N

N
N

HAL

open science

A genetically modified Hoare logic
G. Bernot, Jean-Paul Comet, Z. Khalis, A. Richard, Olivier Roux

» To cite this version:

G. Bernot, Jean-Paul Comet, Z. Khalis, A. Richard, Olivier Roux. A genetically modified Hoare logic.

Theoretical Computer Science, 2019. hal-02051795

HAL Id: hal-02051795
https://hal.science/hal-02051795
Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://hal.science/hal-02051795
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S030439751830080X
Manuscript 24b6515d4a5004d15b90df79a6¢2212b

A Genetically Modified Hoare Logic

G. Bernot?, J.-P. Comet?, Z. Khalis®, A. Richard?®, O. Roux”

*University Cote d’Azur
13S laboratory, UMR CNRS 7271,
CS 40121, 06903 Sophia Antipolis Cedex, France
b LS2N UMR CNRS 6004, BP 92101,
1 rue de la Noé, 44321 Nantes Cedex 3, France

Abstract

An important problem when modelling gene networks lies in the identifica-
tion of parameters, even when using a discrete framework such as the one
of René Thomas. We present in this article a new approach based on Hoare
logic to generate constraints on parameter values. Specifications of observed
behaviours play a role comparable to programs in the classical Hoare logic,
and deduced weakest preconditions characterize the sets of all compatible
parameterizations, expressed as constraints on parameters. Besides being
natural and simple, our Hoare logic approach is remarkably powerful and,
among others, it allows one to express external interventions of the biolo-
gist during experiments such as knockouts. In supplementary materials, we
give a proof of soundness of our Hoare logic for gene networks as well as a
proof of completeness and decidability based on the notion of the weakest
precondition.

Keywords: Hoare logic, Gene regulatory networks, Thomas networks,
Parameter identification, Soundness and completeness

1. Introduction

Different frameworks for studying the behaviour of gene networks in a
systematic way have been proposed. Among them, ordinary differential
equations played an important role, which however mostly lead to numer-
ical simulations. Besides, the abstraction procedure of René Thomas [1],
approximating sigmoid functions by step functions, makes it possible to de-
scribe the qualitative dynamics of gene networks as paths in a finite state

Preprint submitted to Theoretical Computer Science October 2, 2017

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S030439751830080X
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S030439751830080X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S030439751830080X

space. Nevertheless this qualitative description of the dynamics is still gov-
erned by a set of parameter values, which, although becoming small integers,
remain difficult to deduce from classical experimental knowledge. In this
context, we are interested in the exhaustive search of parameter values that
are consistent with specifications formalizing the experimentally observed be-
haviours of gene regulatory networks. In addition an important quality of
our approach, which is not addressed by other formalisms, is to take into
account external interventions of the biologists during the experiments (e.g.
knockouts).

Several works were undertaken with the objective to identify the param-
eters. The application of temporal logic to gene regulatory networks was
presented in [2, 3], then constraint programming was used in [4, 5]. In this
paper, we present a somewhat unexpected application of formal methods to
biology through a new approach based on Hoare logic [6] and its associated
weakest precondition calculus [7] that generates constraints on parameters.
The formalism on which we decided to apply this idea is the one of René
Thomas because it is now universally recognized as the reference framework
for discrete modelling of gene networks. The key point of our proposal is
to define a language able to capture the actual traces observed by molecular
biologists during a set of experiments (either at the transcriptomic or pro-
teomic level [8]). We have designed a language which is expressive enough
to specify sets of observed traces as well as external interventions during the
biological experiments, while preserving the completeness of a correspond-
ing extended Hoare logic. Since this method avoids building the complete
state graph, it results in a powerful technique to find out the constraints
representing the set of consistent parameterizations with a tangible gain for
computation time. Indeed, the weakest precondition proof strategy which
extracts the constraints, goes through the trace specification syntax but is
independent of the size of the gene network.

The paper is organized as follows. The basic concepts of classical Hoare
logic and its associated Dijkstra weakest precondition are quickly reminded
in Section 2. The classical formal definitions for Thomas discrete gene reg-
ulatory networks are reminded in Section 3. Section 4 gives our definition
of (genetically modified) Hoare triples, including the assertion language and
the trace specification language. In Section 5, an extended Hoare logic for
gene networks is defined for Thomas discrete models. In Section 6, the small
example of the incoherent feedforward loop of type 1 (made popular by Uri
Alon in [9, 10]) highlights the whole process of our approach to find out the

2

suitable parameter values. Section 7 sketches the previously existing meth-
ods for formal identification of discrete parameters in gene network models.
We conclude in Section 8. Supplementary materials provide the mathemat-
ical semantics of these extended Hoare triples, a proof of soundness of our
Hoare logic for gene networks, and a proof of completeness and decidability.

2. Basics of Hoare logic

The Hoare logic is a formal system for reasoning about the correct-
ness of imperative programs. In [6], Tony Hoare introduced the notation
“{P} p {Q}’ to mean “If the assertion P (precondition) is satisfied before
performing the program p and if the program terminates, then the assertion
@ (postcondition) will be satisfied afterwards.” This constitutes de facto a
specification of the program under the form of a triple, called the Hoare triple.
In [7], Edsger Dijkstra has defined an algorithm taking the postcondition @
and the program p as input and computing the weakest precondition P, that
ensures () if p terminates. In other words, weakest means that the Hoare
triple { Py} p {@} is satisfied and that for any precondition P, {P} p {Q}
is satisfied if and only if P = F, is semantically satisfied. Notice that weak-
est precondition means that it does not contain any useless condition, so,
it means that the set of states that satisfy the weakest precondition s the
largest one. The basic idea is to stamp the sequential steps of a program
with assertions that are infered according to the instruction they surround.

Within the following inference rules, p, p; and ps stand for programs,
P, P, P,, I and @ stand for first-order assertions on the variables of the
program, v stands for a variable of the imperative program, and Q[v <+ expr]
means that expr is substituted to each free occurrence of v in):

Assignment: {Qv+-expr]} vi=expr {Q}

Sequential composition: {7} p2 {Q} {P1} ;1 {2}
b P ' {P1} pupe {Q}

{n} p {QF {P} p {Q}
eAP])V(—eAPy)} if e then p; else ps {Q}

Conditional branching: I

{enl} p {I} —eAN[=Q)
{I} while e with [do p {Q}

Iteration:

P=
Empty program: W?Q} (where ¢ stands for the empty program)

The Iteration rule deserves some comments. The assertion [is called the
loop invariant and it is well known that finding the weakest loop invariant
(if any) is undecidable in general [11, 12]. So, Tony Hoare asks the pro-
grammer to give a loop invariant explicitely (with I). There are approaches
to help finding loop invariants such as the iterative approach adopted in
ASTREE [13] (abstract interpretation [14]).

Some authors prefer the following iteration rule T vhiTe {:Qﬁhp 1{£ FRETNG!
that requires the application of the empty program rule to become equivalent
to our version. By doing so, these authors put the light on the fact that within
a program, each while instruction carries its own (sub)specification and it
can consequently be proved apart from the rest of the program.

From the standard set of Hoare logic rules, the following proof strategy
builds a proof tree that computes the weakest precondition [7].

Definition 2.1. (Dijkstra Backward strategy). Let {P} p {Q} be a Hoare
triple. We call backward strategy the proof strategy defined inductivelly on
p as follows:

1. If p is of the form p1;pa where py is made of a single instruction,
then apply the Sequential composition rule.

2. Ifp is a single instruction, then apply the corresponding rule (Iteration
rule, Conditional branching rule or assignment rule).

3. Only after steps 1 and 2 have fully treated p, i.e. when all instructions
have been treated, apply the Empty program rule.

Notice that, these three items being mutually exclusive, the backward strategy
generates a unique proof tree. (In addition, the remaining leafs of the proof
tree must be handled using first order logic and arithmetic knowledge.)

By doing so, the precondition F, obtained just before applying the last
Empty program rule is the weakest precondition. According to Stephen
Cook [15], the Hoare logic is complete assuming that each loop invariant
in the program is the weakest loop invariant with respect to the condition
computed just at the right of its while statement. More technically, a pro-
gram with a while statement is of the form: “p; ; while ewith / do p; po.”
The Dijkstra backward strategy computes inductively the weakest precondi-
tion (o such that, after the execution of p,, the postcondition is satisfied. So

4

()2 becomes the postcondition of the while statement. Cook’s result is then
valid when the invariant I is the weakest condition that ensures ()5 if the
program exits from the while statement. All in all, Cook’s result means that
the Hoare triple { P} p {Q} is correct if and only if P = P, is semantically
satisfied. So the full completeness of the Hoare logic depends on two things:
a sufficient expressive power to express all the previously mentionned weakest
loop invariants and the existence of a first-order proof tree for P = F, when-
ever it is semantically satisfied. Technically, this relies on the expressiveness
of the chosen underlying assertion language [16].

