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Abstract— This paper presents a novel approach for changing
facial expressions in images. Its strength lies in its ability to
map face images into a vector space in which users can easily
control and generate novel facial expressions based on emotions.
It relies on two main components. The first one learns how
to map face images to a 3-dimensional vector space issued
from a neural network trained for emotion classification. The
second one is an image to image translator allowing to translate
faces to faces with expressing different emotions, the emotions
being represented as 3D points in the aforementioned vector
space. The paper also shows that the proposed face embedding
has several interesting properties: i) while being a continuous
space it allows to represent discrete emotions efficiently and
hence enables to use those discrete emotions as targeted facial
expressions ii) this space is easy to sample and enables a fine-
grained control on the generated emotions iii) the 3 orthogonal
axes of this space may be mapped to arousal, valence and
dominance – 3 directions used by psychologists to describe
emotions – which again is highly interesting to control the
generation of facial expressions.

I. INTRODUCTION

Affective computing is a topic of broad interest, finding
applications in many fields such as health care, marketing
or human-machine interface. Therefore, a great effort has
been put in the recognition of emotions in different contents.
Several works propose to analyze facial expressions from
images [1], [25], from multimodal videos [6], [18], [29], [41]
or from multi-view videos [2], [38]. Other works focus more
on sentiment expressed by text [4], [26], [30] or audio [14],
[32], [33], building a very large and complete set of emotion
recognition methods. Nevertheless, some recent works [40]
underline that the performance might begin to saturate on the
emotion recognition task because of the nature of the used
datasets and the subjective representations of emotion.

Thus, understanding and manipulating emotion represen-
tations is of tremendous interest to progress towards more
complete affective computing abilities. Consequently, the
very definition of facial expressions of emotions has to be
carefully addressed. The literature came up with three main
definitions. First, Ekman et al. [9] proposed the concept
of discrete emotions, identifying six universal classes (e.g.
”Happy”, ”Sad”, ”Disgusted”, ”Fearful”, ”Surprised” and
”Angry”). Later, the arousal-valence system was built by
Russell [31], placing emotions in a 2-d continuous space.
Finally, the Facial Action Coding Systems [10] allows to
objectively represent facial expressions with Action Units
(e.g. ”raised eyebrows”).

As facial expressions are one of the main ways for
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Fig. 1. Illustration of our 3-d representation space of emotion. Each color
represents a discrete emotion (’happy’, etc.). Ei are some generated facial
expressions (left) mapped in our 3-d space (right). Better viewed in color.

human to express emotions, a whole branch of the affec-
tive computing community focuses on the generation of
facial expressions, aiming at better measuring the effect
of emotion representations as well as understanding how
to simulate emotions. The first works on the synthesis of
artificial facial expressions came from the computer graphics
community and were focused on the animation of faces with
model-based approaches [16], [34], [42]. More recently deep
learning approaches and especially Generative Adversarial
Networks [5], [7], [12], [28], [37] have been proposed, bor-
rowing ideas from the computer graphics community [27],
[35], but also aiming to learn these facial expressions from
diverse datasets and representations using machine learning
techniques. These recent approaches are generally trained
on small corpuses with pronounced emotions and limited
annotations [20], [21], [44], leading to limited spaces of
possible expressions.

Even if larger ’in the wild’ corpuses annotated with
action units or arousal valence information exist [11], [19],
[24], they are very costly to annotate and their use is only
marginal [27].

Last but not the least, the previously mentioned approaches
have focused on the quality of the generated faces and not
on the way to control the targeted emotions.

This paper proposes an elegant way to control targeted
emotions by building a bridge between psychological inter-
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Fig. 2. Illustration of our 3-d representation space of emotion. Each plane is colored with the associated discrete emotion classes (see position of these
planes in Figure 1). Furthermore, for each plane we illustrate some generated faces from the associated 3D representation coordinates. The generated
sample faces within same color areas show the many possible faces inside a given emotion class. Note that expressions in these three planes are only a
small part of the possible samples generated by our model. Better viewed in color.

pretations of emotion representations and what is visually
observed. Our contribution is twofold. First, we propose a
3-d representation of emotion based on the latent space of
a classification neural network. This model is trained on the
task of discrete emotion classification, and thus does not
require any costly continuous annotations (such as arousal
or valence values). Second, once this representation space is
settled, we can use it to learn an image-to-image translator
based on generative adversarial networks, to generate target
faces having controlled expressions, for any source face.
We show that not only the generation of faces is more
robust than with other representations, but also that we
could exhibit complementary directions within the 3-d space
representation that are in line with the common psychological
definition of arousal, valence and dominance. It enables
easy and meaningful ways to control emotions as interesting
interpretations of the observed improvements1.

