD temporal processes.
We propose to overcome this issue by non-parametric modeling of the temporal sources
through GPs. Moreover, due to the lack of an explicit spatial correlation model, the approach
of [24] may be potentially sensitive to spatial variation and noise, thus leading to poor inter-
pretability. We address this problem by modeling the spatial sources through convolution
of sparse maps at multiple resolutions, allowing to deal with signal non-stationarity and
robustness to noise.

3. Methods

In the following sections a matrix will be denoted by an uppercase letter X, its n-th row
will be given by Xn: and its n-th column by X :n. A column vector will be denoted by a
lowercase letter x. Subscript indices will be used to index the elements of matrices, vectors
or sets of scalars. Superscipt indices will allow to index the blocks of block diagonal matrices.
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3.1. Individual time-shift

To account for the uncertainty of the time-line of individual measurements, we assume
that the observations are defined with respect to an absolute temporal reference τ . This
is performed through a time-warping function tp = f p(τ), that models the individual
time-reparameterization. We choose an additive parameterization such that:

f p(τ) = τ + δp. (1)

Within this setting the individual time-shift δp encodes the temporal position of subject p,
which in our application can be interpreted as the disease stage of subject p with respect to
the long-term disease trajectory. We denote by δ = {δp}Pp=0 the set of time-shift parameters.

3.2. Data modeling

We represent the spatio-temporal data D by a block diagonal matrix in which we differenti-
ate two main blocks Y and V as illustrated in Figure 1. Each sub-block Y m is a matrix

Y1

YM=D

P

P

P
C

F1

FM

V

Figure 1: The block matrices Y m contain the data from a specific imaging modality for each subjects. The
matrix V contains the data from all the scalar modalities for each subjects.

containing the data represented by one of the M imaging modalities we wish to consider.
These matrices have dimensions P ×Fm, where P denotes the number of subjects and Fm the
number of imaging features for modality m, which in our case is the number of voxels. The
matrix V accounts for non-imaging or scalar data such as clinical scores and has dimensions
P × C, where C is the number of scalar features considered. We postulate a generative
model and decompose the data as shown in Figure 2. For each sub-block Y m, the data
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Figure 2: Spatio-temporal decomposition of each data block.

is factorized in a set of Nm spatio-temporal sources Y m = SmAm. The columns of the
matrix Sm describe the temporal evolution of the corresponding spatial maps contained in
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the rows of Am. The data in matrix V is modelled by a matrix U whose columns depict
the temporal trajectories of the different scalar scores. In the case of imaging data, we also
consider a constant term modeling brain areas which don’t exhibit any intensity changes over
time. This is done by including constant matrix terms Zm that we need to estimate. We
assume for a given modality m that the vectors Zm

p: are common to every subjects. Finally,
for each modality m, scalar score c, and subject p, we assume Gaussian observational noise
Em

p: ∼ N (0, σ2
mI), and Hp,c ∼ N (0, ν2c ) for respectively imaging and scalar information.

Therefore, if we consider the data from modality m and scalar c of patient p observed at
time f p(τ) we have:

Y m
p: (f p(τ), θm, ψm) = Sm

p: (f p(τ), θm)Am(ψm) +Zm
p: + Em

p: ,

V p,c(f p(τ), θc) = U p,c(f p(τ), θc) + Hp,c.
(2)

We denote by θm and θc the temporal parameters related respectively to the modality m
and scalar feature c, while ψm represents the set of spatial parameters of modality m. We
assume conditional independence across modalities and scalar scores given the time-shift
information:

p(Y ,V |A,S,Z,U , δ, σ, ν) =
(∏

m

p(Y m|Am,Sm,Zm, δ, σm)
)(∏

c

p(V :c|U :c, δ, νc)
)
,

and according to the generative model, the data likelihood for the imaging modality m is:

p(Y m|Am,Sm,Zm, δ, σm)
)

=
(∏

m

∏
p

1

(2πσ2
m)

Fm
2

exp(− 1

2σ2
m

||Y m
p: (f p(τ), θm, ψm)

− Sm
p: (f p(τ), θm)Am(ψm)−Zm

p: ||2)
)
.

(3)

Naturally, a similar equation holds for p(V :c|U :c, δ, νc).

Within a Bayesian modeling framework, we wish to maximize the marginal log-likelihood
log(p(Y ,V |Z, δ, σ, ν)), to obtain posterior distributions for the spatio-temporal processes.
Since the derivation of this quantity in a closed-form is not possible, we tackle this optimiza-
tion problem through stochastic variational inference. Based on this formulation, in what
follows we illustrate our model by detailing the variational approximations imposed on the
spatio-temporal sources, along with the priors and constraints we impose to represent the
data (Sections 3.3 and 3.4). Finally, we detail the variational lower bound and optimization
strategy in Section 3.5.

For ease of notation we will drop the m and c indexes in Sections 3.3 and 3.4. As a result
the matrix S will indistinctly refer to either any Sm or U , while matrix A will refer to any
Am, and Y to any Y m. For a given modality m, the number of patients P will be indexed
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by p, the number of sources Nm or the number of scalar scores C will be indexed by n, and
finally f will index the number of imaging features Fm.