The most striking feature of the backward strategy for Hoare logic is
that, owing to very simple sequences of syntactic formula manipulations, we
capture the mathematical semantics of a program within first order logic.
Nevertheless, it is worth noticing that we only address partial correctness
since Hoare logic does not give any proof of the termination of the program
(while instructions may induce infinite loops).

3. Basics of discrete gene regulatory network models

This section presents the formal framework based on the discrete mod-
elling method of René Thomas [17, 18] and introduced in [19]. As shown in

DuEA N

x>1

< > M3
/"(y>1)

M1
(x22)Aps

Figure 1: The graphical representation of a gene regulatory graph R = (V, M, Ev, Ep)
with V' = {z, y}, the bounds of x and y are respectively 2 and 1, M = {1, 2, 3}, ©u, is
(@ > 2) A p1s), Pua 8 (2 > 1), 9y 18~y > 1).

Figure 1, a gene regulatory graph is visualized as a labelled directed graph in
which vertices are either variables (within circles) or multiplezes (within rect-
angles). Variables abstract genes or their products, and multiplexes contain
propositional formulas that encode situations in which a group of variables
(inputs of multiplexes) influence the evolution of some variables (outputs of
multiplexes). In the figure the simple multiplex ps expresses that the variable
x can help the activation of the variable y when its state is at least equal to 1.

In general, multiplexes can represent combined biological phenomena, one of
the simplest being the formation of complexes (in which case the formula
would simply contain a conjunction). In the figure, the situation of y; is a
little bit more elaborated: It reflects an auto-activation of x at level 2 which
is controlled by 3. Because us contains a negation, p; does not model a
positive cooperation of x and y: The auto-activation of x is inhibited by y.

So, in this example, there are three qualitatively interesting intervals of
expression levels for x: an interval called 0, where x can neither act on y nor
on itself, an interval called 1, where x can act on y and never on itself, and
an interval called 2, where x can act on y as well as on itself provided that
3 is satisfied. From the biological point of view, there is a threshold (i.e. a
given number of intracellular molecules produced by z) such that = is unable
(resp. able) to act on its target gene if its expression level is under (resp.
over) the threshold.

We say that the bound of z is b, = 2 and similarly there are only 2
qualitatively interesting intervals for y, so the bound of y is b, = 1.

In general, this labelled directed graph is formally defined as follows.

Definition 3.1. A gene regulatory graph with multiplexes is a tuple R =
(V, M, Ey, Ey) satisfying the following conditions:

o V and M are disjoint sets, whose elements are called variables and
multiplexes respectively.

o G=(VUM,EyUEy) is a labelled directed graph such that:

— Fdges of Ey start from a variable and end to a multiplex, and
edges of Eyy start from a multiplex and end to either a variable or
a multiplex.

— Fwvery directed cycle of G contains at least one variable.

— FEvery variable v of V' s labelled by a positive integer b, called the
bound of v.

— FEvery multiplex m of M 1is labelled by a formula p,, belonging to
the language L,, inductively defined by:

— If v — m belongs to By and s € IN, then v > s is an atom
of L.

— If m' — m belongs to Eyy then m’ is an atom of L,,.

— If ¢ and ¥ belong to L,, then =, (¢ A1) and (¢ V 1Y) also
belong to L,,.

All in all, the discrete values of a variable x abstract intervals of quantity
of molecules produced by x within the cell. These intervals are obtained by
sorting the activation thresholds of x on its targets. Consequently only the
knowledge of the thresholds order is useful and not their actual values. The
multiplexes use these abstract levels in order to encode peculiar biological
knowledge into formulas that define the conditions under which the regula-
tion positively acts on its targets. If there is no peculiar knowledge about
cooperation over a given target, there is one multiplex per regulating gene
acting on this target, whose formula is reduced to an atom.

Successive multiplexes can be combined by flattening their formulas:

Definition 3.2. The flaten version of a formula ¢,,, denoted Pp,,, is obtained
by recursively substituting each occurrence of a multiplex m’ in ©,, by its
formula o, (this recursive process of substitutions is well defined because G
has no directed cycle with only multiplexes).

In Figure 1, the flatten formula @,; is (z > 2) A ~(y > 1).
As a result of the flattening transformation, all the atoms of a flatten formula
are of the form v > s.

A state is obviously an assignment of integer values to the variables v
of V' within the intervals [0,b,]. According to a given state, by replacing
variables by their values, ¥, becomes a propositional formula whose atoms
are the results of the integer inequalities.

Definition 3.3. (States 7, satisfaction relation |=y and resources p). Let N
be a GRN and V be its set of variables. A state of N is a functionn :V — IN
such that n(v) < b, for allv € V. Let L be the set of propositional formulas
whose atoms are of the form v > s withv € V and s € IN*. The satisfaction

relation |=xn between a state n of N and a formula ¢ of L is inductively
defined by:

o If v is an atom of the form v > s, then n =N ¢ if n(v) > s.

o If o =1 Aty then o ¢ if w tr and) =y ds; and we proceed
similarly for the other connectives.

Given a variable v € V', a multiplex m € N~ (v) (where N~ (v) is the set of
multiplezes m such that m — v belongs to the interaction graph of N) is a
resource of v at state n if N =N Pm-

The set of resources of v at state n is p(n,v) ={m € N~=(v) | n Ex @m}-

According to Figure 1, at the state where n(z) = 2 and n(y) = 1, @, is
satisfied and consequently 9 is the only resource of y. On the contrary @,
is false and consequently the set of resources of x is empty.

The equilibrium toward which the expression level of a gene v is attracted
only depends on its set w of resources. The interval number between 0 and b,
containing this equilibrium is classically denoted K, [20, 21, 17, 22, 2, 19].

Definition 3.4. A gene regulatory network (GRN for short) is a couple N =
(V, M, Ey, Ex, K) satisfying the following conditions:

o R=(V,M,Ey, Ey) is a gene regulatory graph with multiplezes,

o K ={K,,} is a family of integers indexed by v € V and w C N~ (v),
where N~ (v) is the set of multiplexes m such that m — v is an edge of
Ey. Fach K, ,, must satisfy 0 < K, ,, < by.

A usual notation abuse is the following: we write K, instead of K, 5 and
we write Ky mm,... instead of Ky () ma,..}-

At a given state n, each variable v tries to evolve in the direction of
parameter K, ,;.). Hence, at state n, v can increase if 1(v) < K, ,mu), it
can decrease if n(v) > K, y.0), and v is stable if n(v) = K, p@.0)-

+—

gl

v
0 |&) <f—
0

Figure 2: State graph obtained according to Definition 3.5, following Figure 1 and arbi-
trarily assuming that K, =0, K, ,, =2, Ky, =0and K, ,, = 1.

In Figure 2, at the state (2,1), we have K, = 0 < n(x) = 2 and

K,,, = n(y) = 1, but (0,1) is not a successor state of (2,1) because the

Y2

8

protein degradation occurs one protein after the other and consequently the
concentration level of x cannot jump from 2 to 0. Consequently (1,1) is the
next state.
At (1,0), both K, = 0 < n(z) = 1 and K, ,, = 1 > n(y) = 0, but the
probability for and y to cross their threshold exactly at the same time is
null [20, 21, 17, 22, 2, 19]'. Consequently, there are two possible next states:
(0,0) if = crosses its threshold first and (1, 1) if y crosses its threshold first.
So, Thomas method assumes that variables evolve asynchronously and
by unit steps toward their respective target levels:

Definition 3.5. (State Graph). Let N = (V, M, Ey, Ep, K) be a GRN. The
state graph of N is the directed graph & whose set of vertices is the set of
states of N, and such that there exists an edge (called transition) n — n' if
one of the following conditions is satisfied:

e For all variables v € V' we have n(v) = Ky yi.0), and then ' = 1.

o There exists v € V such that n(v) # K, pmw), and

/ o 77(7]) +1 o 77(“) < Kv,) / _
() = { WO SRt V) =)

For each variable v such that n(v) # K, p.v), there is a transition allowing
v to evolve (1) toward its focal level K, ,,.). Every outgoing transition
of n is supposed to be possible, so that there is an non-determinism as soon
as 1) has several outgoing transitions. Figure 2 represents a complete state
graph.

4. Syntax of Hoare triples for gene networks

In order to formalize known information about a gene network, we intro-
duce in this section a language to express properties of states (assertions) and
a language to express properties of state transitions (trace specifications).

Indeed, biologically, each threshold corresponds to a precise number of molecules pro-
duced by x or y respectively in the cell. So, there is a probability 0 for the degradation to
make the number of z-molecules cross the z-threshold exactly at the same time as a new
molecule produced by y makes the y-threshold crossed (a sufficiently precise time scale
will distinguish the two events).

4.1. Assertions for discrete models of gene networks

Definition 4.1. (Terms and Assertions). Let N = (V, M, Ey, Ey, K) be a
GRN. The well formed terms for N are inductively defined by:

e Fach integer n € IN constitutes a well formed term

For each variable v € V', the name of the variable v, considered as a
symbol, constitutes a well formed term.

Similarly, for each v € V' and for each subset w of N~ (v), the symbol
K, constitutes a well formed term.

