Multiple Optimal Solutions but Single Search: A Study of the Correlation Clustering Problem

Nejat Arinik
Rosa Figueiredo
Vincent Labatut

Laboratoire Informatique d'Avignon, University of Avignon, France.

Le Havre, Feb 21, 2019

Outline

(9) Context
(2) Structural Balance and Signed Graph Partitioning
(3) Methodology
(4) Experiment
(5) Conclusion

Context

- Motivation: Multiple optimal solutions?
- Objective: Study of optimal solution space
- Case Study: Correlation Clustering (CC) problem
- Input: Signed graphs
- Partitioning: Structural Balance theory
[Arinik et al., 2019] Arinik, N. \& Figueiredo, R. \& Labatut, V. "Multiple Partitioning of Multiplex Signed Networks: Application to European Parliament Votes", Negative and Signed Tie Networks: Special Issue of Social Networks (accepted).

Structural Balance and Signed Graph Partitioning

- Signed graphs

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1964] mutually hostile subgroups each having internal solidarity \rightarrow Correlation Clustering (CC) problem

[Heider, 1946] Heider, F. "Attitudes and cognitive organization", Journal of Psychology, 21:107-112, 1946.
[Davis, 1964] Davis, J. "Clustering and structural balance in graphs", Human Relations, 20:181-187, 1967.

Structural Balance and Signed Graph Partitioning

- Signed graphs
- Structural Balance: Partitioning into two [Heider, 1946] or more [Davis, 1964] mutually hostile subgroups each having internal solidarity \rightarrow Correlation Clustering (CC) problem

- Most real networks are not structurally balanced \rightarrow need to measure graph imbalance

Measuring imbalance - CC problem

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq I} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq I} \Omega^{+}\left(S_{i}, S_{j}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
& \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e} \\
& \text { and } \Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}
\end{aligned}
$$

Measuring imbalance - CC problem

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq I} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq 1} \Omega^{+}\left(S_{i}, S_{j}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
& \Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e} \\
& \text { and } \Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}
\end{aligned}
$$

Measuring imbalance - CC problem

Definition

Consider a signed graph $G=(V, E, s)$ with a nonnegative weight for each $e \in E$. The Correlation Clustering (CC) problem is the problem of finding a partition P of V such that the imbalance $I(P)$ is minimized.

- Imbalance of a partition

$$
\begin{aligned}
& P=\left\{S_{1}, S_{2}, \ldots, S_{l}\right\} \text { of } V \\
& I(P)=\sum_{1 \leq i \leq l} \Omega^{-}\left(S_{i}, S_{i}\right)+\sum_{1 \leq i<j \leq 1} \Omega^{+}\left(S_{i}, S_{j}\right) .
\end{aligned}
$$

where

$$
\Omega^{+}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{+} \cap E\left[S_{i}: S_{j}\right]} w_{e}
$$

$$
\text { and } \Omega^{-}\left(S_{i}, S_{j}\right)=\sum_{e \in E^{-} \cap E\left[S_{i}: S_{j}\right]} w_{e}
$$

$$
I(P)=0+1+1=2
$$

Example

$$
I(P)=4
$$

22 optimal solutions

Methodology

Experiment

- Random (complete and unweighted) graph generation process
- First: generate perfectly balanced random signed graphs \rightarrow graph size (n) and an initial number of cluster ($k_{\text {init }}$)
- $n=12, k_{\text {init }}=2$

Experiment

- Random (complete and unweighted) graph generation process
- First: generate perfectly balanced random signed graphs \rightarrow graph size (n) and an initial number of cluster ($k_{\text {init }}$)
- $n=12, k_{\text {init }}=2$

Experiment

- Random (complete and unweighted) graph generation process
- First: generate perfectly balanced random signed graphs \rightarrow graph size (n) and an initial number of cluster ($k_{\text {init }}$)
- Then: make graphs imbalanced \rightarrow proportion of misplaced links ($q_{\text {mispl }}$)
- $n=12, k_{\text {init }}=2$
- $q_{\text {mispl }}=0.20$