3.3. Spatio-temporal processes

3.3.1. Temporal sources

In order to flexibly account for non-linear temporal patterns, the temporal sources are
encoded in a matrix S in which each column S:n is a GP representing the evolution of
source n and is independent from the other sources. To allow computational tractability
within a variational setting, we rely on the GP approximation proposed in [9], through kernel
approximation via random feature expansion [29]. Within this framework, a GP can be
approximated as a Bayesian Neural Network with form: S:n(t) = φ(t(ωn)T )wn. For example,
in the case of the Radial Basis Function (RBF) covariance, ωn is a linear projection in the
spectral domain. It is equipped with a Gaussian distributed prior p(ωn) ∼ N (0, lnI) with a
zero-mean and a covariance parameterized by a scalar ln, acting as the length-scale parameter
of the RBF covariance. The non-linear basis functions activation is defined by setting
φ(·) = (cos(·), sin(·)), while the regression parameter wn is given with a standard normal
prior. The GP inference problem can be conveniently performed by estimating approximated
variational distributions for all the ωn and wn (Section 3.5). We will respectively denote by
Ω and W the block diagonal matrices whose blocks are the (ωn)T and wn. Considering the
N temporal sources, we can write p(Ω) =

∏
n p(ω

n) and p(W ) =
∏

n p(w
n).

We wish also to account for a steady evolution of the temporal processes, hence constraining
the temporal sources to monotonicity. This is relevant in the medical case, where one would
like to model the steady progression of a disease from normal to pathological stages. In
our case, we want to constrain the space of the temporal sources to the set of solutions
Cn = {S:n(t) | S′:n(t) ≥ 0 ∀ t}. This can be done done consistently within the regression
setting of [30], and in particular with the GP random feature expansion framework as shown
in [20]. In that work, the constraint is introduced as a second likelihood term on the temporal
sources dynamics:

p(C|S′, γ) =
∏
p,n

(1 + exp(−γS′p,n(t)))−1, (4)

where S′ contains every derivatives S′:n, γ controls the magnitude of the monotonicity
constraint, and C =

⋂
n Cn. According to [20] this constraint can be specified through the

parametric form for the derivative of each S:n:

S′:n(t) =
dφ(t(ωn)T )

dt
wn. (5)

This setting leads to an efficient scheme for estimating the temporal sources through stochastic
variational inference (Section 3.5).

3.3.2. Spatial sources.

According to the model introduced in Section 3.2, each observation Y p: is obtained as the
linear combination at a specific time-point between the temporal and spatial sources. In
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order to deal with the multi-scale nature of the imaging signal, we propose to represent
the spatial sources at multiple resolutions. To this end, we encode the spatial sources
in a matrix A whose rows An: represent a specific source at a given scale. The scale is
prescribed by a convolution operator Σn, which is a applied to a map Bn: that we wish
to infer. This problem can be specified by defining An: = Bn:Σ

n, where Σn is an F × F
Gaussian kernel matrix imposing a specific spatial resolution. The length-scale parameter
λn of the Gaussian kernel is fixed for each source, to force the model to pick details at
that specific scale. Due to the high-dimension of the data we are modeling, performing
stochastic variational inference in this setting raises scalability issues. For instance, if we
assume a Gaussian distribution N (µBn: , diag(Λ)) for Bn:, the distribution of the spatial
signal would be p(An:) ∼ N (µBn:

Σn,Σndiag(Λ)(Σn)T ). As a result, sampling from p(An:)
is not computationally tractable due to the size of the covariance matrix, which prevents the
use of standard inference schemes on Bn:. This can be overcome thanks to the separability of
the Gaussian convolution kernel [25, 22], according to which the 3D convolution matrix Σn

can be decomposed into the Kronecker product of 1D matrices, Σn = Σn
x ⊗Σn

y ⊗Σn
z . This

decomposition allows to efficiently perform standard operations such as matrix inversion,
or matrix-vector multiplication [32]. Thanks to this choice, we recover tractability for the
inference of Bn: through sampling, as required by stochastic inference methods [18].

3.4. Sparsity

In order to detect specific brain areas involved in neurodegeneration, we propose to introduce
a sparsity constraint over the maps (or codes) Bn:. Consistently with our variational inference
scheme, we induce sparsity via Variational Dropout as proposed in [17]. This approach
leverages on an improper log-scale uniform prior p(|Bn:|) ∝

∏
f 1/|Bn,f |, along with an

approximate posterior distribution:

q1(B) =
N∏

n=1

N (Mn:, diag(αn,1M
2
n,1...αn,FM

2
n,F )). (6)

In this formulation, the dropout parameter αn,f is related to the individual dropout probability
pn,f of each weight by αn,f = pn,f(1 − pn,f)−1. When the parameter αn,f exceeds a fixed
threshold, the dropout probability pn,f is considered high enough to ignore the corresponding
weight Mn,f by setting it to zero. However, this framework raises stability issues affecting
the inference of the dropout parameters due to large-variance gradients, thus limiting pn,f to
values smaller than 0.5. To tackle this problem, we leverage on the extension of Variational
Dropout proposed in [26]. In this setting, the variance parameter is encoded in a new
independent variable P n,f = αn,fM

2
n,f , while the posterior distribution is optimized with

respect to (M ,P ). Therefore, in order to minimize the cost function for large variance
P n,f →∞ (αn,f →∞ i.e pn,f → 1), the value of the weight’s magnitude must be controlled
by setting to zero the corresponding parameter Mn,f . As a result, by dropping out weights
in the code, we sparsify the estimated spatial maps, thus better isolating relevant spatial
sub-structures. Spatial correlations in the images are obtained thanks to the convolution
operation detailed in Section 3.3.2.
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3.5. Variational inference