Ift and t' are well formed terms then (t +t') and (t —t') are also well
formed terms.

Let N = (V, M, Ey, Ey,K) be a GRN. The assertions for N are inductively
defined by:

o [ft andt' are well formed terms then (t =t'), (t <t'), (t > t'), (t <)
and (t > t') are atomic assertions for N.

o [fp and) are assertions for N then —p, (o AY), (V) and (p = 1)
are also assertions for N.

A state n of the network N satisfies an assertion ¢ if and only if its
interpretation is valid in Z, after substituting each variable v by n(v) and
each symbol K, , by its value according to the family K. We note n =n ¢.

Moreover, conventionally, we denote “T” the tautology (e.g. “1 =1").

4.2. Trace specifications for discrete models of gene networks

When biologists observe the dynamics of gene expression levels along a
set of experiments, they extract, as a direct experimental knowledge, some
sets of observed traces (see Figure 3). It is consequently of first interest to
see these sets of observations as basic elements for the specification of gene
networks.

Definition 4.2. (Trace specifications). Let N = (V, M, Ey, Ey,K) be a
GRN. The set of trace specifications for N s inductively defined by:

10

e For each v € V and n € [0,b,] the expressions v+, v— and v ‘= n
are atomic trace specifications (respectively increase, decrease or as-
signment).

e [fe is an assertion for N, then the expression assert(e) is an atomic
trace specification.

e [fpy and py are trace specifications then (p1;pe2) is also a trace speci-
fication (sequential composition). Moreover the sequential composition
is associative, so that we can write (p1; pa; -+ ; Pn) without intermediate
parentheses.

o If p is a trace specification and if e and I are assertions for N, then
(while e with I do p) is also a trace specification. The assertion I is
called the invariant of the while loop.

e [f p1 and py are trace specifications then ¥(p1,p2) and I(p1,p2) are
also trace specifications (quantifiers). Moreover the quantifiers are as-
sociative and commutative, so that we can write ¥(py,pa, -+, pn) and
A(p1,p2, -+, Dn) as useful abbreviations.

Conventionally, we denote:

e ¢ (called the empty trace) the trace specification assert(T).

e if e then p; else py (called conditional branching) the trace specifica-
tion 3(assert(e);p1 , assert(—e);py), where p; and p, are any trace
specifications and e is an assertion for N.

Intuitively, v+ (resp. v—) means that the biologist has observed that the
expression level of variable v is increasing by one unit (resp. decreasing by
one unit). v := n means that the biologist has set the concentration level
for gene v to the value n during the experiment (e.g. v := 0 for a knockout
or v := b, for a saturation of the product of v). assert(e) allows one to
express a property of the current state without change of state. Sequential
composition allows one to concatenate two trace specifications. The loop
invariant I, as in classical Hoare logic, is a way to handle an unknown num-
ber of trace repetitions: It will facilitate proofs of Hoare triples. Finally it
becomes possible to group together several trace specifications thanks to the
quantifiers V and 3. These intuitions are formalized as follows via a binary
relation between states and sets of states.

11

Notation 4.3. For a state n, a variable v and i € [0,b,], we note v < ij
the state ' such that n'(v) =i and for all u # v, n'(u) = n(u).

Definition 4.4. (Mathematical semantics of a trace specification). Let N =
(V,M,Ey,Ey,K) be a GRN, let S be the state graph of N whose set of
vertices is denoted S and let p be a trace specification for N. The binary
relation % is the smallest subset of S x P(S) such that, for any state n:

1. If p is the atomic expression v+, then let us consider the state ' =
nlv « (n(v) +1)]: If n = 1 is a transition of S then n X {n'}.

2. If p is the atomic expression v—, then let us consider the state ' =

nlv « (n(v) = 1)): If n = 1 is a transition of S then n L {n'}.

If p is the atomic expression v := i, then 1~ {n[v < i]}.

If p is of the form assert(e), if n =x e, then n -5 {n}.

If p is of the form ¥(p1,p2): Ifn %> Ey and n %> Ey thenn 4 (E\UE,).

If p is of the form I(p1,p2): If n X By then n X Ey, and if n &> E,

then n % E,.

7. If p is of the form (py;p2): If n X F and if {E.}ecr is a F-indexed
family of state sets such that e %> E., then n % (Ueer Ee)-

8. If p is of the form (while e with I do py):

o Ifn ey e then S {n}.
o Ifnl=ye andn™¥ E thenn-S E.

AR AN

Detailed comments about this definition can be found in supplementary ma-
terials Appendix A.

4.3. Hoare triples

Similarly to Section 2, two assertions and one trace specification are used
to constitute a Hoare triple for gene networks.

Definition 4.5. A Hoare triple for a GRN N is an expression of the form
{P} p {Q} where P and Q are assertions for N, called pre- and post-
condition respectively, and p is a trace specification for N.

In practice P can describe a set of states where cells have been synchronised at
the beginning of the experiment, for example all states for which the variable
v has value zero (P = (v = 0)), the trace specification p describes biologically

12

Figure 3: A classical example of normalised expression profiles for three Boolean genes
a, b and c resulting from an experimental campaign. Thresholds for each gene are
tuned according to biological knowledge. Then the trace specification for this figure is
b—; a+;c+;a—; b+.

observed dynamic processes, for example increase of the expression level of
v (p = v+), and the postcondition also describes observations at the end of
the experiment, for example all states for which the variable v has value one
(Q = (v=1)), and so on.

More precisely we show in Figure 3 a classical representation of expres-
sion profiles obtained after an experimental campaign. From our numerous
case studies, it is a good heuristics to consider by default equidistributed
thresholds (e.g. a threshold of 0.5 for Boolean genes). If necessary, some
thresholds are tuned after discussing with biologists. Then, successive cross-
ings between a gene profile and its threshold give directly the trace specifi-
cation. In practice when two crossings are very close, a 3 statement is used
(I(z+;y + , y+;2+)) and the other primitives of trace specifications are
often introduced in order to mix together and generalise several observed
trace specifications.

Whether or not the triple is satisfied by a given gene network N, will
depend on its state transition graph, thus it will depend on the parameter
values in .

Definition 4.6. (Semantics of a Hoare triple). Let N = (V, M, Ey, Ey, K)
be a GRN and let S be the state graph of N whose set of vertices is denoted
S. A Hoare triple {P} p {Q} is satisfied if and only if:

For all n € S satisfying P, there exists E such that n % E and for all
n € E, n satisfies Q.

See supplementary materials Appendix A for more details.

13

5. A Hoare logic for discrete models of gene networks

In this section, we define our genetically modified Hoare logic by giving
the rule for each constructor of trace specifications (Definition 4.2). First,
let us introduce a few conventional names to denote formulas that will be
intensively used.

Notation 5.1. For each variable v of a GRN N, we conventionally use the
following notations:

1. For each subset w of N~ (v) we denote by ®% the following formula
o = (ANa)A(N o
m € w m € N—(v)\w

where N~ (v) \ w stands for the complementary subset of w in N~ (v).
From Definition 3.3, for all statesn, n =n P if and only if w = p(n,v),
that is, w is the set of resources of v at state n. Consequently, for each
v, there exists a unique w such that n =y .

2. We denote by @} the following formula

o = N (@ = K, >0)
wCN~(v)
From Definition 3.5, we have n =y @ if and only if there is a transi-
tion (n — nlv <= v + 1)) in the state graph S, that is, if and only if the
variable v can increase.
3. We denote by @, the following formula
o, = N (@ = K, <v)
wCN~(v)
Similarly, n Enx ®, if and only if the variable v can decrease from the
state n in the state graph S.

See Section 6 where examples of these formulas are given.
Our Hoare logic for discrete models of gene networks is then defined by
the following inference rules, where v is a variable of the GRN and & € [0, b,].

1. Rules encoding Thomas discrete dynamics.

Increase: { o5 A Qu+v+1] } v+ {Q}

Decrease:

{ @0 A Que—v—1] } v— {Q}

14

2. Rules coming from Hoare logic. These rules are similar to the ones
given in Section 2. Obvious rules for the expression assert(®), and for
the quantifiers, are added:

Assert: T® A QT assert(®) { Q)
Universal quantifier: 2 1}{]fjllA‘g% . (pjp]; 2>} {%}{Q}
Existential quantifier: 101 }{ nglvg% . (pl"{pi 2)} {Ig}{@}
Assignment: e
Sequential composition: 121 {gf i}pl ;pz{%}} p2 {Q}
Iteration: {I{f /ng;:a gz}uith ;22;:;{%}
Empty trace: ﬁ

3. Boundary axiom asserting that all values stay between their bounds,

for each v € V and w C N~ (v):
0<v A v<b AN O0<K,, N K,,<b,

Remark 5.2.

o (Df = v <b,) can be deduced from the boundary axioms: ®} implies
that for w corresponding to the current set of resources, K, ., > v and,
using the boundary aziom K, , < b,, we get v < b,.

o Similarly, we have (P, = v > 0).

These implications will be used in Section 6.

