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Abstract. We introduce a probabilistic generative model for disentan-
gling spatio-temporal disease trajectories from series of high-dimensional
brain images. The model is based on spatio-temporal matrix factorization,
where inference on the sources is constrained by anatomically plausible
statistical priors. To model realistic trajectories, the temporal sources are
defined as monotonic and time-reparametrized Gaussian Processes. To
account for the non-stationarity of brain images, we model the spatial
sources as sparse codes convolved at multiple scales. The method was
tested on synthetic data favourably comparing with standard blind source
separation approaches. The application on large-scale imaging data from
a clinical study allows to disentangle differential temporal progression
patterns mapping brain regions key to neurodegeneration, while revealing
a disease-specific time scale associated to the clinical diagnosis.

1 Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized
by morphological and molecular changes of the brain, ultimately leading to
cognitive and behavioral decline. Clinicians suggested hypothetical models of
the disease evolution, showing how different types of biomarkers interact and
lead to the final dementia stage [11]. In the past years, efforts have been made
in order to collect large databases of imaging and clinical measures, hoping to
obtain more insights about the disease progression through data-driven models
describing the trajectory of the disease over time. This kind of models would

*Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf.



2 C. Abi Nader et al.

be of critical importance for understanding the pathological progression in large
scale data, and would represent a valuable reference for improving the individual
diagnosis. Within this context, we propose a spatio-temporal generative model
of disease progression, aimed at disentangling and quantifying the independent
dynamics of changes observed in time-series of volumetric structural brain images.
Moreover, thanks to our model, we aim at automatically inferring the disease
severity of a patient with respect to the estimated trajectory. Defining such a
disease progression model raises a number of methodological challenges.

AD spreads over decades with a temporal mismatch between the onset of the
disease and the moment where the clinical symptoms appear. Either age of
diagnosis, or the chronological age, are therefore not suitable as a temporal
reference to describe the disease progression in time. Moreover, as the follow-up
of patients doesn’t exceed a few years, the development of a model of long-term
pathological changes requires to integrate cross-sectional data from different
individuals, in order to consider a longer period of time. In virtue of the lack
of a well defined temporal reference, observations from different individuals are
characterized by large and unknown variability in the onset and speed of the
disease. It is therefore necessary to account for a time reparameterization function,
mapping each individuals’ observations to a common temporal axis associated to
the absolute disease trajectory [12,27]. This would allow to estimate an absolute
time-reference related to the natural history of the pathology.

The analysis of structural imaging data, such as the one provided by Magnetic
Resonance Imaging (MRI), requires to account for spatio-temporally correlated
features (voxels, i.e. volumetric pixels) defined over arrays of more than a million
entries. The development of inference schemes jointly accounting for these corre-
lation properties thus raises scalability issues, especially when accounting for the
non-stationarity of the image signal. Furthermore the brain regions involved in
AD exhibit various dynamics in time, and evolve at different speed [29]. From
a modeling perspective, accounting for differential trajectories over space and
time raises the problem of source identification and separation. This issue has
been widely addressed in neuroimaging via Independent Component Analysis
[6], especially on functional MRI (fMRI) data [5]. Nevertheless, while fMRI time-
series are usually defined over a hundreds of time points acquired per subject, our
problem consists in jointly analyzing short-term cross-sectional data observations
with respect to an unknown time-line. This problem cannot be tackled with
standard ICA, as time is generally an independent variable on which inference is
not required. Moreover, ICA retrieves spatial sources based on an assumption of
statistical independence. This assumption does not necessarily lead to clinically
interpretable findings. Indeed, dependency across temporal patterns can be still
highly relevant to the pathology, for example when modelling temporal delay
across similar sources.

The problem of providing a realistic description of the biological processes is
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critical when analyzing biomedical data, such as medical images. For example,
to describe a plausible evolution of AD from normal to pathological stages the
temporal sources need to be smooth and monotonic. It is also necessary to account
for the non-stationarity of changes affecting the brain from global to localized
spatio-temporal processes. As a result, spatial sources need to account for different
resolutions at which these changes take place. While several multi-scale analysis
approaches have been proposed to model spatio-temporal signals [19,4,10], ex-
tending this type of methods to the high-dimension of medical images is generally
not trivial due to scalability issues. Finally, the noisy nature of medical images,
along with the large signal variability across observations, requires a modelling
framework robust to noise and over-fitting.