We detailed in the previous sections the choices of priors and constraints that we apply to
the spatio-temporal processes in order to plausibly model the data. To illustrate the overall
formulation of the method, we provide in Figure 3 the graphical model over the M modalities
in the case of imaging data. Naturally, this graph simplifies when we deal with scalar data
as we don’t need to account for any spatial dependence. To infer the time-shift parameter δ,

δ
Figure 3: Graphical model for imaging data, Y = {Y m}.

the sets of parameters θm, θc, and ψm, as well as Z, σ and ν, we need to jointly optimize the
data evidence according to priors and constraints:

log(p(Y ,V , C|Z, δ, σ, ν, γ)) =
∑
m

log(p(Y m, Cm|Zm, δ, σm, γm)) +
∑
c

log(p(V :c, Cc|δ, νc, γc)).

(7)

We tackle the optimization of Equation (7) via stochastic variational inference. Following [9]
and [20] we introduce approximations, q2(Ω

m) and q3(W
m) in addition to q1(B

m) in order
to derive a lower bound Lm for each modality. We recall that the temporal trajectories
Sm and U are treated similarly as described in Section 3.3.1. We also note that the choice
of distributions q1, q2 and q3 is the same across modalities, while their parameters will be
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inferred independently. This leads to:

log(p(Y m, Cm|Zm, δ, σm, γm)) >Eq1,q2,q3 [log(p(Y m|Bm,Ωm,Wm,Zm, δ, σm))]

+ Eq2,q3 [log(p(Cm|Ωm,Wm, δ, γm))]

−D[q1(B
m)||p(Bm)]−D[q2(Ω

m)||p(Ωm)]−D[q3(W
m)||p(Wm)],

log(p(V c:, Cc|δ, νc, γc)) >Eq2,q3 [log(p(V c:|Ωc,W c, δ, σc))]

+ Eq2,q3 [log(p(Cc|Ωc,W c, δ, γc))]

−D[q2(Ω
c)||p(Ωc)]−D[q3(W

c)||p(W c)]

(8)

Where D refers to the Kullback-Leibler (KL) divergence. Combining the lower bounds of the
different modalities we obtain:

log(p(Y ,V , C|Z, δ, σ, ν, γ)) >
∑
m

Lm +
∑
c

Lc. (9)

A detailed derivation of the lower bound is given in Appendix A.
The approximated distributions q2(Ω

m) and q3(W
m) are factorized across GPs such that:

q2(Ω
m) =

Nm∏
n=1

q2(ω
n)m =

Nm∏
n=1

Nrf∏
j=1

N (Rn,j,Q
2
n,j)

m,

q3(W
m) =

Nm∏
n=1

q3(w
n)m =

Nm∏
n=1

Nrf∏
j=1

N (T n,j,V
2
n,j)

m,

(10)

where Nrf is the number of random features used for the projection in the spectral domain.
Using Gaussian priors and approximations we introduced above, we can obtain a closed-form
formula for the KL divergence. Moreover, the choice of prior and approximate posterior distri-
bution for the maps of Bm leads to an approximation for the divergence D[q1(B

m)||p(Bm)]
detailed in [26]. This allows to analytically compute all the KL terms in our cost function.
Formulas for the KL divergences are detailed in Appendix B.

Finally, we optimize the individual time-shifts δ = {δp}Pp=0, Z, σ, ν as well as the overall
sets of spatio-temporal parameters θ = {θm}Mm=1 ∪ {θc}Cc=1 and ψ = {ψm}Mm=1.

θ = {Rm
n:,Q

m
n:,T

m
n:,V

m
n:, ln, n ∈ [1, Nm]}Mm=1 ∪ {Rc

n:,Q
c
n:,T

c
n:,V

c
n:, ln, n ∈ [1, Nc]}Cc=1,

ψ = {Mm
n:,P

m
n:, n ∈ [1, Nm]}Mm=1.

(11)

Following [18] and using the reparameterization trick, we can efficiently sample from the
approximated distributions q1, q2 and q3 to compute the two expectation terms from (8)
for each modality. We chose to alternate the optimization between the spatio-temporal
parameters and the time-shift. We empirically set the γm to the minimum value that gives
monotonic sources. The threshold for the dropout probability above which we set a weight
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Bm
n,f to zero was fixed at 95% (i.e α = 19), while the σm and νm were optimized during

training along with the spatio-temporal parameters. The model is implemented and trained
using the Pytorch library [27]. The complete experimental setting is detailed in Appendix C.
In the following sections we will refer to our method as Monotonic Gaussian Process Analysis
(MGPA).

4. Experiments and Results

In this section we first benchmark MGPA on synthetic data to demonstrate its reconstruction
and separation properties while comparing it to standard sources separation methods. We
finally apply our model on a large set of medical data from a publicly available clinical study,
demonstrating the ability of our method to retrieve spatio-temporal processes relevant to
AD, along with a time-scale describing the course of the disease.