The conditional branching rule of the standard Hoare logic has not been
reproduced here because the trace specification (if e then p; else ps) is a
shorthand for 3(assert(e);p1 , assert(—e);py). The conditional branching
rule remains sound.

We prove in Supplementary Materials Appendix B that this modified
Hoare logic is sound and complete and we show that the weakest loop invari-
ants can always be computed. This implies the decidability of the (partial)

15

correctness of any genetically modified Hoare triple. More precisely, the proof
strategy called backward strategy, already described at the end of Section 2,
also applies here: It automatically computes the loop invariants and the
weakest precondition W of the Hoare triple { P} p {Q}, and the implication
P =W is decidable.

Similarly to classical Hoare logic which reflects a partial correctness of
imperative programs, the previous definition does not imply termination of
whaile loops.

6. Illustrative examples

6.1. Alon’s interpretation of the incoherent feedforward loop of type 1.

In [9, 10] Uri Alon and co-workers have studied the most common in
vivo patterns involving at most four genes. Among them, even without con-
sidering feedback loops such as in [23], there are interesting patterns whose
dynamics is less obvious than it seems. In particular they have emphasized
the incoherent feedforward loop of type 1. It is composed by a transcrip-
tion factor a that activates a second transcription factor ¢, and both a and
c regulate a gene b. The gene a is an activator of b whereas the gene c is
an inhibitor of b. There is a “short” positive action of a on b and a “long”
negative action via c¢: a activates ¢ which inhibits . The left hand side of
Figure 4 shows such a feedforward loop. Supposing that both thresholds of
actions of a are equal leads to a Boolean network since, in that case, the
variable a can take only the value 0 (a has no action) or 1 (a activates both b
and ¢). The right hand side of the figure shows the corresponding GRN with

c
7N
a>1 —(cz=1)
/ - N\

a 1+ b a 1 b
> — 41—

Figure 4: (Left) Boolean “incoherent feedforward loop of type 17 according to
Uri Alon. (Right) Corresponding GRN N=(V, M, Ey,Ey,K). V={a,b,c} with
bo=bp=b.=1. M={l,\,c}, & = (a = 1), ¢ = (=(c = 1)), ¢ = (a = 1).
K={Ky, K¢, K1, Kp, Kp oy Kp 5, Kb or}-

16

multiplexes: ¢ encodes the “short” action of a on b, whilst [followed by A
constitutes the “long” action.

Classical interpretation: Uri Alon and many biologists have in mind that
if a is equal to 0 for a sufficiently long time, both b and c will also be
equal to 0, because b and ¢ need a as a resource in order to reach the
state 1. They also have in mind that the function of this feedforward
loop is to ensure a transitory activity of b that signals when a has
switched from 0 to 1. The idea is that a activates the productions of b
and ¢, and then ¢ stops the production of b.

In the following subsections, we revisit this affirmation via four different
trace specifications, and we prove formally that the affirmation is only valid
under some constraints on the parameters of the network, and only under
the assumption that b starts its activity before c.

6.2. Is a transitory production of b possible?

The simple popular idea that b is activated and then the activation of
c inhibits b is specified by the Hoare triple {P} P, {Qo} where P = (a =
1L ANb=0 A c=0),Pr = (b+;c+;b—) and @y = (b = 0). The backward
strategy using our genetically modified Hoare logic on this example gives the
following successive conditions.

e The weakest precondition obtained through the last expression “0—" is
O, A Qolb <~ b—1] (Decrease rule):

Py = K, <b (=(cz1)A=(a=21)= K, <b
Of = Ky, < b (r=(cz2D)A(a=21) = Ky, <b
(I)Z‘ = Kb)\ <b = (_|(C = 1) /\ﬁ(a, = 1)) = Kb7)\ <b
(I)Z’/\ = Kbp)\ <b (_'<C = 1) N (CL = 1)) = Kb’g,\ <b
b—1=0 b—1=0
b=1
((cz21)A(a<l)= K, =0
which simplifies as @1 = (ez)A(a=21) = Ky, =0
((C<1)/\(CL<1)):>K5,)\:0
((C< 1)/\(@2 1)) = Kpon =0

17

e Then, the weakest precondition obtained through the expression “c+”
is ®F A Qilc « c+1]:
(—(a>1)=K.>c
azl= K, ;>c
b=1
((c+12>1) 1)) = K, =0 which simplifies as
((c+12>1) 1)) = Ko =0
(c+1<1) 1))
((c+1<1) 1))
(c=0
a<l=K, =1

> =
Q, = Z: 11 = Ker =1 using the boundary axioms and Re-

= Kb7>\ =0
= Kb7g>\ =0

A (a <
A (a >
A (a <
A (a>

\

a<l=K,=0
a>1:>Kb,U:O

mark 5.2.)
e Lastly, the weakest precondition obtained through the first “b+" of the
(a<1= Kb7/\ =1
az21l= Kb,a)\ =1
c=0
a<l=K., =1
azl= Kc,l =1
b=20
a<l=K,=0
[@ > 1= [(1,7(7 =0

trace is @ AQa[b < b+1] which simplifies as Q3 =

Then, using the Empty trace rule, it follows that P = Q3 i.e. (a =1 A b=
0 A ¢ =0) = Q3. After simplification we get correctness if and only if
Kysy = 1 and K.; = 1 and Kp, = 0. So, under these three hypotheses
and whatever the values of the other parameters, the system can exhibit a
transitory production of b in response to a switch of a from 0 to 1.

6.3. Is a transitory production of b possible without increasing c¢?

The previous trace specification P; is not the only one reflecting a tran-
sitory production of b, there may be other realisations of this property. For
example one can consider the trace specification

7)2 = (b+, b—)

18

With respect to this trace specification, the weakest precondition obtained
through the last expression “b—" is of course ()7 as previously. Then, the
weakest precondition obtained through “b+" is

b=0
(e 1) Afa < 1) = (K = 1) A (K, = 0))

Qi = { ((c2)Ala>1) = (Kyw = 1) A (Kpo = 0))
(c<)A(a<]l) = ((Kpx=1)A(Kpr=0))
(e < 1) Afa 1)) = ((Kyor = 1) A (Kpor = 0)

()4 is not satisfiable: It implies that each parameter associated with b is both
equal to 0 and 1. The trace (b+;b—) is not realisable (inconsistent weakest
precondition).

6.4. The existence of the trace (b+,c+,b—) does not imply a transitory pro-
duction of b for all traces in the same gene network.

When K ,, =1, K.; = 1 and K, , = 0, that is when trace (b+, c+,b—) is
realisable, this does not prevent from some other traces that do not exhibit
a transitory production of b. For instance the simple trace specification
P3 = c+ leaves b constantly equal to 0, and the Hoare triple

a=1ANb=0Ac=0A
{szl ANKg=1A Kb,(,:()}ﬁL {b=0}

is satisfied, as the corresponding weakest precondition @5 is clearly implied
by the precondition.

c=0
a=0=—=K.,=1
CL:1:>KCJ:1
b=0

Qs = PFAQofc+c+1] =

6.5. Once a constantly equals 1, if ¢ reaches level 1 before b, even transitorily,
then no production of b is possible anymore.

We prove this property by showing that the following triple is inconsistent,
whatever the loop invariant I:

a=1Ab=0A
c=1 NKyon=1A pwhile b<1 with I do 3(b+,b—,c+,c—){b=1}

(. 7/

KCJ:1 A Kb,o:O 7;1

19

The sub-trace specification 3(b+,b—, ¢+, c—) reflects the fact that a stays
constant but b or ¢ evolves. Thus, the while statement allows b and ¢ to
evolve freely until b becomes equal to 1.

Applying the Iteration rule, I has to satisfy —(b < 1) AT = (b = 1): This
property is trivially satisfied whatever the assertion I, due to the boundary
axioms. I has also to satisfy {b < 1 A I} 3(b+,b—,c+,c—) {I} which gives
wvia the existential quantifier rule:

(®F ANIb<+b+1]) V (P, AIb<b—1]) V
@s { (@F AT[e e+ 1)) V (@5 Alle —c—1])

Consequently I must be any assertion such that
(b =0AN1) — Qs

Let us denote P the precondition of the trace specification P,. Applying the
Empty trace rule, it results that I must also satisfy P = I. So, because
P = (b = 0), we have P = (b = 0 A I), which, in turn implies Q.
Moreover, let us remark that Qs = (& V&, vV & Vv &_). Consequently,
if the Hoare triple of Py is correct, then P = (& V&, V &7 vV ®_) which
is impossible because, if P is satisfied then

e &) isfalse,asa=1,c=1and K, =0
(indeed,®;” impliesa =1Ac=1= K;, > 0)

o O, is false, as b =0 (¢, implies b > 0)
o O is false, as ¢ = 1 (@} implies ¢ < 1)

o & isfalse,asa=1,c=1and K,; =1
(¢, impliessa=1Ac=1= K. <1).

[

So, we have formally proved that when a is constantly equal to 1, as soon as
¢ has reached the level 1, it becomes never possible for b to increase to 1.

