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Abstract 

The Displacement per Atom (DPA) rate is conventionally computed with DPA 

cross sections in reactor applications. The method of direct calculation with 

energy-angular distributions given in the Center of Mass (CM) frame is proposed and 

recommended in the present work. The methods for refining and verifying the 

calculations of DPA cross sections are proposed: (i) 

Gauss-Legendre-Quadrature-based Piecewise Integration (GLQPI) for ensuring the 

numeric convergence of integral over emission angle due to the discontinuity of 

integrand; (ii) verification of the convergence for trapezoidal integration over the 

secondary energy; (iii) interpolation of double-differential cross sections. For 56Fe of 

JEFF-3.1.1, the current numeric integration over emission angle is shown not 

convergent, whereas the direct trapezoidal over the secondary energy and the direct 

interpolation of energy-angle-integrated damage are shown accurate. On the other 

hand, it is shown that the DPA cross sections are overestimated if isotropic angular 

distributions are assumed. However, the DPA cross section is not sensitive to the 

high-order Legendre polynomials because the former is an angle-integrated quantity. 

Numerical results of neutron elastic scattering show that 2 orders of Legendre 

polynomials can give the DPA rates of 56Fe within 0.5% overestimation for fission 

reactors, while 4 orders are required for fusion reactors. For neutron inelastic 

scatterings-induced DPA, the first order Legendre polynomial is sufficient for both 

fission and fusion reactors. 

 

Keywords: Displacement per Atom, Differential cross section, Gauss-Legendre 

quadrature, Legendre polynomial, 56Fe 

1. Introduction 

In nuclear industry, the neutron embrittlement is one of the major material 

challenges of the Reactor Pressure Vessel (RPV) [1]. When an atom in a material is 

knocked-on by a kinematic particle, a vacancy and a corresponding interstitial are 

formed in the lattice. The Primary Knock-on Atom (PKA) can induce a displacement 
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cascade, which leads to more crystallographic defects in the material. The 

Displacement per Atom (DPA) intends to estimate the average displacements of each 

atom under irradiation. It is one of the key parameters to evaluate the irradiated 

damage. Many models have been developed to calculate DPA using the energy of 

PKA as a major parameter, such as Molecular Dynamics (MD) simulation [2], Binary 

Collision Approximation (BCA) [3], Density Functional Theory (DFT) [4], and some 

universal formulae summarized in Section 2.1. 

The typical method of DPA calculation applied in nuclear reactors is the 

generation of DPA cross sections through the processing code NJOY [5]. The DPA 

rates can be calculated with the DPA cross sections and the spectra of incident 

particles computed through the transport codes [6]. According to the nuclear data 

given in Evaluated Nuclear Data Files (ENDF), the recoil energy of PKA is 

conventionally calculated through the angular distribution (i.e. differential cross 

section) of the emission particle for discrete reactions and energy-angular distribution 

(i.e. double-differential cross section) for continuum reactions. The DPA cross 

sections are computed with the integral of the damage energy versus the emission 

angle (and secondary energy for continuum reactions). The present work proposes the 

methods for investigating the accuracy of numeric integrals used in the calculations of 

DPA cross sections. 

The angular distributions for discrete reactions are conventionally given in the 

Center-of-Mass (CM) frame, while the energy-angular distributions for continuum 

reactions are conventionally given in the Laboratory (Lab) frame. The corresponding 

PKA energies are well developed for these cases (summarized in Sections 2.2 and 2.3) 

and used in NJOY [5]. However, the energy-angular distributions are often given in 

the CM frame in ENDF, such as 56Fe in JEFF-3.1.1 [7]. Three methods for calculating 

damage cross sections with energy-angular distributions given in the CM frame are 

presented and compared in Section 2.4. Sections 3.1 and 3.2 show the methods and 

numeric results for refining numeric integrations over emission angle and secondary 

energy, respectively. On the other hand, because the energy-angular distributions are 

tabulated on coarse meshes of incident energy given in ENDF, Section 3.3 shows 

different methods of DPA cross sections calculations between two given neighbor 

incident energies, including the direct interpolation of energy-angle-integrated 

damage energy, the standard and the present work proposed improved methods for 

interpolation of double-differential cross sections. 