4.1. Synthetic tests on spatio-temporal trajectory separation

For the synthetic tests we considered the case where the data is associated to a single imaging
modality only. We tested MGPA on synthetic data generated as a linear combination of
temporal functions and 3D activation maps at prescribed resolutions. The goal was to assess
the method’s ability to identify the spatio-temporal sources underlying the data. We bench-
marked our method with respect to ICA, Non-Negative Matrix Factorization (NMF), and
Principal Component Analysis (PCA), which were applied from the standard implementation
provided in the Scikit-Learn library [28].

The benchmark was specified by defining a 10-folds validation setting, generating the data
at each fold as a linear combination of temporal sources S̃(t) = [S̃:0(t), S̃:1(t)], and spatial

maps Ã = [Ã0:, Ã1:]. The data was defined as Y p: = S̃p:(tp)Ã+ Ep: over 50 time points tp,
where tp was uniformly distributed in the range [0, 0.7], and Ep: ∼ N (0, σ2I). The temporal

sources were specified as sigmoid functions S̃p,i(tp) = 1/(1 + exp(−tp +αi)), while the spatial

structures had dimensions (30 × 30 × 30) such that Ãi: = B̃i:Σ̃
i
. The Σ̃

i
were chosen as

Gaussian convolution matrices with respective length-scale of λ = 2 mm and λ = 1 mm. The
B̃i: were randomly sampled sparse 3D maps.

Variable selection. We applied our method by specifying an over-complete set of six
sources with respective spatial length-scale of λ = {2, 2, 1, 1, 0.5, 0.5 mm}. Figure 4 shows an
example of the sparse maps obtained for a specific fold. The model prunes the signal for most
of the maps, while retaining two sparse maps, B0: and B4:, whose length-scale are λ = 2
mm and λ = 1 mm, thus correctly estimating the right number of sources and their spatial
resolution. As it can be qualitatively observed in Figure 4, we notice that the estimated
sparse code convolved with a Gaussian kernel matrix with λ = 1 mm is closer to its ground
truth than the one convolved with a length-scale λ = 2 mm. According to our tests, sparse
codes associated to high resolution details (low λ) are indeed more identifiable. On the
contrary, the identifiability of images obtained via a convolution operator with larger kernels
(large λ) is lower, since these maps can be equivalently obtained through the convolution of
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different sparse codes.

λ = 2 mm λ = 1 mm λ = 0.5 mm

Ground Truth

~

λ = 2 mm

~

λ = 1 mm

Estimated Sparse Codes

Figure 4: Slices extracted from the six sparse codes and the ground truth. Blue: Rejected points. Yellow:
Retained points.

Sources separation. We observe in Table 1 that the lowest Mean-Squared Error (MSE) for
the temporal sources reconstruction is obtained by MGPA, closely followed by ICA. Similarly,
our model and ICA show the highest Structural Similarity (SSIM) score [34], which quantifies
the image reconstruction accuracy with respect to the ground truth maps, while accounting
for the inter-dependencies between neighbouring pixels. An example of image reconstruction
from a sample fold is illustrated in Figure 5.

Table 1: MSE and SSIM between respectively the ground truth temporal and spatial sources with respect to
the ones estimated by the different methods.

Temporal (MSE) Spatial (SSIM)

MGPA (8± 4).10−5 98%± 1
ICA (6± 3).10−4 97%± 2
NMF (3± 2).10−2 40%± 17
PCA 0.44± 10−3 15%± 1

4.2. Synthetic tests on trajectory separation and time-reparameterization

In this test, we modify the experimental benchmark by introducing a further element of
variability associated to the time-axis. The temporal and spatial sources were modelled
following the same procedure as in Section 4.1, however the observations were mixed along
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Temporal sources

MGPA

0 21
Maps Intensity

S0Ground Truth

S1

Spatial maps

A0

A1

Figure 5: Spatial maps: Sample slice from ground truth images (A0 λ = 2 mm, A1 λ = 1 mm), the maps
estimated by ICA, and the ones estimated by MGPA. Temporal sources: Ground truth temporal sources
(red) along with sources estimated by ICA (green) and MGPA (blue).

the temporal axis. To do so we generated longitudinal data as Y p,j,: = S̃p:(t)Ã + Ej:, by
sampling between 1 and 10 images per time-point and randomly re-arranging them along
the time-axis (cf. time-shift tp of each observation at initialization in Figures 6 and 7, panel
“Time-Shift”). As a result, the method needs to estimate the spatio-temporal sources, while
reconstructing the original time-ordering. Since the model is agnostic of a time-scale, we
note that the time-shift may have a different range than the original time-axis. However,
its relative ordering should be consistent with the original time points. We fitted a linear
regression model over the 10 folds between the original time and the estimated time-shift
parameter, and obtained an average R2 coefficient of 0.98 with a standard deviation of 0.005
(cf. Table 2). This is illustrated for two different folds in the Time-Shift panel of Figures 6

Table 2: MSE and SSIM between respectively the ground truth temporal and spatial sources with respect to
the ones estimated by MGPA. R2 coefficient of the linear regression between the original time-line and the
estimated time-shift.