In this work, we propose to jointly address these issues within a Bayesian frame-
work for spatio-temporal analysis of large-scale collections of volumetric medical
images. We show that this framework allows us to naturally encode plausibility
constraints through clinically-inspired priors, while accounting for the uncertainty
of the temporal profiles and brain structures we wish to estimate. Similarly to
the ICA setting, we formulate the problem of trajectory modelling as a matrix
factorization across temporal and spatial sources. To promote smoothness in time
and avoid any unnecessary hypothesis on the temporal trajectories, we rely on
non-parametric modelling based on Gaussian Process (GP). We account for a
plausible evolution from healthy to pathological stages thanks to a monotonicity
constraint applied on the GP. Moreover, individuals’ observations are tempo-
rally re-aligned on a common scale via a time-warping function. To model the
non-stationarity of the spatial signal, the spatial sources are defined as sparse
activation maps convolved at different scales. We show that our framework can be
efficiently optimized through stochastic variational inference, allowing to exploit
automatic differentiation and GPU support to speed up computations.

The paper is organized as follows: Section 2 analyzes related work on spatio-
temporal modelling of neurodegeneration, while Section 3 details our method.
In Section 4 we present experiments on synthetic data in which we compare
our model to standard blind source separation approaches. We finally provide a
demonstration of our method on the modelling of imaging data from a large scale
clinical study. Prospects for future work and conclusions are drawn in section 5.
Derivations that we could not fit in the paper are detailed in the Supplementary
Material.

2 Related Work in Neurodegeneration Modelling

To deal with the uncertainty of the time-line of neurodegenerative pathologies,
the concept of time-reparameterization of imaging-derived features has been used
in several works. The underlying principle consists in estimating an absolute time-
scale of disease progression by temporally re-aligning data from different subjects.
For instance, in [30] the time-evolution was approximated as a sequence of events
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which need to be re-ordered for each patient. This approach thus considers the
evolution of neurodegenerative diseases as a collection of transitions between
different clinical stages. This hypothesis is however limiting, as it doesn’t re-
flect the continuity of changes affecting the brain along the course of the pathology.

To address this limitation, we rely on a continuous parameterization of the
time-axis as in [18,8]. In particular, individuals’ observations are time-realigned
on a common temporal scale via a time-warping function. Using a set of relevant
scalar biomarkers, these approaches allow to learn a time-scale describing the
pathology evolution, and to estimate a time-line markedly correlated with the
decline of cognitive abilities. Similarly, in [3] a disease progression score was
estimated using biomarkers from molecular imaging. These methods are however
based on the analysis of low-dimensional measures, such as collections of clinical
variables. Therefore, they do not allow to scale to the high dimension of medical
images. Our work tackles this shortcoming thanks to a scalable inference scheme
based on stochastic variational inference.

Concerning the spatio-temporal representation of neurodegeneration, a mixed-
effect model was proposed by [15] to learn an average spatio-temporal trajectory
of brain evolution on cortical thickness data. The fixed-effect describes the average
trajectory, while random effects are estimated through individual spatio-temporal
warping functions, modelling how each subject differs from the global progression.
Still, the extension of this approach to image volumes raises scalability issues. It
has also to be noted that, to allow computational tractability, the brain evolution
was assumed to be stationary in both space and time, thus limiting the ability of
the model to disentangle the multiple dynamics of the brain structures involved
in AD.

An attempt to sources separation is proposed in [20], through the decomposition
of cortical thickness measurements as a mixture of spatio-temporal processes.
This is performed by associating to each cortical vertex a temporal progression
modeled by a sigmoid function, which may be however too simplistic to describe
the progression of AD temporal processes. We propose to overcome this issue
by non-parametric modelling of the temporal sources through GPs. Moreover,
due to the lack of an explicit spatial correlation model, the approach of [20]
may be potentially sensitive to spatial variation and noise, thus leading to poor
interpretability. We address this problem by modelling the spatial sources through
convolution of sparse maps at multiple resolutions, allowing to deal with signal
non-stationarity and robustness to noise.

3 Methods

3.1 Individual time-shift

To account for the uncertainty of the time-line of individual measurements, we
assume that the observations are defined with respect to an absolute temporal
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reference τ . This is performed through a time-warping function ti = f i(τ), that
models the individual time-reparameterization. We choose a linear parameteriza-
tion such that:

f i(τ) = τ + δi. (1)

Within this setting the individual time-shift δi encodes the temporal position
of sample i, which in our application can be interpreted as the disease stage of
subject i with respect to the long-term disease trajectory.