II. RELATED WORKS

a) Emotion Representation: Emotion representation is
a well-explored topic in the psychological community, as
mentioned in Section I. Therefore, an easy way to build
a taxonomy of the different emotion representations is to
categorize them along two directions: semantic meaning and
power of description. The higher semantic meaning comes
with discrete emotion [9]. Each class is associated with one
word, but at the cost of loosing a lot of power of description.
Indeed behind one word many variations may be found.
Proposing compound emotion [8] (e.g. happily surprised)
is a way to reach a more fine-grained representation while
keeping a high-level semantic meaning. Nevertheless even
with a large vocabulary of words, the whole space of emotion
may not be completely described. Indeed, as shown by
Russel et al, emotion is a continuum, thus requiring a

1Additional generated facial expressions and supplementary works will
be shared at https://github.com/vielzeuf/The-Many-Variations-of-Emotion/ .

continuous system to obtain a fine-grained description. To
keep a semantic meaning, several interpretable axis were
proposed to build continuous spaces, such as arousal, valence
or even dominance [22]. At a much lower semantic level, but
with a perfect depiction of the facial expression, the computer
graphics community tends to propose a Facial Action Coding
System, allowing to objectively represent facial expression
with Action Units (e.g. ”raised eyebrow”).

Using datasets annotated by representations with a great
power of description allows to train more efficient model, but
it implies a higher annotation cost. Our method is aiming
to reach a compromise between having a great power of
description and a low-cost annotation process.

b) Computer Graphics: The face animation task has
already been actively explored by the computer graphics
community, some early works proposing 3D model-based
approaches [3], [43]. More recently, Soladié et al. [34] uses a
4-d emotion representation space to animate face and Active-
Appearance Models features. In a more general fashion,
Weber et al. [42] propose an unsupervised person-specific
model which easily adapts to the targeted subject. Finally,
hybrid approaches mixing deep learning and model-based
method are also proposed. Susskind et al. [36] first propose
to train a deep belief network based on both action units
and identity information to generate facial expression. More
recently, another approach [35] is using fiducial points to
geometrically control the face animation while Tulyakov et
al. [37] is learning to directly generate sequences of images,
based on a ”content and motion” method. Quia et al. [28]
use facial landmarks to improve the animation smoothness
of a changing emotion. Kim et al. [16] enable to generate
video face animation using another portrait video as an
example. These approaches are working on the very shape of
the face. Therefore it implies complex modifications of the
model to adapt to ”in the wild” conditions where important
illumination changes and occlusions are common.



c) Generative Neural Networks: To fulfill the previ-
ous requirement of robustness towards real ”in the wild”
conditions, an interesting path of research for image syn-
thesis using neural networks is Generative Adversarial Net-
works(GAN) [12] and Variational AutoEncoders(VAE) [17].
Focusing on GANs, many extensions exist, such as Con-
ditional GAN [23] where a condition variable allows to
control the generation or more recently StarGAN, where
Choi et. al [5] propose a multi-domain method, learning
both facial attribute transfer and facial expression generation.
Interestingly, the targeted facial expression is fed with the
input face to modify, allowing an end-to-end approach.
Extending the previous works, Ding et al [7] propose a new
GAN framework enabling to learn the intensity of a facial
expression by a specific encoding of the emotion label. The
covered domain of possible facial expression is then larger
than for classical discrete approaches, each class containing
many variations along an intensity criteria. Nevertheless, this
approach does not allow to generate all the possible facial
expressions such as compound emotions. Pumarola et al. [27]
propose a more general approach, coupling GAN and Action
Units to continuously generate facial expressions from a large
dataset. This implies a lot of labeling work, as action units
are costly to annotate. Moreover the constructed space has
a high dimension (15 action units) leading to non direct
analysis of the organization of the generated faces.