Temporal (MSE) Spatial (SSIM) R2

MGPA (2± 0.8).10−2 95%± 4 0.98± 0.005

and 7, where we observe a strong linear correlation with the original time-line, meaning that
the algorithm correctly re-ordered the data with respect to the original time-axis. However,
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we notice in Table 2 that the MSE of the temporal sources significantly increased, due to the
additional difficulty brought by the time-shift estimation. Indeed, in order to reconstruct
the temporal signal we need to perfectly re-align hundreds of observations. This is the case
in Figure 6 (optimal reconstruction result), where the time-shift is highly correlated with
the original time-line, allowing to distinguish every single observation and reconstruct the
original temporal profiles. Whereas in Figure 7 (sub-optimal reconstruction result), the
estimated time-shift doesn’t exhibit a perfect fit, and generally underestimates the time-
reparameterization for the later and earlier time points. This is related to the challenging
setting of reconstructing the time-line identified by the original temporal sources. Indeed, we
observe that S:0 reaches a plateau for early time points, while S:1 is flat for later ones. This
behaviour increases the difficulty of differentiating time points with low signal differences.
As a result, it impacts the time-shift optimization and adds variability to the time-shift
estimation performances, thus deteriorating the reconstruction of the temporal sources over
the 10 folds compared to the previous benchmark. The spatial sources estimation remains
comparable to the one without time-shift both quantitatively, with an average SSIM of 95%,
and qualitatively, as shown in Figures 6 and 7. Within this setting, ICA, NMF and PCA
poorly perform as they can’t reconstruct the time-line. Interestingly, spatial ICA correctly
estimated the spatial processes without however associating them to the corresponding
temporal profile.

Time-Shift tp

Ground Truth MGPA maps S0

0 21
Maps Intensity

MGPA

MGPA

Spatial maps Temporal sources Time-Shift

S1

A0

A1

Figure 6: Optimal reconstruction result on synthetic data. Spatial maps: Sample slice from ground truth
images (A0 λ = 2 mm, A1 λ = 1 mm) and estimated spatial sources. Temporal sources: In red the original
temporal sources, in blue the estimated temporal sources. Time-Shift: Time-shift tp of each image at
initialization (top), and after estimation (bottom). In blue, linear fit with the ground truth.
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Figure 7: Sub-optimal reconstruction result on synthetic data. Spatial maps: Sample slice from ground
truth images (A0 λ = 2 mm, A1 λ = 1 mm) and estimated spatial sources. Temporal sources: In red the
original temporal sources, in blue the estimated temporal sources. Time-Shift: Time-shift tp of each image
at initialization (top), and after estimation (bottom). In blue, linear fit with the ground truth.

4.3. Application to spatio-temporal brain progression modeling

4.3.1. Data processing

Data used in the preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
For up-to-date information, see www.adni-info.org.

We selected a cohort of 544 amyloid positive subjects of the ADNI database composed
of 103 controls (NL), 164 Mild Cognitive Impairment (MCI), 114 AD patients, 34 healthy
individuals converted to MCI or to AD (NL converter) and 129 MCI converted to AD
(MCI converter). The term amyloid positive refers to subjects whose amyloid level in the
cerebrospinal fluid (CSF) is below the nominal cutoff of 192 pg/ml. Conversion to MCI or
AD was determined using the last follow-up available information. We provide in Table 3
socio-demographic and clinical information across the different groups.

The MRI, FDG-PET and AV45-PET of each individual were processed in order to ob-
tain respectively, volumes of gray matter density, glucose uptake, and amyloid load in a
standard anatomical space.

MRI processing protocol. Baseline MRI images were analyzed according to the SPM12
processing pipeline [2]. Each image was initially segmented into grey, white matter and CSF
probabilistic maps. Grey matter images were used for the following analysis and normalized
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Table 3: Baseline socio-demographic and clinical information for study cohort. Average values and standard
deviation in parenthesis. NL: normal individuals, NL converter: normal subjects who converted to MCI or to
AD, MCI: mild cognitive impairment, MCI converter: MCI subjects who converted to AD, AD: Alzheimer’s
patients. ADAS13: Alzheimer’s Disease Assessment Scale-cognitive subscale, 13 items. FAQ: Functional
Assessment Questionnaire. FDG: (18)F-fluorodeoxyglucose Positron Emission Tomography (PET) imaging.
AV45: (18)F-florbetapir Amyloid PET imaging.

Group NL
NL

converter
MCI

MCI
converter

AD

N 103 34 164 129 114
Age 73 (6) 78 (5) 73 (7) 73 (7) 74 (8)
Education (yrs) 16.3 (3) 16 (3) 15.7 (3) 16 (3) 15.6 (3)
ADAS13 9.1 (4.4) 11.4 (4.3) 14.6 (5.5) 20.4 (6.5) 31.6 (8.5)
FAQ 0.3 (0.7) 0.2 (0.6) 1.9 (2.8) 5.0 (4.6) 13.5 (6.9)
Entorhinal (cm3) 3.8 (0.5) 3.5 (0.5) 3.6 (0.6) 3.2 (0.7) 2.8 (0.6)
Hippocampus (cm3) 7.4 (0.9) 6.9 (0.7) 6.9 (0.9) 6.4 (0.9) 5.9 (0.8)
Ventricles (cm3) 31 (16) 42 (21) 39 (23) 40 (19) 48 (23)
Whole brain (cm3) 1033 (104) 1019 (91) 1058 (103) 1037 (102) 1005 (115)
FDG 1.3 (0.1) 1.3 (0.1) 1.2 (0.1) 1.1 (0.1) 1.0 (0.1)
AV45 1.3 (0.2) 1.3 (0.1) 1.3 (0.2) 1.4 (0.2) 1.5 (0.2)

to a group-wise reference space via DARTEL [1]. The subsequent modeling was carried out
on the normalised images at the original spatial resolution.