3.2 Data modelling

We assume that the spatio-temporal data is represented in a matrix Y (x, f(τ)) =
[Y 1(x, f1(τ)),Y 2(x, f2(τ)), ..,Y P (x, fp(τ))]t with dimensions P × F , where P
is the number of samples, F the number of image features, and Y i(x, f

i(τ)) is
a sample observed at position x and at time f i(τ). We postulate a generative
model in order to decompose the data in Ns spatio-temporal sources such that:

Y p(x, fp(τ)) = Sp(θ, fp(τ))A(ψ, x) +Z + E. (2)

Where S is a P×Ns matrix in which each column represents a temporal trajectory,
and θ the set of parameters related to the temporal sources. A is a Ns×F matrix
where each row represents a spatial map, and ψ is the associated set of spatial
parameters. Z is a vector of length F that we need to estimate, representing
structures which don’t exhibit any intensity changes over time. Finally, E follows
a Gaussian distribution N (0, σ2I). According to the generative model, the data
likelihood is:

p(Y |A,S,Z, σ) =

P∏
p=1

1

(2πσ2)
F
2

exp(− 1

2σ2
||Y p − SpA−Z||2). (3)

Within a Bayesian modelling framework, we wish to maximize the marginal
log-likelihood log(p(Y |Z, σ)), to obtain posterior distributions for the spatio-
temporal processes. Since the derivation of this quantity in a closed-form is
not possible, we tackle this optimzation problem through stochastic variational
inference. Based on this formulation, in what follows we illustrate our model by
detailing the variational approximations imposed on the spatio-temporal sources,
along with the priors and constraints we impose to represent the data (Sections
3.3 and 3.4). Finally, we detail the variational lower bound and optimization
strategy in Section 3.5.

3.3 Spatio-temporal processes

Temporal sources. In order to flexibly account for non-linear temporal pat-
terns, the temporal sources are encoded in a matrix S whose each column Sn is
a GP. To allow computational tractability within a variational setting, we rely on
the GP approximation proposed in [7], through kernel approximation via random
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feature expansion [25]. Within this framework, a GP can be approximated as
a Bayesian Neural Network with form: Sn(t) = φ(Ωnt)W n. For example, in
the case of the Radial Basis Function (RBF) covariance, Ωn is a linear projec-
tion in the spectral domain. It is equipped with a Gaussian distributed prior
p(Ωn) ∼ N (0, lnI) with a zero-mean and a covariance parameterized by a scalar
ln, acting as the length-scale parameter of the RBF covariance. The non-linear
basis functions activation is defined by setting φ(·) = (cos(·), sin(·)), while the
regression parameterW n is given with a standard normal prior. The GP inference
problem can be conveniently performed by estimating approximated variational
distributions for Ωn and W n (Section 3.5).

We wish also to account for a steady evolution of the temporal processes, hence
constraining the temporal sources to monotonicity. This is relevant in the medical
case, where one would like to model the steady progression of a disease from
normal to pathological stages. To do so, we constrain the space of the temporal
sources to the set of solutions Cn = {Sn(t) | S′n(t) ≤ 0 ∀t}. This can be done
consistently with the GP random feature expansion as shown in [17], where the
constraint is introduced as a second likelihood term on the temporal sources
dynamics:

p(C|S′, γ) = (1 + exp(−γS′(t)))−1, (4)

where γ controls the magnitude of the monotonicity constraint, and C =
⋂

n Cn.
According to [17] this constraint can be specified through the parametric form
for the derivative of each Sn:

S′n(t) = Ωnφ
′(Ωnt)W n. (5)

This setting leads to an efficient scheme for estimating the temporal sources
through stochastic variational inference (Section 3.5).

Spatial sources. According to the model introduced in Section 3.2, each obser-
vation Y p is obtained as the linear combination at a specific time-point between
the temporal and spatial sources. In order to deal with the multi-scale nature
of the imaging signal, we propose to represent the spatial sources at multiple
resolutions. To this end, we encode the spatial sources in a matrix A whose
rows An represent a specific source at a given scale. The scale is prescribed
by a convolution operator Σn, which is a applied to a map Bn that we wish
to infer. This problem can be specified by defining An = ΣnBn, where Σn is
an F × F Gaussian kernel matrix imposing a specific spatial resolution. The
length-scale parameter λn of the Gaussian kernel is fixed for each source, to force
the model to pick details at that specific scale. Due to the high-dimension of
the data we are modelling, performing stochastic variational inference in this
setting raises scalability issues. For instance, if we assume a Gaussian distri-
bution N (µBn