As mentioned in the beginning of this section, this proof contradicts the
universality of the classical interpretation of this incoherent feedforward loop
of type 1. We believed interesting to use our genetically modified Hoare logic
for synthesising the parameter values for which the presupposed function of
the incoherent feedforward loop of type 1 can hold. In [9, 10] the pulse of
b in response of the switch of a is meant as a robust property. As formally
established here, this robustness does not mean that the property holds for all
parameter values, nor for the parameter values where the pulse can arise. As
established in Subsections 6.4 and 6.5, it is necessary to ensure, in addition,
that b will always increase before ¢ in a robust manner.

20

6.6. About the scalability of the approach

The incoherent feedforward loop of type 1 example is of particularly small
size for pedagogical reasons. We used our genetically modified Hoare logic
on several examples including the classical epigenetic switch of A phage [24]
and, in cooperation with biologists, other examples of credible size such as
the mucus production in P. aeruginosa [25], the circadian clock [26] or the
cell cycle in mammals [27]. In all examples the computation of the weakest
precondition takes less than one tenth of a second on a standard laptop (dual
core, 2GHz) [24, 28]. What can take time is the resolution of constraints,
varying from ten seconds to one day, depending on the chosen constraint
solver and the problem under consideration (CTL based softwares require
several days to model check all the possible sets of parameter values).

On the mammal cell cycle example, inspired by the model proposed by
John Tyson in [29], we made a discrete model with 5 variables and 11 mul-
tiplexes. We obtained a set of 339,738,624 possible valuations, each model
with 48 states and 26 parameters. From biological knowledge we extracted 12
trace specifications. After applying our Hoare logic method, 13 parameters
were entirely identified (50%) and only 8,192 valuations remained possible
according to the generated constraints (0.002%). Lastly additional reacha-
bility properties (endoreplication and quiescent phase) have been necessary
to identify all parameters by formalizing them into temporal logic. For more
details, see [27] in which the obtained discrete model has then been extended
into a hybrid model with real time behaviour.

7. Related Works

One of the main motivations for the introduction of formal methods in dis-
crete modelling of gene networks (or any complex system) is the automation
of parameter identification. Our genetically modified Hoare logic is entirely
dedicated to this problem of parameter identification for discrete gene net-
works. There are other formal methods which address this question, which
we summarize briefly in this section.

The first approaches based on Thomas modelling used hand-made iden-
tification. They used known mathematical properties on circuits? in order to
reduce the number of admissible parameter values and then, Ren Thomas and

2An observed homeostasy is necessarily generated by a so-called negative circuit and
a notion of “characteristic states” provides necessary inequalities on parameter values.

21

Marcelle Kaufman used simulations on a “trial and error” method [32, 33].
Later on, simulation softwares helped systematic simulations, mainly the
Hidde de Jong et al. system GNA [34] and the Denis Thieffry et al. system
GINsim [35] that also include some tools for the determination of invari-
ants. On biological systems where sufficient biological knowledge drastically
limits the possible parameter values, approaches purely based on simula-
tions remain efficient [36]. See also the article of Jasmin Fisher and Thomas
Henzinger [37] for a complementary survey on simulation and mathematical
models for biology.

The first use of the power of formal methods really comes with tempo-
ral logics and CTL model checking with our software SMBioNet [2]. Later
on, GNA also included some aspects of CTL model checking and Alexander
Bockmayr and Heike Siebert [38] introduced timed automata using UPPAAL.
Mirco Giacobbe et al. [39] proposed a simplified (synchronous and determin-
istic) dynamics for gene networks, and a modified LTL model checking al-
lowed for efficient generation of constraints on parameters. With respect to
the general asynchronous and non deterministic dynamics, constraint solv-
ing introduced by Laurent Trilling and co-workers efficiently complemented
the CTL temporal logic approach [4, 5] as well as symbolic execution tech-
niques [3] introduced by Pascale Legall and co-workers. More detailed de-
scriptions of these methods and their variants can be found in [40, 25]. These
approaches fully take benefit from biological expertise, formalizing knowledge
into temporal formulas but they need a large interpretation capacity of the
experimental observations. This was our motivation to introduce Hoare Logic
which uses trace specifications directly extracted from experiments.

Following the same motivation, Heike Siebert and co-workers [41] encoded
time-series measurements into CTL formulas. Their approach is able to take
into account partially known time-series measurements using repeatedly en-
capsulated FF' statements. Then, they use softwares such as SMBioNet in
order to identify the parameters. The price to pay is a huge computation
time to identify the parameters, compared to constraint solving. Also, com-
pared to our Hoare Logic, neither assignment, nor quantifier nor iteration are
possible. Notice that although Siebert’s approach is based on a modal logic,

Similarly, an observed multistationarity is necessarily generated by a so-called positive
circuit in the gene network and characteristic states of positive circuits play a similar role.
For more results about circuits, oscillations and attraction basins, see [17, 30, 31] among
others.

22

a procedure based on tableau semantics [42, 43], does not apply because the
objective of using time-series from biological experiments is, similarly to our
approach, to extract constraints on the Thomas parameters; it is not to prove
the satisfiability of the considered time-series®.

On the semantic side, Definition 4.4 is in fact rather natural and similar
ideas have been used by David Peleg and by Matthew Hennessy for concur-
rent systems in computer science [44, 45] where the authors defined a mathe-
matical semantics for concurrent propositional dynamic logic. Our definition
has a slightly different treatment of quantifiers, disjunctions and conjunctions
in order to cope with the biological meaning of non-determinism.

Last but not least, whatever the aforementioned formalism, there is no
possibility to model an intervention of the biologist during the experiment.
Knockouts of genes are typical examples of such interventions. In our for-
malism they are easy to express in trace specifications, using assignment
expressions (such as v := 0). They are not directly expressible in the other
formalisms, including CTL or LTL, because the logic formulas they consider
are by definition satisfied (or not) according to the paths within a given
model. Indeed, a model of any of the aforementioned formalisms is, to some
extend, based on the exhaustive set of transitions between states that can
be triggered in “normal” conditions, that means without any external inter-
vention. Consequently, such interventions do not correspond to transitions
of the model. Because the semantics of temporal logics is defined on paths
within the model (sequences of transitions inside the model), these logics
cannot directly address external interventions.

Let us additionally remark that Patrick and Radhia Cousot’s abstract in-
terpretation [14] subsumes the Hoare logic, so a natural question is should we
use genetically modified abstract interpretation instead of genetically modified
Hoare logic? The technical point is that the dynamics of Thomas networks
is formalized in an easy way using Hoare inference rules, whereas abstract
interpretation would make things more complicated. The empirical point is
that Hoare triples facilitate discussions with biologists because trace specifi-
cations cope very well with classical normalised expression profiles obtained

3Notice also that, although both Dijkstra weakest precondition algorithm and the
tableau procedure for LTL go backwards, they are intrinsically different. In particular, in
the Hoare approach as well as ours, the size of the formulas built by the Dijkstra algorithm
increases up to the final constraint, contrarily to tableau procedure that builds a sequence
of decreasing sub-formulas of the considered formula.

23

experimentally, see Section 4.3 and Figure 3.

8. Conclusion

In this paper, based on the discrete Thomas framework, we have devel-
oped a trace specification language that easily captures experimental obser-
vations of biologists when they study a gene network. This language can
also take into account the possible interventions of the biologist during the
experiments. Based on Hoare logic and Hoare triples as well as Dijkstra
weakest precondition calculus, we have developed an automatic extraction of
constraints that fully characterizes under which conditions a Thomas model
is compatible with these experimental observations. The proposed approach
has the advantage of being simple, leading to an efficient algorithm that de-
pends only on the size of the trace specification (and not on the size of the
gene network), without requiring simplifications.

As a consequence of our theorems, when a genetically modified Hoare
triple is correct, we are always able to automatically generate all the weak-
est loop invariants and to build a syntactic proof tree that establishes the
correctness®. In other words, the assertion language of Definition 4.1 is ex-
pressive enough to ensure the purely logical soundness and decidability of
our genetically modified Hoare logic with while loops and quantifiers. This
is an important step towards a systematic exploitation of the numerous gene
expression traces available in biological databases.

One may easily imagine similar works for many applications besides gene
networks. When modelling any complex system, the cornerstone lies, what-
ever the application domain, in the identification of the parameters. Hoare
logic was initially designed for proofs of imperative programs. In this paper,
we divert this approach for exhibiting constraints on parameters of gene net-
work models. One can imagine several other adaptations for several types
of discrete complex systems, the key point is to extract from the considered
underlying modelling framework, a first order formula that characterizes the
conditions under which a transition exists.

4assuming that the path specification terminates.

24

Acknowledgement

The authors thank the French National Agency for Research (ANR-14-

CF09-0011 HyClock project) for its support. This work has also been partly
supported by the ANR-10-BLANC-0218 BioTempo project, by the CNRS
PEPII project CirClock and by the European PHC PROCOPE project
TiGeRNet.