PET processing protocol. Individuals' baseline PET images were initially affinely aligned
to the corresponding MRI. After scaling the intensities to the cerebellum, the images were
normalized to the grey matter template obtained with DARTEL and smoothed with a FWHM
parameter of 4.55.

The images have dimension 102× 130× 107 before vectorization, leading to 1418820 spatial
features per patient. These spatial features represent for each voxel their gray matter con-
centration in the case of MRI images, their glucose metabolism for FDG-PET images, or
their amyloid concentration for AV45-PET images. To exploit the ability of our model to
automatically adapt to different spatial scales, we chose to keep the MRI images at their
native resolution for the analysis, and thus do not perform additional smoohting to equalize
to the PET FWHM. In addition to the imaging data of each patient, we also integrate the
ADAS13 score assessed by clinicians. High values of this score indicate a decline of cognitive
abilities. We consider three matrices Y MRI , Y FDG, and Y AV 45 of dimension (543× 1418820)
containing the images of all the subjects, and a matrix V of dimension (543× 1) containing
their ADAS13 score. From now on we will refer to the data as the block diagonal matrix
containing the four matrices Y MRI ,Y FDG, Y AV 45, and V as described in Section 3.2. We
note that the analysis is performed by only considering a single scan per imaging modality
and ADAS13 score for each patient. Therefore, the temporal evolution has to be inferred
solely through the analysis of relative differences between the brain morphologies, glucose
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metabolisms, amyloid concentrations and cognitive abilities across individuals.

4.3.2. Model specification

We aim at showing how MGPA applied on the data extracted from the ADNI cohort is able
to temporally re-align patients in order to describe AD progression in a plausible way, while
detecting relevant spatio-temporal processes at stake in AD. The temporal sources SMRI

and SFDG associated to the loss of gray matter, and to the decrease of glucose uptake, are
enforced to be monotonically decreasing. On the contrary, the temporal sources SAV 45 and
U :ADAS13, modeling respectively the evolution of amyloid concentration, and ADAS13 score,
are enforced to be monotonically increasing. Since we don’t consider any information about
the disease stage of each individual before applying our method, all the observations are
initialized at the same time reference τ = 0. Therefore, as for the tests in Section 4.2, the
time-shift reparameterization describes a relative re-ordering of the subjects not related to
a specific time-unit. To decompose the imaging data we apply our model by specifying an
over-complete basis of six sources with λ = {8, 8, 4, 4, 2, 2 mm}, to cover both different scales
and the associated variety of temporal evolution. Due to the high-dimension of the data
matrix, the computations were parallelized over six GPUs, and the model required eighteen
hours to complete the training.

4.3.3. Estimated spatio-temporal brain dynamics

In Figure 8 we show the spatio-temporal processes retained by the model for each imaging
modality. Interestingly, the model adapts to the spatial resolution of MRI and PET images.
Indeed, we notice that the model accounts for the high-resolution of MRI images by retaining
a source associated to the lowest length-scale (λ = 2 mm). Concerning PET data, we observe
that the induced sparsity discards the highest resolution codes (λ = 2 mm) for both FDG and
AV45, highlighting the ability of the model to adapt to the coarser resolution of the PET signal.

In the case of MRI data, two sources were retained at two different resolutions (λ = 4
mm and λ = 2 mm). Source SMRI

4 describes a gray matter loss encompassing a large extent
of the brain with a focus on cortical areas (see AMRI

4 ). We note that this map also targets
subcortical areas such as the hippocampi, which are key regions of the AD pathology. Source
SMRI

2 (λ = 4 mm) indicates a mild decrease of gray matter which accelerates in the latest
stages of the disease, and targets the temporal poles (see AMRI

2 ). It is interesting to notice
that this differential pattern of gray matter loss also affects the parahippocampal region,
whose atrophy is known to be prominent in AD [11]. These results underline the complex evo-
lution of brain atrophy, and the ability of the model to disentangle spatio-temporal processes
mapping different regions involved in the pathology [3, 12]. Concerning the spatio-temporal
processes extracted from the FDG-PET data, we see on Figure 8 that the model retained
two sources at the coarsest resolutions (λ = 8 mm). Source SFDG

1 indicates a pattern of
hypometabolism that tends to plateau and which involves most of the brain regions, thus
describing a global effect of the pathology on the glucose uptake. Source SFDG

0 describes a
linear pattern of hypometabolism targeting only areas such as the precuneus and the parietal
lobe, which are known to be strongly affected during the evolution of the disease [5]. Finally,
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the model extracted two spatio-temporal sources from the AV45-PET data at two different
resolutions (λ = 8 mm and λ = 4 mm). We observe that source SAV 45

2 suggests an increase
of amyloid deposition mapping a large extent of the brain, such as the parietal and frontal
lobes as well as temporal areas, thus concurring with clinical evidence [31]. Similarly to the
FDG-PET processes, we have a source SAV 45

0 exhibiting a differential pattern of amyloid
deposition targeting mostly the occipital lobe and the precuneus.

The estimated spatio-temporal processes can be combined to obtain an estimated evo-
lution SmAm of the brain along the time-shift axis for each modality. In Figure 9, we show
the ratio |Sm

p:A
m − Sm

0:A
m|/Sm

0:A
m between the image predicted at four time-points tp and

the image predicted at t0 for the three imaging modalities. This allows us to visualize the
trajectory of a brain going from a healthy to a pathological state in terms of atrophy, glucose
metabolism and amyloid load according to our model.