III. PROPOSED METHOD

The proposed approach relies on two components. First, a
method allowing to map face images into a 3-d vector space
describing facial expressions. Second, an image-to-image
translator capable of generating faces with controlled facial
expressions. The generator represents facial expressions as
3-d points in the vector space.

A. Representing Facial Expressions in a 3-d Vector Space

As argued by [31], continuous annotations can be more
subtle and more accurate than discrete labels to represent
emotions. The rationale behind this idea is to continuously
describe several features of facial expressions, such as inten-
sity (arousal) or pleasure (valence). A mapping to discrete
representations of emotion is always possible [24], [31],
enabling to take benefits from both discrete and continuous
representations. The number of continuous features necessary
to describe emotions is debatable. However, some psycholog-
ical studies, e.g. [22], suggest that the two usual dimensions
(arousal and valence) might not be sufficient to represent the
whole spectrum of emotions. Despite the advantages of such
continuous representations, building annotated datasets costs
much more than annotating them with discrete labels. Con-
sequently, large datasets with such continuous annotations
do not exist, preventing us to learn a direct mapping.

Interestingly, a recent approach [15] shows that a compact
latent space issued from the hidden layers of a convolutional
neural network trained for discrete emotion classification can
lead to an arousal-valence like topology. We build on this
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Fig. 3. Learning a 3-d compact representation of emotions, inspired by
the work of [15] .

work, proposing to use the latent space of a neural network
as the 3-d vector space for representing facial expressions.

In practice, we trained a modified ResNet-18 [13] to
classify discrete emotions, as in Figure 3. The modification
consists in adding a bottleneck – which is a fully connected
layer – before the classification layer, forcing the classifier
to use only three features to predict discrete emotions. A hy-
perbolic tangent activation is applied on these three features
to ensure that the 3-d features are in the range [−1, 1]. While
this network is trained using a corpus annotated with discrete
emotions, it can be used in a second time to map any new
face image to the 3-d vector space.

We can observe in Figure 1 how discrete emotions are
related with their 3-d representations. Figure 2 gives another
illustration of the embedding in the 3 planes of the reference
frame of Figure 1.

B. Facial Expression Modification as an Image-to-Image
Translation problem

We consider the task of facial expression modification
as an image-to-image translation problem. We build on the
StarGAN [5] algorithm, which allows to take both a face
and a targeted expression as input of the generator and has
already proven to be efficient on discrete emotion generation.
As a reminder, the model is composed of a discriminator D
and a generator G, trained by minimizing two loss functions.
Our main contribution on this point is to adapt these loss
functions to the continuous labelling case.

The adversarial loss aims at making the generated fake
images not distinguishable from real one:

Ladv = Ex[logD(x)] + Ex,r[1− logD((G(x, r)))] (1)

where x is the input image and r is the 3-d representation.
The generator and the discriminator respectively aim at
minimizing and maximizing the term.

The StarGAN classification loss, which we replaced by
a regression loss, is itself composed of two terms. The first
term, namely Lreal

reg , forces D to correctly regress the emotion
associated with the original image. While the second term,
namely Lfake

reg , forces G to generate facial expressions with a
representation close to the targeted emotion. More formally,



we use Mean Squared Error terms as follows:

Lreal
reg = Ex,r[D(x)−r]2 and Lfake

reg = Ex,r[D(G(x, r))−r]2
(2)

The reconstruction loss, namely Lrec ensures that the
generated faces conserve other information than emotion
(identity, orientation, etc.). It is defined as:

Lrec = Ex,r1,r2 [||x−G(G(x, r2), r1)||1] (3)

where r1 is the original facial expression representation and
r2 is the representation of the facial expression the generator
has to generate.

Finally, we write the generator and discriminator losses as
in the StarGAN [5]:

LD = −Ladv + λregL
real
reg (4)

LG = Ladv + λregL
fake
reg + λrecLrec (5)

C. Controlling the Facial Expressions of Targeted Images

We recall that our goal is to allow users to generate face
images whose facial expressions are controlled. Within our
framework, this is equivalent to computing the 3-d vector
characterizing the target expression (denoted as r in previous
Section). Except for the case where we want to mimic the
expression of another face – in this case we can directly
obtain the expression vector of the target face – this is
not straightforward as the vector space might look arbitrary
and not user-friendly. To make the control possible, we
imagined two scenarios: one consists in specifying the target
expression by discrete emotions. Another one consists in
specifying the target emotions in terms of arousal, valence
and dominance, with respect to the original face.