References

[1]

2]

[6]

[7]

8]

R. Thomas, Regulatory networks seen as asynchronous automata : A
logical description, J. theor. Biol. 153 (1991) 1-23.

G. Bernot, J.-P. Comet, A. Richard, J. Guespin, Application of formal
methods to biological regulatory networks: Extending Thomas’ asyn-

chronous logical approach with temporal logic, Journal of Theoretical
Biology 229 (3) (2004) 339-347.

D. Mateus, J.-P. Gallois, J.-P. Comet, P. Le Gall, Symbolic modeling
of genetic regulatory networks, Journal of Bioinformatics and Compu-
tational Biology 5 (2B) (2007) 627-640.

E. Fanchon, F. Corblin, L. Trilling, B. Hermant, D. Gulino, Modeling
the molecular network controlling adhesion between human endothelial
cells: Inference and simulation using constraint logic programming, in:

CMSB, 2004, pp. 104-118.

F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, L. Trilling, A declara-
tive constraint-based method for analyzing discrete genetic regulatory
networks, Biosystems 98 (2) (2009) 91-104.

C. Hoare, An axiomatic basis for computer programming, Communica-

tions of the ACM 12 (10) (1969) 576-585.

E. W. Dijkstra, Guarded commands, nondeterminacy and formal deriva-
tion of programs, Commun. ACM 18 (1975) 453-457.

A. Bernot, Genome transcriptome and proteome analysis, John Wiley
& Sons, 2004.

25

[9]

[10]

[11]

[12]

[13]

S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the tran-
scriptional regulation network of escherichia coli, Nature Genetics 31
(2002) 64-68.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon,
Network motifs: Simple building blocks of complex networks, Science
298 (2002) 824-827.

W. Hatcher, A semantic basis for program verification, J. of Cybernetics
4 (1) (1974) 61-69.

A. Blass, Y. Gurevich, Inadequacy of computable loop invariants, ACM
Transactions on Computational Logic 2 (1) (2001) 1-11.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min, D. Monniaux,
X. Rival, The ASTREE analyser., in: M. Sagiv (Ed.), ESOP 2005 The
European Symposium on Programming, no. 3444 in LNCS, Springer,
2005, pp. 21-30.

P. Cousot, R. Cousot, Basic concepts of abstract interpretation., in:
R. Jacquard (Ed.), Building the Information Society, Kluwer Academic,
2004, pp- 359-366.

S. A. Cook, Soundness and completeness of an axiom system for program
verification, STAM Journal on Computing 7 (1) (1978) 70-90.

D. Kozen, J. Tiuryn, On the completeness of propositional Hoare logic,
Information Sciences 139 (3) (2001) 187-195.

R. Thomas, R. d’Ari, Biological Feedback, CRC Press, 1990.

R. Thomas, M. Kaufman, Multistationarity, the basis of cell differentia-
tion and memory. II. logical analysis of regulatory networks in terms of
feedback circuits, Chaos 11 (2001) 180-195.

7. Khalis, J.-P. Comet, A. Richard, G. Bernot, The SMBioNet method
for discovering models of gene regulatory networks, Genes, Genomes and
Genomics 3(special issue 1) (2009) 15-22.

R. Thomas, A. Gathoye, L. Lambert, A complex control circuit. regula-
tion of immunity in temperate bacteriophages., Eur. J. Biochem. 71 (1)
(1976) 211-27.

26

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

R. Thomas, Logical analysis of systems comprising feedback loops., J.
Theor. Biol. 73 (4) (1978) 631-56.

E. Snoussi, R. Thomas, Logical identification of all steady states : the
concept of feedback loop caracteristic states, Bull. Math. Biol. 55 (5)
(1993) 973-991.

B. Yordanov, G. Batt, C. Belta, Model checking discrete-time piecewise
affine systems: application to gene networks, in: Control Conference
(ECC), 2007 European, IEEE, 2007, pp. 2619-2626.

Z. Khalis, Logique de Hoare et identification formelle des paramtres d'un
réseau génétique, Ph.D. thesis, University of Evry-Val d’Essonne (2010).

G. Bernot, J.-P. Comet, H. Snoussi, Formal methods applied to gene
network modelling, in: L. Farinas del Cerro, K. Inoue (Eds.), Logical
Modeling of Biological Systems, Bioengineering and health science se-
ries, ISTE & Wiley, ISBN 978-1-84821-680-8, 2014, pp. 245-289.

E. Cornillon, Modles qualitatifs de réseaux génétiques: réduction de
modles et introduction d’'un temps continu, Ph.D. thesis, Université Cote
d’Azur (2017).

J. Behaegel, J.-P. Comet, G. Bernot, E. Cornillon, F. Delaunay, A hy-
brid model of cell cycle in mammals, Journal of Bioinformatics and
Computational Biology 14 (1) (2016) In press.

M. Folschette, Application de la logique de Hoare aux réseaux de
régulation génétique avec multiplexes, Master’s thesis, ECN, Nantes,
France (2011).

J. Tyson, B. Novak, Temporal organization of the cell cycle, Current
Biology 18 (17) (2008) R759-R768.

A. Richard, Negative circuits and sustained oscillations in asynchronous
automata networks, Advances in Applied Mathematics 44 (4) (2010)
378-392.

A. Richard, J.-P. Comet, Necessary conditions for multistationarity in
discrete dynamical systems, Discrete Applied Mathematics 155 (18)
(2007) 2403-2413.

27

32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

M. Kaufman, J. Urbain, R. Thomas, Towards a logical analysis of the
immune response, Journal of theoretical biology 114 (4) (1985) 527-561.

R. Thomas, M. Kaufman, Multistationarity, the basis of cell differenti-
ation and memory. I. & II., Chaos 11 (2001) 170-195.

H. de Jong, J. Geiselmann, C. Hernandez, M. Page, Genetic network
analyzer: qualitative simulation of genetic regulatory networks., Bioin-
formatics 19 (3) (2003) 336-44.

A. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, C. Chaouiya, Ginsim: a
software suite for the qualitative modelling, simulation and analysis of
regulatory networks, Biosystems 84 (2) (2006) 91-100.

R. Khoodeeram, G. Bernot, J.-Y. Trosset, An ockham razor model of
energy metabolism, in: P. Amar, F. Kps, V. Norris (Eds.), Proc. of
the Thematic Research School on Advances in Systems and Synthetic
Biology, EDP Science, 2017, pp. 81-101.

J. Fisher, T. Henzinger, Executable cell biology, Nature biotechnology
25 (11) (2007) 1239.

H. Siebert, A. Bockmayr, Temporal constraints in the logical analysis
of regulatory networks, Theoretical Computer Science 391 (3) (2008)
258-275.

M. Giacobbe, C. Guet, A. Gupta, T. Henzinger, T. Paixao, T. Petrov,
Model checking gene regulatory networks, in: International Conference

on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, 2015, pp. 469-483.

G. Bernot, J.-P. Comet, C. Risso-de Faverney, Regulatory networks,
in: B. Reisfeld, A. Mayeno (Eds.), Computational Toxicology, Vol. II,
Humana Press, ISBN 978-1-62703-058-8, USA, 2013, pp. 215-234.

H. Klarner, A. Streck, D. Safrdnek, J. Kol¢dk, H. Siebert, Parameter
identification and model ranking of Thomas networks, in: Computa-
tional Methods in Systems Biology, Springer, 2012, pp. 207-226.

M. Reynolds, A traditional tree-style tableau for LTL, CoRR
abs/1604.03962.
URL http://arxiv.org/abs/1604.03962

28

[43] M. Bertello, N. Gigante, A. Montanari, M. Reynolds, Leviathan: A new
LTL satisfiability checking tool based on a one-pass tree-shaped tableau.,
in: IJCAI 2016, pp. 950-956.

[44] D. Peleg, Concurrent dynamic logic, Journal of the ACM (JACM) 34 (2)
(1987) 450-479.

[45] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

29

Supplementary materials

Appendix A. Semantics of Hoare triples for gene networks

We define the semantics of a trace specification via a binary relation
between states and sets of states. This relation characterises all the possible
realisations of the trace specification. The general ideas that motivate our
definition are the following:

Starting from an initial state 7, a trace specification without existential
or universal quantifier is either realised by associating with 7 another
state 1/, or is not realisable and 1’ does not exist. For example, the
atomic expression v+ associates 1’ with n (where Yu # v, 1/ (u) = n(u)
and 1'(v) = n(v) + 1) if and only if the transition n — 1’ exists in the
state space. If, on the contrary, this transition does not exist, the trace
specification is not realisable.

Existential quantifiers open a sort of space of possibilities for n": Ac-
cording to the chosen trace specification under each existential quanti-
fier one may get different associated states. Consequently, one cannot
define the semantics as a partial function that associates a unique 7’
with 7; a binary relation is a more suited mathematical object (denoted
~> in the sequel).

A universal quantifier induces a sort of unity /solidarity between all the
states i’ that can be obtained through each trace specification under
its scope. All these states have to satisfy the postcondition (Defini-
tion Appendix A.2) . For this reason, we define a binary relation that
associates a set of states E/ with the initial state n: “n ~» E”. Such a
set £/ can be understood as grouping together the states it contains in
preparation for checking the forthcoming post condition.