, diag(Λ)) for Bn, the distribution of the spatial signal would
be p(An) ∼ N (ΣnµBn

,Σndiag(Λ)Σt
n). As a result, sampling from p(An) is

not computationally tractable due to the size of the covariance matrix, which
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prevents the use of standard inference schemes on Bn. This can be overcome
thanks to the separability of the Gaussian convolution kernel [21,16], according
to which the 3D convolution matrix Σ can be decomposed into the Kronecker
product of 1D matrices, Σn = Σx

n ⊗Σ
y
n ⊗Σ

z
n. This decomposition allows to

efficiently perform standard operations such as matrix inversion, or matrix-vector
multiplication [26]. Thanks to this choice, we recover tractability for the inference
of Bn through sampling, as required by stochastic inference methods [14].

3.4 Sparsity

In order to detect specific brain areas involved in neurodegeneration, we propose
to introduce a sparsity constraint over the maps Bn. Consistently with our
variational inference scheme, we induce sparsity via Variational Dropout as
proposed in [13]. This approach leverages on an improper log-scale uniform prior
p(|Bn|) ∝ 1/|Bn|, along with an approximate posterior distribution:

q1(B) =

Ns∏
n=1

N (µn, diag(αn,1µ
2
n,1...αn,Fµ

2
n,F )). (6)

In this formulation, αn,f is related to the individual dropout probability pn,f
of each weight by αn,f = pn,f (1− pn,f )−1. To tackle the known stability issues
affecting the inference of the dropout parameters, in what follows we leverage
on the extension of Variational Dropout proposed in [22]. In this setting, the
variance parameter is encoded in a new independent variable ρ2n,f = αn,fµ

2
n,f ,

while the posterior distribution is optimized with respect to (µ,ρ2). Therefore,
in order to minimize the cost function for large variance ρ2n,f →∞ (αn,f →∞
i.e pn,f → 1), the value of the weight’s magnitude must be controlled by setting
to zero the corresponding parameter µn,f . As a result, by dropping out weights
in the code, we sparsify the estimated spatial maps, thus better isolating relevant
spatial sub-structures. We note that although the elements of the spatial maps
Bn are assumed to be Gaussian and i.i.d, spatial correlations in the images are
obtained thanks to the convolution operation detailed in Section 3.3.

3.5 Variational inference

To infer the individual time-shift parameter, the sets of parameters θ and ψ,
as well as Z and σ, we need to jointly optimize the data evidence according to
priors and constraints:

log(p(Y , C|Z, σ, γ)) = log
[ ∫

p(Y |B,S,Z, σ)p(C|S′, γ)p(B)p(S,S′|γ)dBdSdS′
]

= log
[ ∫

p(Y |B,S,Z, σ)p(C|S′, γ)p(B)p(S′|S, γ)p(S)dBdSdS′
]
.

(7)
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By observing that S′ is completely identified by S, formula (7) can be written
as:

log(p(Y , C|Z, σ, γ)) = log
[ ∫

p(Y |B,S,Z, σ)p(C|S′, γ)p(B)p(S)dBdS
]
. (8)

Since this integral is intractable, we tackle the optimization of (8) via stochastic
variational inference. Following [7] and [17] we introduce approximations, q2(Ω)
and q3(W ) in addition to q1(B), to derive the lower bound (a detailed derivation
is given in the Supplementary Material):

log(p(Y , C|Z, σ, γ)) >EB,Ω,W [log(p(Y |B,Ω,W ,Z, σ))] + EΩ,W [log(p(C|Ω,W , γ))]

−D[q1(B)||p(B)]−D[q2(Ω)||p(Ω)]−D[q3(W )||p(W )].

(9)

Where D refers to the Kullback-Leibler (KL) divergence.
The choice of prior and approximate posterior distribution for the maps Bn leads
to a closed-form formula for the KL divergence detailed in [22]:

−D[q1(B)||p(B)] =
∑
n,f

k1h(k2 + k3 log(αn,f ))− 0.5 log(1 + α−1n,f )− k1, (10)

where h is the sigmoid function and k1, k2, k3 are given constants. The approxi-
mated distributions q2(Ω) and q3(W ) are factorized across GPs such that:

q2(Ω) =

Ns∏
n=1

q2(Ωn) =

Ns∏
n=1

Nrf∏
j=1

N (rn,j , p
2
n,j),

q3(W ) =

Ns∏
n=1

q3(W n) =

Ns∏
n=1

Nrf∏
j=1

N (mn,j , s
2
n,j),

(11)

where Nrf is the number of random features used for the projection in the spectral
domain. Using the Gaussian priors and the approximations we introduced above,
we obtain the closed-form formula for the KL divergence between two Gaussian
distributions, leading to:

D[q2(Ω)|p(Ω)] =
1

2

∑
n,j

p2n,j ln + r2n,j ln − 1− log(p2n,j ln).