1) Controlling Facial Expression by Discrete Emotions:
Controlling facial expressions by discrete emotions is possi-
ble if we map the discrete emotion in our new 3-d space. We
did it by taking a dataset with images annotated with discrete
emotions (AffectNet [24]) and computed the centroid of the
3-d coordinates of each image of each one of the 7 emotions.
More formally, we compute ri =

∑
k∈Ci

discrete

rk
#Ci

discrete

,
where ri is the coordinates of the centroid of the class i,
Ci

discrete is the set of all elements of the class i, and rk is
our 3-d representation of the sample k.

2) Generation of Emotions based on Arousal, Valence
and Dominance: The previous method does not allow a
fine control of the generated facial expressions. Controlling
expression directly within our 3-d space would allow more
flexibility, but the raw coordinates are not meaningful to
users. Interestingly, we are going to show how our 3-d space
can be aligned with the arousal/valence (a/v) representation,
which is easy to understand. For aligning our representation
with the a/v space we use a dataset in which images are
annotated in terms of a/v (AffectNet [24]). For the images
of this dataset we have both their coordinates in our 3-d space
(denoted as rk for the kth image) as well as their coordinates
in the a/v space (denoted as (avk)), given by the annotations.
It allows us to learn a mapping from the 3-d space to the a/v
space. Let ia and iv the two vectors pointing in the arousal

Baseline [24] Human [24] Ours
Arousal RMSE 0.40 0.36 0.34
Valence RMSE 0.394 0.34 0.36

TABLE I
PROJECTION OF OUR REPRESENTATION TO THE AROUSAL VALENCE SPACE.

and in the valence direction of the vector space. We obtain
ia and iv by:

min
ia,iv

∑
k

||avi − [ia; iv]× rk||2 (6)

This estimation is validated in the results section (see
Table I). The third vector of this new basis is obtained by
vector product: id = ia

⊗
iv . We show in the section IV that

id is related to the dominance factor.
Finally, we can generate a novel expression r′ from r by

computing r′ = aa×ia+av×iv+ad×id where (aa, av, ad)
are the arousal, valence and dominance-like of the targeted
expression.

IV. RESULTS

This section evaluates the benefits of the proposed continu-
ous representation. After detailing our experimental protocol,
we evaluate the ability of our approach to generate discrete
and continuous emotions. Then we enlighten the relations
between our learned representation and arousal/valence, and
we build a bridge towards psychological interpretations,
finding back a third dimension visually similar to the concept
of dominance [22].

A. Implementation Details

Our experiments use the recent AffectNet dataset [24],
which provides both discrete emotions and arousal valence
annotations. We sanitized it by discarding images without
faces or without annotations, resulting in 297000 annotated
faces that are ’in the wild’. We preprocess them, with a
face detector and a landmark aligner. To fit our convolu-
tional neural networks requirements, faces are then resized
to 256x256x3. During training time, we also apply data
augmentation (scale jittering, rotation and flip). It gives us a
modified ResNet-18 (see explanations before), mapping each
face to the 3-d vector space.

We then train 3 image-to-image translators denoted as:
discreteGAN, avGAN, and ours, one for each annotation
type (resp. discrete, arousal-valence, and ours). We use a
batch size of 16, a learning rate of 1e-4 with exponential
decay factor of 0.996. The architectures of both generator
and discriminator are similar to the one described in [5]. For
continuous annotations, the regression loss weight λreg is
changed to 3 instead of 1 because of the scale difference
with a classification cross-entropy loss. Other weights are
same as in [5]. Parameters are optimized with the Adam
method during 300,000 iterations.

To evaluate the generation task, we use the validation set
faces of AffectNet and generate faces of size 128x128x3.
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Fig. 4. The 7 emotion classes generated with the three different approaches:
discreteGAN (first row), avGAN (second row) and ours (third row). The
three source images are randomly taken from the test set, to ensure a fair
comparison between the approaches.