The high-order Legendre polynomials are commonly used to describe the 

anisotropy of angular distributions. The influence of the anisotropic angular 

distribution on PKA energy was shown in Refs. [8], [9]. On the other hand, Jouanne 

showed that the first order Legendre polynomial of the angular distribution of 56Fe is 

almost sufficient to determine the neutron fluence on the iron bulk from 5 cm to 1.2 m 

[10]. Therefore, we investigate the importance of high-order Legendre polynomials of 

angular distribution for DPA calculations in Section 4. The examples on 56Fe are taken 

to show the numerical results because of its high abundance in iron-based steels, 

which are used in RPV in Light Water Reactor (LWR), fuel cladding in Fast Reactor 

(FR), and candidate fuel cladding in Accident Tolerant Fuel (ATF) [11], [12]. The 
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numerical applications in this paper are mainly based on the nuclear data of 

JEFF-3.1.1 [7], which is widely used and qualified by CEA, EDF, and 

FRAMATOME. 

2. From nuclear data to DPA cross sections 

2.1. Summary of different DPA formulae 

Many models and empirical formulae have been developed to calculate the DPA 

in materials. Kinchin and Pease proposed a formula (KP) to calculate the number of 

displaced atoms induced by a PKA in 1955 [13]. In this model, the PKA cannot 

produce atomic displacement if the PKA energy ���� < �� , where ��  is the 

averaged threshold energy of atomic displacement. Different definitions of the 

threshold energy and corresponding values for Fe can be found in the Nordlund’s 

work [14]. The commonly used average threshold energy and the value proposed by 

the ASTM for the iron is 40 eV [15]. When �� < ���� < 2��, one atom is displaced. 

Once the PKA energy is higher than the ionization energy of the target atom (��), the 

excess PKA energy is supposed to be transferred to electrons. The equivalent kinetic 

energy of PKA is thus equal to ��. The KP formula is mathematically expressed as: 

 	
����� =
��
�� 0,1, 0 < ���� < ���� < ���� < 2��������� , 2�� < ���� < ������� , �� < ����

 (1) 

Using the form of KP formula, Norgett, Robinson, and Torrens proposed the NRT 

model in 1975 [16]. The NRT formula uses Lindhard’s damage energy [17] with 

Robinson’s analytic fitting [18]: 

 	
��� = � 0, 0 < �� < ��1, �� < �� < 2��/0.8 .!�"��� , 2��/0.8 < ��  (2) 

where �� is the energy available to create displacement of atoms by collision, called 

as damage energy, 0.8 is the displacement efficiency obtained by the BCA by 

Robinson and Torrens [3]. �� = ���� × $
����/�%� , where $  is the partition 

function which describes the fraction of ���� left in atomic motion [17], [18]: 

 $
&� = 1/[1 + )
3.4008&,/- + 0.40244&.// + &�] (3) 

where & = ����/�% with �% = 86.93134/. eV, ) = 0.1337453�/.78,/�, Z and A 

are atomic number and atomic mass number, respectively. It is noticeable that the 

Lindhard’s equation is proposed for PKA energy below 24.973//. keV [17], so the 

NRT-DPA formula is valid for PKA energy lower than this value. 

However, the overestimation of DPA in the NRT model is found in 1977 with 

experimental data for copper and silver [19]. One of the issues in the NRT model is 

that the in-cascade recombination of displaced atoms is neglected. Taking this effect 

into account, the Athermal Recombination-Corrected (ARC)-DPA is proposed by 

Nordlund et al. [20]. The relative damage efficiency 9 defines the ratio of the “true” 
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number of Frenkel Pairs (	:� ) to the 	:�  calculated with NRT formula. Its 

expression is based on the fact that 	:� tends to ;′�� when �� tends to infinity 

and 	:� tends to =′�� .! at low energy [20]. Therefore, the ARC-DPA formula is 

given by: 

 	
��� = � 0, 0 < �� < ��1, �� < �� < 2��/0.8 .!�"��� 9
���, 2��/0.8 < ��  (4) 

where 

 9
��� = 
1 > =� × ?0.8 �"���@A + = (5) 

The coefficients b and c are determined by fitting experimental data or molecular 

dynamics simulation results. For Fe isotopes, B = >0.568 and = = >0.286 [21]. 

2.2. DPA cross sections and angular distribution 

Figure 1 shows the schemes of the collision in the Laboratory (Lab) and Center of 

Mass (CM) frames. The incident and emitted kinetic energies are referred to E and E’ 

in the Lab frame, respectively. ER stands for the recoil energy of the PKA in the Lab 

frame. m and v1 (m’ and u1) are the mass and velocity of the incident (outgoing) 

particle in the CM frame, respectively. M and v2 (M’ and u2) are the mass and velocity 

of recoil particle before (after) the collision in the CM frame, respectively.  