D[q3(W )|p(W )] =
1

2

∑
n,j

s2n,j +m2
n,j − 1− log(s2n,j).

(12)

Finally we optimize the individual time-shifts {δi}Pi=0, Z, σ as well as the
subsequent sets of parameters:

θ = {mn, s
2
n, rn,p

2
n, ln, n ∈ [1, Ns]},

ψ = {µn,ρ
2
n, n ∈ [1, Ns]}.

(13)
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Following [14] and using the reparameterization trick, we can efficiently sample
from the approximated distributions q1, q2 and q3 to compute the two expectation
terms from (9). We chose to alternate the optimization between the spatio-
temporal parameters and the time-shift. We empirically set γ to the minimum
value that gives monotonic sources, and the dropout rate of each Bn,f to 95%
(i.e αn,f = 19), while σ was optimized during training along with the time-shift.
The model is implemented and trained using the Pytorch library [23]. In the
following sections we will refer to our method as Monotonic Gaussian Process
Analysis (MGPA).

4 Experiments and Results

In this section we first benchmark MGPA on synthetic data to demonstrate its
reconstruction and separation properties while comparing it to standard sources
separation methods. We finally apply our model on a large set of medical images
from a publicly available clinical study, demonstrating the ability of our method
to retrieve spatio-temporal processes relevant to AD, along with a time-scale
describing the course of the disease.

4.1 Synthetic tests on spatio-temporal trajectory separation

We tested MGPA on synthetic data generated as a linear combination of temporal
functions and 3D activation maps at prescribed resolutions. The goal was to
assess the method’s ability to identify the spatio-temporal sources underlying the
data. We benchmarked our method with respect to ICA, Non-Negative Matrix
Factorization (NMF), and Principal Component Analysis (PCA), which were
applied from the standard implementation provided in the Scikit-Learn library
[24].

The benchmark was specified by defining a 10-folds validation setting, gen-
erating the data at each fold as a linear combination of temporal sources
S̃(t) = [S̃1(t), S̃2(t)], and spatial maps Ã = [Ã1, Ã2]t. The data was defined as

Y p = S̃(tp)Ã+ Ep over 50 time points tp, where tp was uniformly distributed
in the range [0, 0.7], and Ep ∼ N (0, σ2I). The temporal sources were specified

as sigmoid functions S̃i(t) = 1/(1 + exp(−t+ αi)), while the spatial structures

had dimensions (30 × 30 × 30) such that Ãi = Σ̃iB̃i. The Σ̃i were chosen as
Gaussian convolution matrices with respective length-scale of λ = 2 mm and
λ = 1 mm. The B̃i were randomly sampled sparse 3D maps.

Variable selection. We applied our method by specifying an over-complete
set of six sources with respective spatial length-scale of λ = 2, 2, 1, 1, 0.5, 0.5
mm. Figure 1 shows an example of the sparse maps obtained for a specific fold.
The model prunes the signal for most of the maps, while retaining two sparse
maps, B0 and B4, whose length-scale are λ = 2 mm and λ = 1 mm, thus
correctly estimating the right number of sources and their spatial resolution. As
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it can be qualitatively observed in Figure 1, we notice that the estimated sparse
code convolved with a Gaussian kernel matrix with λ = 1 mm is closer to its
ground truth than the one convolved with a length-scale λ = 2 mm. According
to our tests, sparse codes associated to high resolution details (low λ) are indeed
more identifiable. On the contrary, the identifiability of images obtained via a
convolution operator with larger kernels (large λ) is lower, since these maps can
be equivalently obtained through the convolution of different sparse codes.

λ = 2 mm λ = 1 mm λ = 0.5 mm

Ground Truth

~

λ = 2 mm

~

λ = 1 mm

Estimated Sparse Codes

Fig. 1: Slices extracted from the six sparse codes and the ground truth. Blue:
Rejected points. Yellow: Retained points.