B. Discrete Expression Generation

We evaluate in this section the impact of the different
representations on the quality of the generated expressions,
when targeted expressions are discrete. We compared the 3
image-to-image translators introduced in the previous sec-
tion, namely: discreteGAN, avGAN, and ours.

Fig. 4 shows, for 3 source image, generated facial expres-
sions for the 7 discrete emotion classes. Generated images
bear similarity for the 3 generators. Nevertheless, we note
some interesting differences. For the ’happy’ class (second
column), teeth look more natural with our continuous model
than with discreteGAN or avGan. For the ’disgust’ class,
we note the presence of artifacts in the faces generated by
the discreteGAN, while avGAN tends to generate relatively
similar expressions for both ’disgusted’ and ’angry’ faces.
These artefacts can be explained by the small number of
’disgust’ occurrences in the training set (less than 2%),
meaning that the discreteGAN did not see many examples
of this class. Furthermore ’disgust’ and ’anger’ classes are
relatively close in the arousal valence space, leading to
very similar values for their centroids and thus very similar
generated expressions. Our GAN, using a 3rd dimension as
shown in Fig. 1, improves the separation of the 2 classes and
leads to more visible differences between generated faces.

RMSE on mean color Lrec

GAN Red Green Blue All
Discrete 4.5 6.3 10.2 7 0.22
AV 6.4 7.8 5.7 6.7 0.14
Ours 3.7 3.1 3.2 3.4 0.12

TABLE II
EVALUATION OF THE RECONSTRUCTION QUALITY AND COLOR CONSERVATION OF

THE DIFFERENT APPROACHES ON THE TEST SET. LOWER IS BETTER.

Fig. 5. Estimated valence (left) and arousal (right) of the generated faces
as a function of the targeted valence (left) and arousal (right) for the 3
different models. These plots are average plots on the whole test set.

The neutral class is also interesting, especially for the 3rd
face, where we can note the ability of our GAN to improve
the control of the mouth closing.

We also can note that the intensity of the expressions is
higher in the discreteGAN faces. It can be explained by the
fact that we choose the centroids for continuous representa-
tions, which are not the most pronounced expressions.

Finally, we may think from the third face that the discrete-
GAN is changing the mean color of the faces it generates.
Another good qualitative example can be seen on Figure 7.
To be more objective and assess if this visual observation
is true, we compute the mean color value of the original
image and the mean values of the generated images of the
seven emotion classes. We measure the root mean square
error between the original mean color and the means of the
mean colors of the seven generated images on the whole
test set (5000 faces) for each GAN in Table II. We observe
that the error is really lower in our case and that there is a
clear difference on the blue channel between discreteGAN
and continuous GANs. These observations are in line with
reconstruction losses (cycle-consistency loss with L1 norm,
as in the original StarGAN [5]) obtained by the different
GANs. Nevertheless, when generating a new expression, the
observed color change may be explained by a bias learned
by the model. For instance, negative emotions are often
associated with a darker context and some expressions may
imply a color modification, such as teeth showing during a
smile. Finally, the last column of Table II reports the Lrec

evaluated on the test set and objectively shows that faces are
better preserved with our approach.

C. Continuous Sampling of the 3-d Space of Emotions

We are now focusing on the ability of the different gen-
erators to deal with smooth transitions between expressions.
To be able to compare the different methods, we choose to
evaluate the transitions on arousal and valence axes, which



Discrete

Arousal
Valence

Ours

Low valence High valence

Fig. 6. Generation of expression along the valence axis, from displeasure
to pleasure. First row is discreteGAN using the same approach as in [7],
second row is avGAN and third row is ours, using a linear regression to
find a similar axis to valence. The input image is on the left.
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Fig. 7. Generation of expression along the arousal axis, from displeasure
to pleasure. First row is discreteGAN using the same approach as in [7],
second row is avGAN and third row is ours, using a linear regression to
find a similar axis to arousal. The input image is on the left.

are easy to interpret and often used in the psychological
community [31]. For avGAN, the sampling of the space is
straightforward as the two coordinates of the expressions are
arousal and valence.