 

Figure 1. Schemes of the collision in the Laboratory (upper) and Center of Mass 

(lower) frames 

 

The relativistic effect is negligible for DPA calculations with incident energy 

lower than 20 MeV [22], [23]. The following studies are based on the classical 

mechanism. The conservation of energy before and after the collision in the CM 

frame conducts to: 

 C′=� + D′=� + ,� C′E,� + ,� D′E�� = C=� + D=� + ,� CF,� + ,� DF�� + G′ (6) 

where F, = F > FHI and F� = FHI are used because the thermal vibration of the 
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target has no influence on DPA calculation [6]. G′ is the reaction energy. The total 

energy change during the collision is G = GJ > [
CJ + DJ� > 
C + D�]=�, which is 

then transferred into the excitation energy of the recoil nucleus. Transforming the 

recoil velocity from the CM to the Lab frame: 

 FK� = E�� + FHI� > 2E�FHIcosO (7) 

where O is the scattering angle of the emitted particle in the CM frame.  

The conservation of momentum points out: 

 
C + D�FHI = CF  (8) 

where F  and FHI are the initial velocity of the incident particle and the velocity of 

the Center of Mass in the Lab frame, respectively. The momentum in the CM frame is 

always null. Hence, 

 C′E, = D′E� (9) 

As a matter of fact, 
CJ + DJ�/
C + D� = 1 is numerically valid even though quite 

small percentage of the mass is reduced during the nuclear reactions. Defining the 

“effective mass” Q
�� as: 

 Q
�� = R1 + 
STI�UI� . (10) 

One obtains: 

 �K = SVI�
STI�W XSIVSVI > 2Q
��RSIVSVI Y + Q
���Z (11) 

where Y =  cosO. 

The damage energy is given by: 

 ��
Y, �� = �K
Y, ��$
�K
Y, ��/�%�. (12) 

The emission angular-integrated damage cross section is obtained by: 

 [\
�� = [
�� ] ^
Y, ��,8, ��
Y, ��9
���_Y (13) 

where [
�� is the corresponding cross section. 9
��� is the efficiency of atomic 

displacement based on the NRT metric, it is unity for the NRT and Eq. (5) for the 

ARC model. ^
Y, �� is the probability density of angular distribution for the incident 

energy E versus the cosine of the emission angle in the CM frame Y. ^
Y, �� is 

conventionally expressed as a sum of Legendre polynomials: 

 ^
Y, �� = ∑ �aT,�%S�bac ;a
��$a
Y� (14) 

where $a is the l-th Legendre polynomial and ;a is the corresponding Legendre 

coefficient given in the ENDFs. 

 The corresponding DPA cross section is computed by: 

 [\��
�� =  .!de
����� . (15) 

The advantage of using damage cross section rather than direct DPA cross section is 

that the former is not sensitive to ��  [24] because it depends on ��  only in 

[�� , 2.5��]. Therefore, the value of ��  used in the calculation of damage cross 

section is not important for subsequent calculation of DPA rate. Since the DPA cross 

section and the damage cross section are the same with a factor of 2.5��, we do not 
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distinguish the names of DPA cross section and the damage cross section in the 

following studies which show always the damage cross sections. 

2.3. DPA cross section and energy-angle distribution in the laboratory frame  

The conservation of momentum in the Lab frame points out: 

 CF = CJFJcosf + D′FKcosg (16) 

 C′F′sinf = D′FKsing (17) 

By eliminating g, the recoil energy of PKA is obtained as: 

 �K
�, �J, Yj� = ,IV [C� > 2√CCJ��JYj + C′�′] (18) 

where Yj =  cosf. The energy-angle-integrated damage cross section related to a 

given reaction is obtained by: 

 [\
�� = [
�� ] ] l̂
�, �J, Yj�,8,m ��
�, �J, Yj�9
���_Yj_�′ (19) 

where l̂
�, �J, Yj� is the probability density of energy-angular distribution in the Lab 

frame for the incident energy E versus the secondary energy �J and the cosine of the 

emission angle Yj . l̂
Yj, �, �′�  is conventionally given by the combination of 

Legendre polynomials: 

 l̂
�, �J, Yj� = ∑ �aT,�%S�bac Bna
�, �′�$a
Yj� (20) 

where Bna
�, �′� is the Legendre coefficient given in ENDF. 

2.4. DPA cross section and energy-angle distribution in the center of mass frame 

 Section 2.3 shows the method for the energy-angle distributions are given in the 

Lab frame in ENDF [25]. However, the double differential cross sections are often 

provided in the CM frame on which many nuclear theories are based, such as that of 
56Fe of JEFF-3.1.1 [7]. Three methods can be used to compute the DPA cross section 

with double-differential cross sections given in the CM frame. These methods should 

be found in some textbooks. However, since it is hard to find a book summarizing all 

methods for damage calculations, the present work briefly shows the calculations of 

damage with double-differential cross sections given in the CM frame. 