4.3.4. Model Consistency

To verify the plausibility of the fitted model, we compare in Figure 10 the concentration
predicted by the model and the raw concentration measures in different brain areas for the
three imaging modalities. We observe a decrease of gray matter and glucose metabolism as
we progress along the estimated time-line, allowing to relate large time-shift values to lower
gray matter density and glucose uptake. Moreover, we notice the agreement between the
predictions made by the model (in blue) and the raw concentration measures (in red). In the
case of AV45 data there is only a mild increase of amyloid load according to the model, prob-
ably due to the fact that the subjects selected in the cohort are already amyloid positive. As
a result, they already show a high baseline amyloid level concentration, close to plateau levels.

In Figure 11, we show the estimated GP U :ADAS13. We observe that the model is able
to plausibly describe the evolution of this cognitive score, while demonstrating a larger
variability than in the case of imaging modalities.

4.3.5. Plausibility with respect to clinical evidence

We assessed the clinical relevance of the estimated time-shift by relating it to independent
medical information. To this end, we compared the estimated time-shift to ADAS11, MMSE
and FAQ scores. High values of ADAS11 and FAQ or low values of MMSE indicate a decline
of performances. We show in Figure 12 that the estimated time-shift correlates with a
decrease of cognitive and functional abilities. Moreover, we notice a non-linear relationship
between the scores and the time-shift, suggesting an acceleration of symptoms along the
estimated time-course, which is characteristic of AD in its latest stages.

The box-plot of Figure 13 shows the time-shift distribution across clinical groups. We
observe an increase of the estimated time-shift when going from healthy to pathological
stages. The high uncertainty associated to the MCI group is due to the broad definition
of this clinical category, which includes subjects not necessarily affected by dementia. We
note that the MCI subjects subsequently converted to AD (MCI converter) exhibit higher
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Figure 8: Estimated spatio-temporal processes for the three imaging modalities. The time-scale was rescaled
to the aribtrary range [0, 1].



Figure 9: Ratio between the model prediction at time tp and the prediction at t0 for the three imaging
modalities. The time-scale was rescaled to the aribtrary range [0, 1].

time-shift than the MCI group, highlighting the ability of the model to differentiate clinical
diagnosis without any prior knowledge. A similar distinction can be noticed between the NL
and NL converter groups. We found significant differences between median time-shift for
NL-NL converter, MCI-MCI converter and MCI converter-AD (comparisons p < 0.01, Figure
13). It is also important to recall that this result is obtained from the analysis of a single
scan per imaging modality and ADAS13 score for each patient.

5. Discussion

We presented a generative approach to spatio-temporal disease progression modeling based on
matrix factorization across temporal and spatial sources. The proposed application on large
set of medical images shows the ability of the model to disentangle relevant spatio-temporal
processes at stake in AD, along with an estimated time-scale related to the disease evolution.

There are several avenues of improvement for the proposed approach. We found that
the optimization is highly sensitive to the initialization of the spatial sources. This is typical
of such complex non-convex problems, and requires further investigations to better control
the algorithm convergence. More generally, the problem of source separation tackled in
this work is intrinsically ill-posed, as the given data can be explained by several solutions.
This was illustrated for example in our tests on synthetic data (Section 4.2), where the
identification of the sources was more challenging in the case of coarse resolution codes and
of flat temporal sources. We note however that this issue is general, and intrinsic to the
problem of disease progression modeling. Finally, as mentioned in Section 3.4, the Variational
Dropout framework leads to stability issues affecting inference, which are mostly due to the
use of an improper prior. This problem may motivate the identification of alternative ways
to induce sparsity on the spatial maps.
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Figure 10: Model prediction averaged on specific brain areas (blue line), and observed values (red dots),
along the estimated time-line for the three imaging modalities. L and R respectively stand for left and right.
The time-scale was rescaled to the aribtrary range [0, 1].

In this work, we modeled the time-shift of each subject as a translation with respect to a
common temporal reference. However, since pathological trajectories are different across indi-
viduals, it would be valuable to account for individual speed of progressions by introducing a
scaling effect, as it has been proposed for example in [19, 33]. This was not in the scope of the
current study, as we focused on the analysis of cross-sectional data, thus having only one data
point per subject. Therefore, one of the main extensions of this model will be the integration of
longitudinal data for each individual, which will allow a more specific time-reparameterization.

The modeling results are also sensitive to the specification of the spatio-temporal pro-
cesses priors. In our case, the monotonicity constraint imposed to the GPs may be too
restrictive to completely capture the complexity of the progression of neurodegeneration.
From a more clinical point of view, the model could also benefit from the integration of
data measuring the concentration of Tau protein via PET imaging, in order to quantify key
neurobiological processes associated to AD [16].
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Figure 11: Model prediction of the ADAS13 score (blue line), and observed values (red dots) along the
estimated time-line. The time-scale was rescaled to the aribtrary range [0, 1].
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Figure 12: Evolution of the ADAS11 (left), FAQ (middle) and MMSE (right) along the estimated time-line.
The time-scale was rescaled to the aribtrary range [0, 1].
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Figure 13: Distribution of the time-shift values over the different clinical stages. The time-scale was rescaled
to the aribtrary range [0, 1].