When the trace specification p contains both existential and universal
quantifiers, we may consequently get several sets Ei,---, E, such that
n -4 E;, each of the E; being a possibility through the existential quan-
tifiers of p and all the states belonging to a given E; being together
through the universal quantifiers of p. On the contrary, if p is not re-
alisable, then there is no set E such that n & F (not even the empty
set).

30

Definition Appendix A.1. (Mathematical semantics of a trace specifica-
tion). Let N = (V, M, Ey, Ey,K) be a GRN, let S be the state graph of N
whose set of vertices is denoted S and let p be a trace specification for N.
The binary relation L is the smallest subset of S x P(S) such that, for any
state n:

1. If p is the atomic expression v+, then let us consider the state ' =
nlv « (n(v) +1)): If n = 1 is a transition of S then n L {n'}.

2. If p is the atomic expression v—, then let us consider the state ' =

nlv < (n(v) = D)): If n = 1 is a transition of S then n L {n'}.

If p is the atomic expression v := i, then n -5 {n[v < i]}.

If p is of the form assert(e), if n =n e, then n -5 {n}.

If p is of the form ¥(py,p2): If n %> Ey andn X3 Ey thenn 5 (E;UE,).

If p is of the form 3(py,p2): If n X Ey then n X Ey, and if n &5 B,

then n - Es.

7. If p is of the form (py;p2): If n X F and if {E.}eer is a F-indexed
family of state sets such that e &> E,, then n % (Ueer Ee)-

8. If p is of the form (while e with I do pg):

o Ifn ey e then -5 {n}.
o Ifnl=ye andn ™ E thenn-5 E.

o Gt W

This definition calls for several comments.

The relation ~ exists because (i) the set of all relations that satisfy the
properties 1-8 of the definition is not empty (the relation which links all
states to all sets of states satisfies the properties) and (ii) the intersection of
all the relations that satisfy the properties 1-8, also satisfies the properties.

A simple atomic expression such as v+ may be not realisable in a state
n (if n — 7' is not a transition of §). In this case, there is no set F such

that n X5 E. The same situation happens when the trace specification is an
assertion that is not satisfied at the current state 7.

Universal quantifiers propagate non-realisable trace specifications: If one
of the p; is not realisable then Y(py,---,p,) is not realisable. It is not the
(P}\‘/';pn) E

. 3
case for existential quantifiers: If n X> E; for one of the p; then n ;
even if one of the p; is not realisable.

When a while loop does not terminate, there is no set E such that

“i B This is due to the minimality of the binary relation ~». On

31

the contrary, when the while loop terminates, it is equivalent to a trace
specification containing a finite number of occurrences of the sub-trace py in
sequence, starting from 7.

The semantics of sequential composition may seem unclear for readers not
familiar with commutations of quantifiers. We give an example to explain
the construction of "A5* (see Figure A.5):

y4! b2 P1; P2
— — —

Na 4+—— > F, /
FiUE
Fi= 5 gives: 77/ o
N 3

77/ \nb_/\ EEQUEP,
—

\F2: " E, E,UE,
—_

Figure A.5: An example for the semantics of sequential composition

e Let us assume that starting from state 7, two sets of states are possible
via pr: n > Fy = {Na,m} and n L Ry = {n}. Tt intuitively means that
p1 permits a choice between F} and F, through some existential quan-
tifier and that the trace specification leading to Fi contains a universal
quantifier grouping together 7, and 7.

e Let us also assume that
— starting from the state 7,, two sets of states are possible via ps:
P2 P2
Ne ~ Ey and 1, ~ B,

— starting from the state 7, two sets of states are possible via ps:
P2 p2
ny ~ E3 and n, ~> Ey,

— and there are no set F such that n. %5 E.

When focusing on the traces of (p;; p2) that encounter F after pi, the traces
such that p; leads to n, must be grouped together with the ones that lead
to ny. Nevertheless, for each of them, p, permits a choice of possibilities:

32

between E; or E, for n, and between F3 or E, for n,. Consequently, when
grouping together the possible futures of 1, and 7, one needs to consider the
four possible combinations: 7 "A5* (E;U Fs), n 'A% (EyUEy) n "2 (B, U ES)
and 7 "R5 (Ey U Ey).

Lastly, when focusing on the traces of (pi1;ps) that encounter Fy after p,
since 7. has no future via po, there is no family indexed by F, as mentioned
in the definition and consequently it adds no relation into "A3°.

Let us remark that, if n & E then E cannot be empty; it always contains
at least one state. The proof is easy by structural induction of the trace
specification p (using the fact that a while loop which terminates is equivalent
to a trace specification containing a finite number of occurrences of the sub-

trace po).

Definition Appendix A.2. (Semantics of a Hoare triple). Given a GRN
N = (V,M,Ey,Ey,K), let S be the state graph of N whose set of vertices
is denoted S. A Hoare triple {P} p {Q} is satisfied if and only if:

For all n € S satisfying P, there exists E such that n > E and for all
n' € E, n satisfies Q.

The previous definition implies the consistency of the trace specification p
with the state graph: If the specification p is not realisable starting from one
of the states satisfying pre-condition P, then the Hoare triple cannot be
satisfied. For instance if some v+ is required by the trace specification p
but the increasing of v is not possible according to the state graph, then the
Hoare triple is not satisfied.

As an example, let us consider the GRN in Figure A.6 and its state graph.

1. The Hoare triple {(a = 0) A (b =10)} a+;a+;0+ {(a=2)A(b=1)}
is satisfied, because

e for all states that do not satisfy the pre-condition, the Hoare triple
is satisfied by definition,

e there is, in this example, a unique state satisfying the precondition
(@ = 0) A (b = 0) and from this state, the trace specification
a+; a+; b+ is possible and leads to the state (2,1) and

e the state (2,1) satisfies the postcondition (a = 2) A (b= 1).

2. The Hoare triple {(a =2)A(b=0)} b+;a—;a— {(a=0)A(b=1)}is
not satisfied because from the state satisfying the precondition, the first

33

RN
-~y o s

a>2 | \@ @ | | |

M3 >
-(b>=1) 0 1 2 a

Figure A.6: (Left) The graphical representation of the GRN N = (V, M, Ey, Ey, K) with
V = {a, b}, the bounds of a and b are respectively 2 and 1, M = {1, o, 3}, ¢pu, is
(@ > 2), pu, is (a = 1), ¢,y is =(b > 1). Finally the family of integers is {K, = 1,

Koy, =2, Kapy =2, Koy =2, Ky =1, Ky, = 1}. (Right) Representation of its

state graph.

expression b+ is realisable and necessarily leads to the state (2,1) from

which the next expression a— is not consistent with the state graph.
3. The following Hoare triple contains two existential quantifiers and a

universal one:

{la=0)A(b=0)} V(a+,b+);3(a+,b+); 3(e, b+) {(b=1)} (remember

that ¢ denotes the empty trace and is an abbreviation for assert(T)

where T stands for a tautology).

e We have clearly (0,0) "% {(1,0), (0,1)}

e Since we have (1,0)) {(2,0)} and (1,0) et {(1,1)} and
(0.1 {(1, 1)) we deduce (0,0)" TS (1, 1), (2,003
and (0, 0) V(a+,b+/)\;j(a+,b+) (1, 1)}

o We have trivially (1,1) "3~ {(1,1)}

e Moreover we have both (2,0) "~ E5H {(2 0)} and (2,0) & b+){(2, 1)}
e We deduce that the considered trace specification p can lead to 3
different sets of states: (0,0) & {(1,1),(2,0)}, (0,0) & {(1,1)}

and (0,0) % {(1,1),(2,1)}.
Because the postcondition is satisfied in both states (1,1) and (2, 1),
the two last sets of states which are in relation with (0, 0), satisfy the

postcondition. Consequently although the first set does not, one can
deduce that the Hoare triple is satisfied.

34

Appendix B. Soundness and Completeness

As usual in Hoare logic, The soundness and completeness of the logic can
only ensure a partial correctness of the Hoare triples because the while loops
of the trace specifications do not necessarily terminate.

Appendiz B.1. Soundness

The soundness of our modified Hoare logic means that: Given a network
N = (V,M,Ey,Ey,K),if +{P} p{Q} according to the inference rules of
Section 5 (and after substituting the symbols K by their value in N), then
for all states 1 that satisfies P, if there is a set E such that n & F, then
there is at least a set E’ such that n & E' and Vi € E', 7 =n Q.

The proof is made as usual by induction on the proof tree of = {P} p{Q}.
Hence, we have to prove that each rule of Section 5 is sound. Here we
develop only the Increase rule and the Sequential composition rule since
the soundness of the other inference rules is either similar (Decrease rule),
trivial (Assert rule, Quantifier rules, Assignment rule, Empty trace rule and
Boundary azioms) or standard in Hoare logic ([teration rule). Let us note
that the soundness of the Sequential composition rule is not trivial because
its semantics is enriched to cope with the quantifiers.