2.4.1. Relationship between variables in the CM frame and the Lab frame 

Lab to CM: The velocity of the emission particle in the CM frame is (see the lower 

right scheme in Figure 1): 

 E,� = FJ� + FHI� + 2F′FHIYj (21) 

The explicit expression of �, with the quantities in the Lab frame is thus: 

 �, = �J + SSV�
STI�W > 2RSSV��V
STI�W Yj (22) 

Projecting the velocity into the incident direction leads to: 

 E,Y + FHI = FJYj (23) 

Thus, the explicit expression of Y knowing Yj is: 
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 Y = R�V�o pYj > R SSV�
STI�W�Vq (24) 

CM to Lab: Transforming the recoil velocity of the emission particle from the CM to 

the Lab frame: 

 F′� = E,� + FHI� + 2E,FHIY (25) 

Consequently, the secondary energy in the Lab frame is: 

 �J = SSV�
STI�W + �, + 2 rSSV��oSTI Y (26) 

On the other hand, Eq. (23) implies: 

 Yj = sotTuvwuV  (27) 

One can further obtain the expression: 

 Yj = √SSV�T
STI�r�otR
STI�W�oTSSV�T�
STI�rSSV��ot (28) 

2.4.2. Transformation of data from the CM frame to the Lab frame 

Section 2.3 shows the routine of DPA calculations with energy-angular 

distribution in the Lab frame. For the data given in the CM frame, this method can be 

applied by transforming the data in the CM frame to the Lab frame. The 

transformation of data from the CM frame to the Lab frame is also the strategy of 

NJOY [5]. For a given incident energy �, the coefficients Bna
�, �′� in Eq. (20) can 

be determined through the energy-angular distribution provided in the CM frame ^
�, �,, Y�. This method is implemented in NJOY because the Legendre coefficients 

in the Lab frame can be used to compute all corresponding quantities in the same 

frame. 

Because the Legendre polynomials are orthogonal (and orthonormal for 

2x + 1�/2�,/�$a) with respect to the L2 norm on the interval [-1,1], the coefficients Bna
�, �J� are defined by: 

 Bna
�, �′� = ] l̂
�, �J, Yj�,8, $a
Yj�_Yj (29) 

Since there are two degrees of freedom for the energy-angular distribution, the 

transformation from the CM frame to the Lab frame should be performed with a 

double integral: 

 ] l̂
�, �J, Yj�,8, $a
Yj�_Yj = ] ] y�V�z"{V 
�JJ� l̂
�, �JJ, Yj�,8, $a
Yj�_�′′_Yj (30) 

where �S�bJ  can be determined by Eq. (26) and the Dirac delta function about �′ is 

defined as: 

 y�V
�′′� = |1, �JJ = �J0, otherwise (31) 

By using the data in the CM frame, the Legendre coefficients in the Lab frame are: 

 Bna
�, �′� = ] ] y�V�o,z"{ 
�,, Y�^
�, �,, Y�,8, $a
Yj
�,, Y��_�,_Y (32) 
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where the Dirac delta function links two variables in the CM frame with �′: 
 y�V
�,, Y� = |1, Eq. 
26�: 
�,, Y� → �J0, otherwise  (33) 

The maximum secondary energy in the CM frame �,,S�b in Eq. (32) is directly 

given in ENDF. 

The change of variables in double integrals for Eq. (32) conducts to: 

 Bna
�, �′� = ] ^
�, �,
�J, Yj�, Y
�J, Yj��,t�z�� $a
Yj��
��_Yj (34) 

where the Jacobian �
��  is the determinant of the Jacobian matrix of the 

transformation from (�J, Yj) to (�,, Y): 

 �;=
�, �J, Yj� = ���,/��J ��,/�Yj�Y/��J �Y/�Yj � (35) 

The determinant of the Jacobian matrix calculated with Eqs. (22), (24), (26) and (35) 

is: 

 �
�� ≡ det [�;=
�, �,, Y�] = R�o�V (36) �
�� rather than |�
��| is used in Eq. (34) because the Jacobian is always positive, 

shown by Eq. (36).  

The lower limit of the integral in Eq. (34) is not necessarily -1 because the 

minimum value of Yj for a given �J can be larger than -1. This is due to the limits in 

[-1,1] for Y
�J, Yj�. According to Eqs. (26) and (28), the lower limit of the integration 

in Eq. (34) is: 

 YjS����,,S�b� = max � √SSV�
STI�√�V > R�o,z"{�V ,   > 1� (37) 

For a given 
�, �′�, �, is a function of Yj. Calculation of Bna
�, �′� by Eq. (34) 

requires the density ^
�, �,
�J, Yj�, Y
�J, Yj��  for each Yj . The energy-angular 

distributions are usually tabulated for the secondary energy �,. The interpolation of ^
�, �,, Y�  on the secondary energy grid is required for each Yj . This method 

increases the computation burden. 