Sources separation. We observe in Table 1 that the lowest Mean-Squared
Error (MSE) for the temporal sources reconstruction is obtained by MGPA,
closely followed by ICA. Similarly, our model and ICA show the highest Struc-
tural Similarity (SSIM) score [28], which quantifies the image reconstruction
accuracy with respect to the ground truth maps, while accounting for the inter-
dependencies between spatially close pixels. An example of image reconstruction
from a sample fold is illustrated in Figure 2.

Table 1: MSE and SSIM between respectively the ground truth temporal and
spatial sources with respect to the ones estimated by the different methods.

Temporal (MSE) Spatial (SSIM)

MGPA (8± 4).10−5 98% ± 1
ICA (6 ± 3).10−4 97% ± 2
NMF (3 ± 2).10−2 40% ± 17
PCA 0.44 ± 10−3 15% ± 1
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MGPA mapsICA maps

MGPA

Temporal sources

MGPA

0 21
Maps Intensity

S0

Ground Truth

S1

Spatial maps

Fig. 2: Spatial maps: Sample slice from ground truth images (S0 λ = 2 mm, S1

λ = 1 mm), the maps estimated by ICA, and the ones estimated by MGPA.
Temporal sources: Ground truth temporal sources (red) along with sources
estimated by ICA (green) and MGPA (blue).

4.2 Synthetic tests on trajectory separation and time-
reparameterization

In this test, we modify the experimental benchmark by introducing a further
element of variability associated to the time-axis. The temporal and spatial
sources were modelled following the same procedure as in Section 4.1, however
the observations were mixed along the temporal axis. To do so we generated
longitudinal data as Y p,j = S̃(tp)Ã+ Ej , by sampling between 1 and 10 images
per time-point and randomly re-arranging them along the time-axis (cf. time-shift
tp of each observation at initialization in Figures 3 and 4, panel “Time-Shift”).
As a result, the method needs to estimate the spatio-temporal sources, while
reconstructing the original time-ordering. Since the model is agnostic of a time-
scale, we note that the time-shift may have a different range than the original
time-axis. However, its relative ordering should be consistent with the original
time points. We fitted a linear regression model over the 10 folds between the
original time and the estimated time-shift parameter, and obtained an average
R2 coefficient of 0.98 with a standard deviation of 0.005 (cf. Tabel 2). This is
illustrated for two different folds in the Time-Shift panel of Figures 3 and 4,
where we observe a strong linear correlation with the original time-line, meaning
that the algorithm correctly re-ordered the data with respect to the original
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Table 2: MSE and SSIM between respectively the ground truth temporal and
spatial sources with respect to the ones estimated by MGPA. R2 coefficient of
the linear regression between the original time-line and the estimated time-shift.

Temporal (MSE) Spatial (SSIM) R2

MGPA (2± 0.8).10−2 95% ± 4 0.98± 0.005

time-axis. However, we notice in Table 2 that the MSE of the temporal sources
significantly increased, due to the additional difficulty brought by the time-
shift estimation. Indeed, in order to reconstruct the temporal signal we need to
perfectly re-align hundreds of observations. This is the case in Figure 3 (optimal
reconstruction result), where the time-shift correlates with the original time-line,
allowing to distinguish every single observation and reconstruct the original
temporal profiles. Whereas in Figure 4 (sub-optimal reconstruction result), the
estimated time-shift doesn’t exhibit a perfect fit, and generally underestimates
the time-reparameterization for the later and earlier time points. This may be
related to the challenging setting to reconstruct the time-line identified by the
original temporal sources. Indeed, we observe that S0 reaches a plateau for early
time points, while S1 is flat for later ones. This behaviour increases the difficulty
of differentiating time points with low signal differences. As a result, it impacts
the time-shift optimization and adds variability to the time-shift estimation
performances, thus deteriorating the reconstruction of the temporal sources over
the 10 folds compared to the previous benchmark. The spatial sources estimation
remains comparable to the one without time-shift both quantitatively, with an
average SSIM of 95%, and qualitatively, as shown in Figures 3 and 4. Within
this setting, ICA, NMF and PCA poorly perform as they can’t reconstruct the
time-line. Interestingly, spatial ICA correctly estimated the spatial processes
without however associating them to the corresponding temporal profile.