To generate continuous transition with the discreteGAN,
we represent emotions with a one hot vector and create
variations between two one hot vectors, as proposed by [7],
who used this idea to vary ”in intensity” between neutral
class and another emotion. For the valence axis, we choose
a transition between sadness (valence equals -1 and arousal
close to 0) and happiness (valence equals 1 and arousal close
to 0), while for the arousal axis, the transition is between
neutral (arousal and valence to 0) and surprise (valence close
to 0 and arousal equals 1).

From Figure 6, we first can observe that all the generated
faces respect the valence axis, expressing displeasure at the
extreme left and pleasure at the extreme right. We note that
the expression from one GAN to another are not exactly
similar, which may also be explained by the fact that the
chosen axis for discreteGAN and for our GAN are not
perfectly fitting the valence axis.

Another important point is about the smoothness of the
transition. Looking at the first line of Figure 6, we observe
four very similar expressions of displeasure, followed by one
or two expressions mixing both displeasure and pleasure and
finally five close expressions of pleasure. On the contrary,
for both avGAN and ours, the transition is smoother, the
expression being modified at each face. So this would mean
that the discreteGAN is not able to uniformly fit the axis of
valence and tends to generate less variety in the expressions.

High
Dominance

Low
Dominance

Fig. 8. Illustration of the third dimension found from our representation
and used to generate expressions in the first row. Second row is a manual
work [39] illustrating what dominance is.

To verify this hypothesis, we propose to use a more
objective process. First, we train a ResNet-18 to predict
arousal and valence of the faces of AffectNet [24]. Second,
we use this model to estimate the valence of the generated
faces. Thus, we can plot the estimated valence in function
of their targeted valence. We report the mean plots on the
whole test set in Figure 5. The avGAN’s curve (in orange)
should be the identity if both the arousal valence estimator
and the avGAN were perfect. It is not the case, but we
nevertheless can check that the allure of the curve is coherent
with this idea. The curve of our GAN (in green) has a similar
allure, validating the smoothness of the expression transition
observed on Figure 6. Finally, the discreteGAN’s curve (in
blue) has an allure which is closer to a step function than
to the identity. It is also in line with what has been visually
observed and highlights the fact that the discreteGAN is not
suited to build a uniformly sampled space of representation.

From Figure 7, we note that all the GANs are able to
generate a transition between low and high facial arousal. As
observed for the valence axis, the expressions are not totally
similar from one GAN to another, as they are not generating
expressions exactly on the same axis of arousal. We can
observe again that the discreteGAN transition is not very
smooth in arousal. To assess this idea, we plot in Figure 5
the estimated arousal as a function of the targeted arousal.

D. Interpreting the Third Dimension

Even if the psychologists’ community proposes arousal
valence for emotion representation, several works show its
limitations. Supplementary dimensions have been proposed
and one is especially used: dominance [22], which can
be seen as a measure of self-confidence. In the previous
sections, we show that our representation allows to map back
to both discrete emotions and arousal valence. As already
observed in Figure 4, it is difficult to distinguish disgust
from anger with arousal valence representation, which is not
the case with our 3-d representation. The third dimension
can therefore bring interesting information. To dig into this
idea, we propose to obtain this following representation as
previously described (Ea. (6)).

Figure 8-1st row displays generated expressions on the
dominance axis. As our corpus is not annotated with the
dominance value, we propose to compare our generated
expressions to the manually generated expressions proposed
by Allen Grabo [39]2. We observe the same evolution in

2https://allengrabo.myportfolio.com/shifting-personality



the facial expressions, the self-confidence growing from left
to right. This a first hint to show that our representation
contains the dominance information, which has been learned
from discrete labels. More examples may be found on our
github repository.

V. CONCLUSIONS

This paper proposes a method for facial expression gener-
ation based on a specific 3-d emotion space. This continuous
representation is the latent space of a neural network trained
for discrete emotion recognition. Face generation is done by
an image to image translator, based on StarGAN, allowing
to modify face images according to targeted expressions
given as points in the proposed 3-d space. We qualitatively
and quantitatively show that not only the generated faces
are visually better but also that the user can control the
arousal and the valence of the generated faces. Moreover,
the proposed 3-d space has a third dimension, close to the
concept of dominance, building a bridge with psychological
interpretations of emotion.
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