Moreover, for a given incident energy, we should define a suitable grid of the 

secondary energy. If the grid is too fine, too many calculations and storages are 

required. If the grid is too coarse, some information will be lost. NJOY takes the 

criterion that the difference between the coefficient of the midpoint in each interval 

calculated by Eq. (34) and the linearly interpolated value with two boundaries should 

be less than 2% [26]. Anyway, transforming the data of energy-angular distribution in 

the CM frame to the Lab frame gives an additional error for DPA cross section. 

2.4.3. Change of variables in double integrals 

The change of variables is an intuitive method for the transformation of frames. 

This method can avoid the problem of the loss of information. Because the Jacobian is 

always positive, the change of double variables in the CM frame to the Lab frame 

leads to: 

 [\
�� = [
�� ] ] ^
�, �,, Y�����, �J
�,, Y�, Yj
�,, Y��9���
�,, Y��,8,m [�
��]8,_Y_�,
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 (38) 

where the Jacobian �
�� is found in Eq. (36) with �J in Eq. (26), Yj
�,, Y� is given 

in Eq. (28). 

The DPA cross sections with the energy-angular distributions provided in the CM 

frame can be computed with Eq. (38). All information given in the CM frame can be 

used in the computation of DPA cross sections. However, the integrand in Eq. (38) has 

a much more complex form than the integrand in Eq. (19). A consequent result is that 

the numerical integration for Eq. (38) converges more slowly than Eq. (19). In other 

words, comparing with the energy-angular distribution given in the Lab frame and 

DPA cross sections computed with Eq. (19), finer grids are required to perform the 

numerical integrals of Eq. (38) in the case of double-differential nuclear data given in 

the CM frame. 

2.4.4. Direct calculation in the CM frame 

The above methods can compute the DPA cross sections with the energy-angular 

distribution in the CM frame. The transformation of data between two frames 

increases the computation burden and storage memory, and introduces additional error. 

The change of variables is more feasible than the transformation of frames for the 

calculations of DPA cross sections. However, compared with the double-differential 

nuclear data given in the Lab frame and the DPA cross sections calculated by Eq. (19), 

the integrant in the change of variables method has a more complex form.  

In fact, the direct calculation of DPA cross sections in the CM frame is much 

simpler than the two previous methods for the energy-angular distributions given in 

the same frame. Using Eqs. (7) and (9), the recoil energy can be obtained as: 

 �K
�, �,, Y� = SIV
STI�W � > 2 rSSV��oSTI Y + SVIV �, (39) 

The energy-angle-integrated DPA cross section can be directly computed with: 

 [\
�� = [
�� ] ] ^
�, �,, Y�,8,m ��
�, �,, Y�9
���_Y_�, (40) 

where  ^
�, �,, Y� is the probability density of energy-angular distribution in the 

CM frame. ^
Y, �, �,� is conventionally expressed by: 

 ^
�, �,, Y� = ∑ �aT,�%S�bac Ba
�, �,�$a
Y� (41) 

where Ba
�, �,� is the Legendre coefficient in the CM frame given in ENDF. 

 Comparing with the change of variables, this method simplifies the calculations. 

In addition, the integrand in Eq. (40) has a simpler form than that in Eq. (38). 

Therefore, numerical methods converge more quickly for the direct calculation in the 

CM frame than the change of variables. As a matter of fact, Eqs. (19) and (40) have 

the similar form, the computation of DPA cross sections with the energy-angular 

distributions given in the CM frame by Eq. (40) converges as quickly as the 

calculation with double-differential data provided in the Lab frame by Eq. (19). 

Therefore, the method of direct computation in the CM frame with Eq. (40) is 

recommended if the energy-angular distributions are given in the CM frame. 
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3. Refinements of DPA cross section calculations 

3.1. Refinement of DPA calculations with angular distributions 

The DPA cross sections proposed in Sections 2.2-2.4 are based on the formula �$7
��� = 0.8��/2��9
��� . The latter is available only for �� � 2��/0.8 

according to the DPA metrics given in Eqs. (2) and (4). In order to use the same 

expression of DPA in the whole domain, one generalizes the damage energy in the 

interval [0, 2��/0.8] as: 

 ���
Y, �� = � 0, 0 < �� < ��2��/0.8, �� < �� < 2��/0.8��
Y, ��, 2��/0.8 < ��  (42) 

Therefore, �$7����� = 0.8���/2��9����� is valid in the whole range. The damage 

cross sections mentioned in Sections 2.2 to 2.4 are thus available for any physical 

value of � or Y by using the generalized damage energy. The computation of DPA 

cross section is simplified due to the same expression in the whole domain. It is 

noticeable that the second “stair” is not accounted in the widely used code NJOY [26]. 