4.3 Application to spatio-temporal brain progression modelling

Data. Data used in the preparation of this article were obtained from the
Alzheimers Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

We selected a cohort of 543 patients of the ADNI database composed of 88
controls (NL), 343 Mild Cognitive Impairment (MCI) and 118 AD patients at
baseline. The MRI of each individual was processed following [1] in order to
obtain gray matter (GM) density volumes in a standard anatomical space. These
images have dimensions 102× 130× 107 before vectorization, leading to 1418820
spatial features per patient which represent the gray matter concentration of
each voxel. From now on we will refer to the data as the (543× 1418820) matrix
containing the images of all the subjects. We note that the analysis is performed
by considering a single MRI scan per patient only. Therefore, the temporal
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Fig. 3: Optimal reconstruction result on synthetic data. Spatial maps: Sample
slice from ground truth images (S0 λ = 2 mm, S1 λ = 1 mm) and estimated
spatial sources. Temporal sources: In red the original temporal sources, in blue
the estimated temporal sources. Time-Shift: Time-shift tp of each image at
initialization (top), and after estimation (bottom). In blue, linear fit with the
ground truth.

evolution has to be inferred solely through the analysis of relative differences
between the brain morphologies across individuals.

Model specification. We aim at showing how MGPA applied on the MR
images of the ADNI cohort is able to temporally re-align patients in order to
describe AD progression in a plausible way, while detecting relevant spatio-
temporal processes at stake in AD. To model the loss of gray matter over time
the temporal sources are enforced to be monotonically decreasing. Since we
don’t consider any information about the disease stage of each individual before
applying our method, all the observations are initialized at the same time reference
τ = 0. Therefore, as for the tests in Section 4.2, the time-shift reparameterization
describes a relative re-ordering of the subjects not related to a specific time-
unit. We apply our model by specifying an over-complete basis of six sources
with λ = 1.5, 1.5, 0.75, 0.75, 0.1, 0.1 mm, to cover both different scales and the
variety of temporal evolution. Due to the high-dimension of the data matrix, the
computations were parallelized over two GPUs, and the model required six hours
to complete the training.

Results. In Figure 5 we show the four spatio-temporal processes retained by the
model. The two sources with the highest resolution were discarded by our induced
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Fig. 4: Sub-optimal reconstruction result on synthetic data. Spatial maps: Sample
slice from ground truth images (S0 λ = 2 mm, S1 λ = 1 mm) and estimated
spatial sources. Temporal sources: In red the original temporal sources, in blue
the estimated temporal sources. Time-Shift: Time-shift tp of each image at
initialization (top), and after estimation (bottom). In blue, linear fit with the
ground truth.

sparsity, indicating the model robustness with respect to the noise from high-
frequency signals. Sources S0 (λ = 1.5 mm) and S2 (λ = 0.75 mm) encompass
a large extent of the brain with a focus on cortical areas, and exhibit a gray
matter decrease that tends to plateau in the latest stages. It is also interesting to
note the symmetry of the estimated spatio-temporal processes, showing similar
accelerating progressions at two different spatial resolutions. Moreover, sources S1

(λ = 1.5 mm) and S3 (λ = 0.75 mm) exhibit a differential pattern of gray matter
loss accelerating in the latest stages of the pathology. We note that the maps
target subcortical areas such as the hippocampi, which are key regions of the
AD pathology. These results underline the complex evolution of the brain gray
matter, and the ability of the model to disentangle spatio-temporal processes
mapping regions involved in the pathology [2,9].
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Fig. 5: The four estimated spatio-temporal processes underlying AD progression.
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Model Consistency. To verify the plausibility of the estimated temporal
reparameterization function, we compared the gray matter concentration of
different brain regions against the time-shift value for each individual (Figure 6
top row). We observe a decrease of gray matter in brain regions as we progress
along the estimated time-line, allowing to relate large time-shift values to lower
gray matter density. This is confirmed by the agreement between the gray matter
density predicted by the model and the raw concentration measures (Figure 6
bottom row).
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p-value=1e-6 p-value=5e-9 p-value=1e-15

Fig. 6: Top row: Individuals’ volumetric biomarkers against time-shift tp. Bottom
row: Predicted gray matter density averaged on specific brain areas (blue line)
and observed values (red dots), along the estimated time-line.