The model has only been applied to a cohort of amyloid positive subjects, which restricts
the dynamics of evolution that we could estimate. Indeed, only considering these subjects
narrows down the time-line of the pathology, as we study patients at potentially advanced
disease stages. Therefore, it would be interesting in a future work to apply the model on
a cohort including amyloid negative subjects, to model the brain dynamics over the whole
disease natural history.

Finally, we wish to validate the model on different cohorts to demonstrate its general-
ization properties. The validation for each subject could be done by finding the time-point
minimizing the cost between the data of the observed subject and the model estimation.
The indication given by the estimated time-shift could then be compared with the clinical
diagnosis of the subject, allowing to test the reliability of our model. This validation step
would ultimately allow to use the model as a diagnostic instrument of AD.
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Appendix A.

In this Appendix, we detail the complete derivation of the lower bound.

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm,
dSm

dt
|δ, γ)dBmdSm

]
= log

[ ∫
p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS

m

dt
, δ, γm)p(Bm)

p(
dSm

dt
|Sm, δ, γ)p(Sm)dBmdSm

]
.

By observing that dSm

dt
is completely identified by Sm, the equation can be written as:

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm)dBmdSm
]
.

Similarly this derivation can be applied to log(p(V :c, Cc|δ, νc, γc)).

log(p(Y m, Cm|Zm, δ, σm, γm)) = log
[ ∫

p(Y m|Bm,Sm,Zm, δ, σm)p(C|dS
m

dt
, δ, γm)p(Bm)

p(Sm)dBmdSm
]

= log
[ ∫

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)p(Bm)

p(Ωm)p(Wm)dBmdΩmdWm
]

= log
[ ∫

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)p(Bm)

p(Ωm)p(Wm)
q1(B

m)q2(Ω
m)q3(W

m)

q1(B
m)q2(Ω

m)q3(W
m)
dBmdΩmdWm

]
= log

[
Eq1,q2,q3

p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)

q1(B
m)q2(Ω

m)q3(W
m)

p(Bm)p(Ωm)p(Wm)

q1(B
m)q2(Ω

m)q3(W
m)

]
≥ Eq1,q2,q3

(
log
[p(Y m|Bm,Ωm,Wm,Zm, δ, σm)p(C|Ωm,Wm, δ, γm)

q1(B
m)q2(Ω

m)q3(W
m)

p(Bm)p(Ωm)p(Wm)

q1(B
m)q2(Ω

m)q3(W
m)

])
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= Eq1,q2,q3 [log(p(Y m|Bm,Ωm,Wm,Zm, δ, σm))]

+ Eq2,q3 [log(p(Cm|Ωm,Wm, δ, γm))]

−D[q1(B
m)||p(Bm)]−D[q2(Ω

m)||p(Ωm)]−D[q3(W
m)||p(Wm)].

This derivation gives us the lower bound Lm of a given modality m. The same technique
can be used to derive a lower bound for log(p(V c:, Cc|δ, νc, γc)), and by summation over m
and c we obtain the lower bound of Equation 9 for log(p(Y ,V , C|Z, δ, σ, ν, γ)).

Appendix B.

In this section we provide formulas for computing the three KL terms of the lower bound.
The total KL divergences are:

D[q1(B)||p(B)] =
∑
m

D[q1(B
m)||p(Bm)],

D[q2(Ω)||p(Ω)] =
∑
m

D[q1(Ω
m)||p(Ωm)] +

∑
c

D[q1(Ω
c)||p(Ωc)],

D[q3(W )||p(W )] =
∑
m

D[q3(W
m)||p(Wm)] +

∑
c

D[q3(W
c)||p(W c)].

For ease of notation we will drop the m and c indices and will give formulas for a single
modality. In [26], authors provide an approximation of the KL for the maps B:

−D[q1(B)||p(B)] =
∑
n,f

k1h(k2 + k3 log(αn,f ))− 0.5 log(1 + α−1n,f )− k1,

where h is the sigmoid function and k1 = 0.63576, k2 = 1.87320, k3 = 1.48695.

In the case of Ω and W , we’ve seen that they have Gaussian priors and approximations
which are detailed in Sections 3.3.1 and 3.5. As a result we can obtain closed-form formulas
for their KL, leading to:

D[q2(Ω)|p(Ω)] =
1

2

∑
n,j

Q2
n,jln +R2

n,jln − 1− log(Q2
n,jln),

D[q3(W )|p(W )] =
1

2

∑
n,j

V 2
n,j + T 2

n,j − 1− log(V 2
n,j).

By summation over the different modalities we finally obtain the total KL divergences.
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Appendix C.

We provide in this Appendix details for the experiments on real data.

• The number of random features for the GP estimation was set to 10, as it was enough
to recover the temporal sources in the synthetic experiments.

• The lower bound was optimized using the ADAM optimizer.

• We used an alternate optimization scheme between the spatio-temporal parameters and
the time-shift of [2000, 1000] iterations repeated 20 times, followed by 30000 iterations
in which we only optimized the spatio-temporal parameters.

• The expectation terms in the lower bound were approximated using only one Monte-
Carlo sample as proposed in [18].

• The table below gives the learning rates (LR) of all the parameters of the model.

Table 1: Learning rates (LR) of the different parameters of the model.

θ M P Z σ, ν δ

lr 10−2 10−3 10−1 10−1 10−2 10−4
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