Users should add this interval for the partition function in the HEATR module. To 

simplify the notation, the generalized damage energy in Eq. (42) is also called as the 

damage energy hereinafter. Figure 2 illustrates the damage energy of 5 keV neutron 

elastic scattering on 56Fe.  

 

Figure 2. Damage energy of 56Fe versus the cosine in CM for 5 keV neutron elastic 

scattering 

 

To calculate the integral versus emission angle, a 64-point Gauss-Legendre 

Quadrature (GLQ) method is used in NJOY2016 (20-point in the manual) [26]. 

However, the damage energy is not a continuous function of the cosine of the 

emission angle (Eq. (42)), so neither the product with the angular distribution is. 
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64-point GLQ cannot necessarily ensure the accuracy of the integral. As the standard 

metric, the NRT formula is used in numerical examples in the following studies. 

Figure 3 indicates the neutron elastic DPA cross sections of 56Fe computed with 

different numbers of points in the GLQ. The DPA cross section does not converge for 

the 150-point GLQ at neutron energy below 10 keV because of the large contribution 

of damage energy in [0, 2��/0.8]. The integral converges at high incident energy 

because the damage energy lower than 2��/0.8 is less important. This range is not 

important for most reactions because of the small angle-integrated damage energy. 

However, for some reactions having resonances in this range, the DPA cross sections 

can have large influence on DPA rate calculations because the DPA cross section is 

the product of reaction cross section and the angle-integrated (energy-angle-integrated 

for continuum reactions) damage energy. 

 

 

Figure 3. Neutron elastic scattering DPA cross sections of 56Fe performed with 20, 64, 

100, and 150 points Gauss-Legendre quadrature (upper) and the corresponding ratios 

to the 200-point Gauss-Legendre quadrature calculation (lower). 
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In order to ensure the convergence for computing the DPA cross sections, the 

present work proposes to compute the integral in three intervals according to the 

damage energy. The two critical points to connect the three intervals are obtained 

with: 

 ��
Y,, �� = �� (43) 

 ��
Y�, �� = 2��/0.8 (44) 

With the notations of Y, and Y�, �� � 2��/0.8 for Y in the interval [-1, Y�]; Y 

in [Y�, Y,] is equivalent to damage energy in [�� , 2��/0.8], so the damage energy is 2��/0.8; for Y � Y,, the damage energy is zero. The examples on Y, and Y� are 

pointed out in Figure 2. 

In fact, by definition of the threshold energy, a PKA with energy higher than �� 

should be displaced. In addition, if the kinetic energy of a PKA is lower than 2�� 

(2��/0.8 by accounting the efficiency), this PKA cannot induce a second vacancy. 

The energy transferred to the electronic excitation during and after collision has no 

influence on DPA in this range. It is better to use the PKA energy rather than the 

damage energy in the interval [0,2��/0.8]. Accordingly, Eqs. (43) and (44) become: 

 �K
Y,, �� = �� (45) 

 �K
Y�, �� = 2��/0.8 (46) 

Taking the limits of the cosine into account, the boundaries are: 

 Y,
�� = �[8,,,] p?SIVSVI + Q
��� > 
STI�WSVI� ��@ / X2Q
��RSIVSVIZq (47) 

 Y�
�� = �[8,,,] p?SIVSVI + Q
��� > �
STI�W .!SVI� ��@ / X2Q
��RSIVSVIZq (48) 

where �[8,,,] is the projection on [-1,1] defined by: 

 �[8,,,]
�� = �>1, � < >1� >1 ≤ � ≤ 11, � � 1  (49) 

According to Eq. (42), the NRT-DPA cross sections are computed with: 

 [\
�� = [
�� ?] ^
Y, ��tW8, �K
Y, ��$ ¡�¢
t,���£ ¤ _Y + ��� .! ] ^
Y, ��totW _Y@ (50) 

This GLQ method applied in DPA calculations is referred to the GLQ based Piecewise 

Integration (GLQPI) hereinafter. The ARC-DPA cross sections are calculated by 

inserting the efficiency 9
�K
Y, ��$
�K
Y, ��/�%�� in the first integral in Eq. (50). 