Plausibility with respect to clinical evidence. We assessed the clinical
relevance of the estimated time-shift by relating it to independent medical
information evaluated by physicians. To this end, we compared the estimated
time-shift to the ADAS11 scale: high values of this score indicates a decline of
cognitive abilities. We show in Figure 7 a non-linear relationship between ADAS11
and the time-shift, suggesting an acceleration of symptoms along the estimated
time-course, which is characteristic of AD in its latest stages. The box-plot of
Figure 7 shows the time-shift distribution across clinical groups. We observe an
increase of the estimated time-shift when going from healthy to pathological
stages. The high uncertainty associated to the MCI group is due to the broad
definition of this clinical category, which includes subjects not necessarily affected
by dementia. We note that the MCI subjects subsequently converted to AD (MCI
to AD) exhibit higher time-shift than the MCI group, highlighting the ability
of the model to differentiate clinical diagnosis without any prior knowledge. A
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similar distinction can be noticed between the NL and NL to MCI groups. It is
important to recall that this result is obtained from the analysis of a single MRI
scan per patient only.
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Fig. 7: Left: Evolution of the ADAS11 score along the estimated time-course.
Right: Distribution of the time-shift values over the different clinical stages.

5 Discussion

We presented a generative model to analyze spatio-temporal data based on matrix
factorization across temporal and spatial sources. The proposed application on
large set of medical images show the ability of the model to disentangle relevant
spatio-temporal processes at stake in AD, along with an estimated time-scale
related to the disease evolution.

There are several avenues of improvement for the proposed approach. The op-
timization is highly sensitive to the initialization of the spatial sources. This is
typical of such complex non-convex problems, and requires further investigations
to better control the algorithm convergence. Moreover, as mentioned in Section
3.4, the Variational Dropout framework leads to stability issues affecting inference,
which are mostly due to the improper prior. This problem motivates the need of
alternative ways to induce sparsity on the spatial maps. The modelling results
are also sensitive to the specification of the spatio-temporal processes priors. In
our case, the monotonicity constraint imposed to the GPs may be too restrictive
to completely capture the complexity of the progression of neurodegeneration.
Ultimately, even if we essentially focused on the medical case, our approach
remains general enough to be applied on different types of spatio-temporal data.
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Supplementary Material

A. Derivation of the Lower Bound

We give a detailed derivation of the lower bound from equation (9) that we use
in variational inference to learn the different parameters of our model.

log p(Y , C|Z, σ, γ) = log

[∫
p(Y |B,S,Z, σ)p(C|S′, γ)p(B)p(S)dBdS

]

= log
[ ∫

p(Y |B,Ω,W ,Z, σ)p(C|Ω,W , γ)p(B)p(Ω)

p(W )dBdΩdW
]

= log
[ ∫

p(Y |B,Ω,W ,Z, σ)p(C|Ω,W , γ)p(B)p(Ω)

p(W )
q1(B)q2(Ω)q3(W )

q1(B)q2(Ω)q3(W )
dBdΩdW

]

= log
[
Eq1,q2,q3

p(Y |B,Ω,W ,Z, σ)p(C|Ω,W , γ)p(B)

q1(B)q2(Ω)q3(W )

p(Ω)p(W )

q1(B)q2(Ω)q3(W )

]

≥ Eq1,q2,q3

(
log
[p(Y |B,Ω,W ,Z, σ)p(C|Ω,W , γ)p(B)

q1(B)q2(Ω)q3(W )

p(Ω)p(W )

q1(B)q2(Ω)q3(W )

])
= Eq1,q2,q3 [log(p(Y |B,Ω,W ,Z, σ))]

+ Eq2,q3 [log(p(C|Ω,W , γ))]−D[q1(B)||p(B)]

−D[q2(Ω)||p(Ω)]−D[q3(W )||p(W )].

B. ADNI

Data collection and sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and DOD ADNI. ADNI is funded by
the National Institute on Aging, the National Institute of Biomedical Imaging
and Bioengineering, and through generous contributions from the following:
AbbVie, Alzheimers Association; Alzheimers Drug Discovery Foundation; Ara-
clon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;CereSpir,
Inc.;Cogstate;Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech,
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Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.;Lumosity;Lundbeck;Merck & Co., Inc.; Meso Scale Diagnos-
tics, LLC.;NeuroRx Research; Neurotrack Technologies;Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging;Servier; Takeda Pharmaceutical Com-
pany; and Transition Therapeutics.The Canadian Institutes of Health Research
is providing funds to support ADNI clinical sites in Canada. Private sector con-
tributions are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated by the Alzheimers
Therapeutic Research Institute at the University of Southern California. ADNI
data are disseminated by the Laboratory for Neuro Imaging at the University of
Southern California.
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