Experiment

- Random (complete and unweighted) graph generation process
- First: generate perfectly balanced random signed graphs \rightarrow graph size (n) and an initial number of cluster ($k_{\text {init }}$)
- Then: make graphs imbalanced \rightarrow proportion of misplaced links $\left(q_{\text {mispl }}\right)$
- Input graphs
- $k_{\text {init }}=2, n \in\{16,20,24,28,32,36\}, q_{\text {mispl }} \in\{0.05,0.10,0.15, . ., 0.70\}$
- $k_{\text {init }}=4, n \in\{16,20,24,28,32,36\}, q_{\text {mispl }} \in\{0.05,0.10,0.15, . ., 0.40\}$
- 10 instances for each parameter set
- $n=12, k_{\text {init }}=2$
- $q_{\text {mispl }}=0.20$

Preliminary results: Number of optimal solutions

$$
k_{\text {init }}=2
$$

$$
k_{\text {init }}=4
$$

Preliminary results: Graph Imbalance (\%)

$$
k_{\text {init }}=2
$$

$$
k_{\text {init }}=4
$$

 $0 \% 0^{\circ} 00^{\circ} 0.0^{\circ} 000$

Graph size=28
x-axis: $q_{\text {mispl }}$ (Proportion of misplaced links based on $k_{i n i t}$)
x-axis: $q_{\text {mispl }}$ (Proportion of misplaced links based on $k_{\text {init }}$)

Prel. results: Number of detected clusters (k) in solutions

$$
k_{\text {init }}=2
$$

Graph size=16

Graph size=20

Graph size=24

$$
k_{\text {init }}=4
$$

Number of detected clusters (k) in solutions

- $n=12, k_{\text {init }}=2$
- $q_{\text {mispl }}=0.20$

Number of detected clusters (k) in solutions

- $n=12, k_{\text {init }}=2$
- $q_{\text {mispl }}=0.20$
- $k=4$

Number of detected clusters (k) in solutions

- $n=12, k_{\text {init }}=2$
- $q_{\text {mispl }}=0.20$
- $k=4$

Preliminary results: Dissimilarity of optimal solutions

$$
k_{\text {init }}=2
$$

$$
k_{\text {init }}=4
$$

x-axis: $q_{\text {mispl }}$ (Proportion of misplaced links based on $k_{\text {init }}$)

Detecting solution classes

solution classes

Preliminary results: Proportion of single class case

$$
k_{\text {init }}=2
$$

$$
k_{\text {init }}=4
$$

x-axis: $q_{\text {mispl }}$ (Proportion of misplaced links based on $k_{\text {init }}$)

Conclusion \& Further research

- Complete and unweighted signed networks
- Many optimal solutions: \%49 $\left(k_{\text {init }}=2\right)$ and $\% 89\left(k_{\text {init }}=4\right)$ of the instances
- Can be very different: \%35 ($k_{\text {init }}=2$) and \%25 $\left(k_{\text {init }}=4\right)$ of the cases have different solution classes
- Study of operators
- Analysis of heuristic methods

Thank you for your attention!

Contact Information:
Nejat ARINIK
nejat.arinik@univ-avignon.fr

Correlation-Clustering Problem - ILP formulation

$$
x_{i j}= \begin{cases}0 & \text { if vertex } i \text { and } j \text { are in a common set, } \\ 1 & \text { otherwise. }\end{cases}
$$

minimize $\sum_{(i, j) \in E^{-}} w_{i j}\left(1-x_{i j}\right)+\sum_{(i, j) \in E^{+}} w_{i j} x_{i j}$
subject to $x_{i p}+x_{p j} \geq x_{i j}$,

$$
\begin{array}{r}
\forall i, p, j \in V, \\
\forall i, j \in V, \\
\forall i, j \in V . \tag{3}
\end{array}
$$

$$
x_{i j} \in\{0,1\},
$$

Structural Balance

Structural Balance

Structural Balance

Preliminary results: Transition graph

$$
n=28, k_{\text {init }}=2, q_{\text {mispl }}=0.50, \text { network=5 } \quad n=24, k_{\text {init }}=4, q_{\text {mispl }}=0.25, \text { network }=7
$$

Number of Connected Components in Transition Graphs

Proportion of 1 component with 1-Edit \qquad Proportion of 1 component with 1-Edit, 2-Edit, 3-Edit and 4-Edit