Let Lmax denote the highest order of Legendre polynomials for describing ^
Y, ��. Because the N-point GLQ compute the exact value of integral for the 

(2N-1)-order polynomials, [Lmax/2+1]-point GLQ is sufficient to accurately compute 

the second integration in Eq. (50). For elastic and discrete inelastic scattering of 

JEFF-3.1.1, Lmax = 19 reveals that 10-point GLQ is sufficient to compute the second 

integration in Eq. (50). Because the integrand in the first integration in Eq. (50) is the 

product of a (Lmax+1)-order (Lmax for f and a cosine in recoil energy) polynomial 

and a smooth but non-polynomial partition function, more than [(Lmax+1)/2]+1 



13 
 

points (11 points for 56Fe of JEFF-3.1.1) should be used. Figure 4 indicates the DPA 

cross sections with 20 points and 200 points GLQPI. The excellent agreement 

between the DPA cross sections calculated with 20-point GLQPI and 200-point 

GLQPI points out the convergence of the integral. It is noticeable that the maximum 

order can be up to 64 in ENDF-6 [25], that signifies more than 33 points are required. 

For the purpose of verification, more than 33 points should be used as a reference to 

verify the convergence of numeric integration. However, due to the negligible 

contribution of high-order Legendre polynomials on damage cross sections (c.f. 

Section 4), fewer points are required for the numeric integration. 

 

Figure 4. Neutron elastic scattering DPA cross sections of 56Fe performed with 20 and 

200 points Gauss-Legendre Quadrature based Piecewise Integration (GLQPI). 

3.2. Integration over the secondary energy 

For the elastic and discrete inelastic scatterings, the DPA cross sections are 

computed with only the angular integration because the secondary energy is 

determined by the emission angle and the constant Q-value of the reaction. In other 

words, the elastic and discrete inelastic scatterings have only 1 degree of freedom. For 

the continuum inelastic scatterings, the integration over the secondary energy is 

required because the emission angle and the secondary energy are two independent 

variables. The secondary energy distribution of the continuum inelastic scattering of 
56Fe is plotted in Figure 5. Because the angular integrations are performed with the 

GLQ, 

 ] ] ^
�, �,, Y�,8,m ��
�, �,, Y�_Y_�, = ∑ ¥� ] ^
�, �,, �����
�, �,, ���m ¦�c, _�,(51) 

where ¥� and  �� are respectively the i-th weight and the i-th Gauss node (i-th zero 

of $¦) in the N-point GLQ.  

The probability density function ^
�, �,, ���  is conventionally a linearly 
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interpolated function between two secondary energies. The recoil PKA energy is not a 

polynomial function as the secondary energy due to the square root term (shown in Eq. 

(39)). The partition function is never a polynomial function of the secondary energy. 

The integrant in Eq. (51) is thus non polynomial. For the tabulated secondary energy 

distribution, which is often the case, it is reasonable to use the trapezoidal integration 

with the energy grid in the ENDF. Because the error of the trapezoidal integration on 

each interval is dominated by the second derivative of the integrand, the accuracy 

depends on the energy grid. 

 
Figure 5. Energy distribution of the continuum inelastic scattering of 56Fe in 

JEFF-3.1.1 plotted by NJOY-2016 

 

Figure 6. Scheme of 5 evenly inserted points between two neighbor secondary 

energies given in ENDF 
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Figure 7. Energy distribution of the angle-integrated damage energy, i.e. ] ^
�, �,, Y�,8, ��
�, �,, Y�_Y, for 7 MeV, 14 MeV, and 20 MeV neutron continuum 

inelastic scattering of 56Fe. The larger points are calculated based on the energy grid 

in JEFF-3.1.1. The smaller points are computed at 5 evenly inserted energies. 

 

Figure 8. Neutron continuum inelastic scattering DPA cross sections of 56Fe computed 

with the trapezoidal integration by using the energy grid in ENDF, 5 and 50 evenly 

inserted points in each interval. The corresponding ratios are calculated over the DPA 

with 50 inserted points. 

 

To verify the convergence of the trapezoidal integration in the calculations of DPA 

cross sections, the present work proposes to evenly add points in each interval of the 
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original energy grid for numeric integral by interpolating the energy distributions. The 

example of the 5 evenly inserted points illustrated in Figure 6. The energy 

distributions of the angle-integrated damage energy of 56Fe are shown in Figure 7 for 

7 MeV, 14 MeV, and 20 MeV incident energies. The larger scattered points are 

computed with the data in JEFF-3.1.1. The lines are the linear interpolation of 

scattered points. The calculations performed with the 5 evenly inserted points are 

shown in Figure 7 with smaller triangles. The results of direct interpolation are quite 

similar to the interpolated nuclear data-based calculations. Figure 8 shows the DPA 

cross sections of the continuum inelastic scattering of 56Fe performed with the 

trapezoidal integration using the energy grid in JEFF-3.1.1, 5- and 50-inserted 

equidistant points in each interval of the secondary energy in JEFF-3.1.1. The 

numerical results show that the trapezoidal integration using the energy grid in ENDF 

can give accurate results for 56Fe, while 2% potential error is permitted in NJOY 

during the transformation of data from the CM frame to the Lab frame [5]. However, 

because the accuracy of the numeric integration depends on the grid, the verification 

with the above method is always recommended to ensure the accuracy of DPA cross 

section for each continuum reaction. 