Let n be any state of N.

Increase rule: (where v is a variable

of N)
From Definition Appendix A.2, the hypothesis is

[H| nly @ and 7 =n Qv+ v +1]

and we have to prove the conclusion

{ o A Qv+—v+1] } v+ {Q}

there exists £ C S such that n %5 E and V' e E, 0 En Q

Let us choose E = {n'} with n’ = nv <= n(v) + 1]. From Notation 5.1,
the hypothesis n =x @ is equivalent to (n — 1) € S, which in
turn, according to Definition 4.4, implies 7 s {n'}. Hence, it only
remains to prove that 7' =y @, which results from the hypothesis

nEN Qv+ v+1]. O

35

. L (P} (P (P} p {Q)
1 le:
Sequential composition rule TP} prps 1Q)

From Definition Appendix A.2, we consider the following three hy-
potheses:

for all 7, € S such that n; Enx P there exists E; such that
m A By and Vi € By, i = Ps

for all n, € S such that 1, |y P> there exists Es such that
n, A5 Ey and V' € Es, 1 Ey Q

[Hs| n v Py

and we have to prove the conclusion:

there exists £ C S such that n "A%* F and Vi € E, ' =y Q

Let us arbitrarily choose a set E; such that 7 L, B, and V' € By, ' En

P, (we know that E; exists from and)

For each 0 € Ey, we similarly choose a set E;’l such that:
n' X EY and V' € EY, ' =x Q (we know that the family {Egl}nleEl
exists from and the fact that n' =y P, for all /' € Ey)

Let £ = (Uyep, EY), we have: 1 "% E from Definition 4.4 and
V" € E; 0" Ex Q (from the way the union is built). O

Appendixz B.2. Completeness and weakest precondition

Completeness of Hoare logic is defined as follows. Given a network N =
(V, M, Ev, Ex, K), if the Hoare triple { P} p {Q} is satisfied in N (according
to Definition Appendix A.2) then F {P} p {Q} (using the inference rules
of Section 5 and after substituting the symbols K by their value in N). We
prove the completeness by establishing that one can compute the weakest
invariants of all while loops and that the backward strategy gives a proof of
{P}p{Q}

The main difference with respect to the classical completeness proof is
that we navigate into a finite state space, so that we will not have to care
about the incompleteness of arithmetic or restrictions about weakest loop
invariants. In the following proposition, we see that one can compute the
weakest invariant for each while occurrence in the trace specification. Only

36

practical reasons in order to facilitate proofs justify to ask the specifier to
include loop invariants into trace specifications: Often, a slightly non minimal
invariant considerably simplifies the proof tree.

Proposition Appendix B.1. (Existence of the weakest loop invariant).
Given a GRN N = (V, M, Ey, Ey, K), let us consider two assertions @ and
e, and a trace specification p. There exists a weakest loop invariant I such
that the Hoare triple {1} while e with I do p {Q} is partially correct.

The following proof is constructive and gives a way to compute I (see re-
mark Appendix B.4).
Proof:

1. In the first step of the proof, we build a set D as a countable union.

e Let gqo = {n € S |nEnNy Q@A—-e} be the set of all states that satisfy
() without entering the while loop.

o given ¢;, let ¢iu1 ={ne S |nEyeand 3IE C S,n~Y E and E C
¢; }. From Definition Appendix A.2, for each i, ¢; is the set of states
that induce exactly ¢ while loops and such that the resulting states
satisfy Q.

o Let D, = U?:o ¢;- The sequence of D, is increasing and because
S is finite, it is stationary. So D = (J;°,¢; exists and can be
inductively computed.

2. In the second step of the proof, we show that the characteristic formula
of D is a loop invariant.

e Because D is finite, there is a formula I such that n =y I iff
neD: I =V, pl,where 1, = A v =n(v)

e [is a loop invariant because for each state n that satisfies I, there
is an integer ¢ such that n € g;.

— If 4 > 0, then n satisfies I A e and by definition, there is a set
E such that n L Eand E C ¢4, consequently F satisfies [
because every state of ¢;_; satisfies I.

— If i = 0, then n =n —e, thus n Ax e A I, which implies that
{e N1} p {I} is satisfied for 7, according to Definition Ap-
pendix A.2 and elementary truth tables.

37

3. In the last step of the proof, we show that each state of D satisfies any
minimal loop invariant.

e Let J be a minimal loop invariant. Assume that there is a state
n € D that does not satisfy J. Then J V 1, (where 1, is the
formula characterizing the state 1), is strictly weaker than J. But
it is also an invariant since after ¢ iterations of the while loop from
n, one of the resulting sets of states E satisfies (). This contradicts
the minimality of J.

e Consequently I is the weakest loop invariant. a

Theorem Appendix B.2. (Completeness theorem on the genetically mod-
ified Hoare logic). Given a GRN N, a trace specification p and a post-
condition QQ, the backward strategy defined at the end of Section 2, with the
inference rules of Section 5, computes after steps 1 and 2 the weakest precon-
dition Py such that { Py} p {Q} is satisfied. In other words, for any assertion
P, if {P} p {Q} is satisfied, then P = Py is satisfied (that is, the third step
of the backward strategy).

This theorem has an obvious corollary.

Corollary Appendix B.3. Given a GRN N, our modified Hoare logic is
complete.

Proof of the corollary: if {P} p {Q} is satisfied, then, from the theorem
above, there is a proof tree that infers the Hoare triple if there is a proof
tree for the property P = P, (which is semantically satisfied because P, is
the weakest precondition). First order logic being complete and the number
of possible substitutions being finite (the state space being finite), the proof
tree for P = P, exists. O

Proof of the completeness theorem:
Under the following two hypotheses

the Hoare triple { P} p {Q} is satisfied, i.e., for all n satisfying P, there
exists E such that n & F and for all ' € E, f satisfies Q,

for all while statements of p, the corresponding loop invariant [is the
weakest one (Proposition Appendix B.1),

one has to prove the conclusion:

38

P = P, is satisfied, where P, is the precondition computed from p and
() by the steps 1 and 2 of the backward strategy with the inference
rules of Section 5.

The proof is done by structural induction according to the backward strategy
on p.

o If p is of the form v+, then the only set F such that n B EisE=
{n[v <= v+ 1]}. The hypothesis becomes:

for all n satisfying P, ' = n[v < v + 1] satisfies @ and n — 7 is
a transition of &

and from the Increase rule, the conclusion becomes:
P = (®F A Qv + v + 1]) is satisfied.

So, = straightforwardly results from the definition of ®,+
(Notation 5.1) and we do not use .

o If p is of the form p;;ps, then we firstly inherit the two structural
induction hypotheses:

for all assertions P’ and @', if {P'} p; {Q'} is satisfied then P’ =
P, is satisfied, where P, is the precondition computed from @’ via
the backward strategy

for all assertions P” and Q", if {P"} py {Q"} is satisfied then
P" = P, is satisfied, where P, is the precondition computed from
Q" via the backward strategy

Moreover the hypothesis becomes (Definition 4.4):

for all n satisfying P, there exists a family of state sets F =

{E.}eer such that n X Fand e &3 F, for all e € F and for all
0 € E = (U.er Ee), 1 satisfies Q

Lastly, from the Sequential composition rule, the conclusion becomes:

P = P, is satisfied, where P, is the weakest precondition of
{---} p1 {P2}, P, being the weakest precondition of {---} ps {Q}.

39

From (with Q" = Q) it results that all the states e € F' of hypoth-
esis satisfy P». Consequently {P} p; {P»} is satisfied. Thus, from
(with Q" = P, and P’ = P) it comes P = Py, which proves the

conclusion.

e If p is of the form while e with I do p', then, by construction of the
backward strategy, applying the Iteration rule, we get Py = I, and the
conclusion results immediately from .

e Similarly to the soundness proof, we do not develop here the other
cases of the structural induction. They are either similar to already
developed cases (Decrease rule) or trivial (Assert rule, Quantifier rules,
and Assignment rule).

This ends the proof. O

Remark Appendix B.4. Soundness and completeness being now established,
one can extend Proposition Appendix B.1 by giving a purely symbolic compu-
tation of the weakest loop invariant I of a while loop. Following the notations
of the proof of Proposition Appendix B.1:

o The set of states qy is characterised by the formula Qg = —e A Q,

e [n addition, assuming that the trace specification p terminates, the set
of states q;y1 1s inductively characterised by the weakest precondition
Qi1 obtained via the backward strategqy of the proof of {Qiv1} p {Q:}
(this is due to the soundness and completeness of our calculus).

e [From this construction, we deduce that the first integer n such that
qns1 C D, (where D, = Ui_,q:) is the first n such that Qni1 =
Vi g Qi. This implication is decidable because the set of possible sub-
stitutions s finite.

Proposition Appendixz B.1 implies that the integer n mentioned before exists.
Consequently I = \/_, Q; can be expressed in a purely symbolic way. And
more importantly, this can be done from the solely knowledge of the inter-
action graph. The assertion I is then a constraint on states and parameters
K, what we used in Section 6.

40

