Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2018

Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

Résumé

We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Haggstrom established for this model a phase transition for the asymptotic linear speed (v) over bar of the walk. Namely, there exists some critical value lambda(c) > 0 such that (v) over bar > 0 if lambda is an element of (0, lambda(c)) and (v) over bar = 0 if lambda >= lambda(c). We show that the speed (v) over bar is continuous in lambda on (0, infinity) and differentiable on (0, lambda(c)/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of (v) over bar on (0, lambda(c)/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for lambda >= lambda(c)/2.
Fichier principal
Vignette du fichier
1705.00671.pdf (465.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02051736 , version 1 (11-01-2024)

Identifiants

Citer

Nina Gantert, Matthias Meiners, Sebastian Müller. Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model. 2017. ⟨hal-02051736⟩
78 Consultations
10 Téléchargements

Altmetric

Partager

More