3.3. Computation of DPA cross sections between two incident energies 

The above analyses of DPA cross sections for continuum reactions are based on 

the incident energy at which the energy-angular distribution is given in the ENDF. To 

compute the DPA cross sections between two neighbor incident energies, NJOY uses 

the linear interpolation of the energy-angle-integrated damage energy. In fact, the 

physical method is to compute DPA cross sections using the interpolated the 

energy-angular distribution at each energy, as the example shown in Figure 9 with 

green points. The most common method for interpolating energy-angular distributions 

is the Unit-Base Interpolation (UBI) [27]. For linear-linear UBI, knowing the energy 

distribution at two incident energies En,0 and En,1, the probability for incident energy 

of E and secondary energy E’ is given by [27]: 

 $
�, �J� = �n��,�V���§¨©,ªV 8�§«¬,ªV  (52) 

where  

  = �8��,®��,o8��,® (53) 

 �¯°±/¯²³,´J = 
1 > ��¯°±/¯²³, J + �¯°±/¯²³,,J  (54) 

 �J� = �V8�§«¬,ªV�§¨©,ªV 8�§«¬,ªV  (55) 

 $n��, �J�� = 
1 > �$n���, , �J�� + $n���,,, �J�� (56) 

 $n���, /,, �J�� = ��¯°±, /,J > �¯²³, /,J �$���, /,, �J���¯°±, /,J > �¯²³, /,J � + �¯²³, /,J � (57) 

where $���, /,, �J���¯°±, /,J > �¯²³, /,J � + �¯²³, /,J � is given in ENDF. Figure 10 
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shows the energy distribution for incident energies between 19 MeV and 20 MeV for 

continuum inelastic scattering of 56Fe. The right figure is plotted with the normalized 

secondary energy �J� and the corresponding probability density $n��, �J��. 

 
Figure 9. Scheme of the interpolation of energy angular distributions. Red lines 

represent the data given in ENDF, the green points are interpolated data. 

 

 

Figure 10. UBI of angle-integrated energy distributions of incident energy between 19 

and 20 MeV neutron continuum inelastic scattering with 56Fe. The right figure uses 

the normalized secondary energy to intuitively show the peak values. 

 

As shown in Figure 10, the UBI cannot give reasonable peak value of the energy 

distribution between two given points. Therefore, the present work proposes a Peak 

value-based UBI (PUBI) for interpolating the energy distributions. In the PUBI, we 

divide the secondary energies into two intervals according to the peak values. Then 

the UBI is used to each interval. Assuming the probability density has an unique 

global maximum, Em,0/1 represents the secondary energy corresponding to the 
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maximum probability density of energy distribution: 

 $���, /,, �S, /,� = max�®/oV µ$���, /,, � /,J �¶ (58) 

We suppose that the maximum probability for incident energy E is determined by: 

 �S,´/��¯°±,´J > �¯²³,´J � = 
1 > ��S, /��¯°±, J > �¯²³, J � + �S,,/��¯°±,,J > �¯²³,,J �
 (59) 

Let denote: 

 �· = � �V8�§«¬,ªV�z,ª8�§«¬,ªV �J ≤ �S,´
�V8�z,ª�§¨©,ªV 8�z,ª �J � �S,´ (60) 

The energy distribution is expressed by: 

 $
�, �J� = � �·¸
�,�·��z,ª8�§«¬,ªV �J ≤ �S,´
�·¸¸
�,�·��§¨©,ªV 8�z,ª �J � �S,´ (61) 

 

where 

 $·¹/¹¹��, �·� = 
1 > �$· ,¹/¹¹���, , �·� + $·,,¹/¹¹���,,, �·� (62) 

where 

 �$· /,,¹���, /,, �·� = ��S, /, > �¯²³, /,J �$���, /,, �·��S, /, > �¯²³, /,J � + �¯²³, /,J �$· /,,¹¹���, /,, �·� = ��¯°±, /,J > �S, /,�$���, /,, �·��¯°±, /,J > �S, /,� + �S, /,�(63) 

The results corresponding to Figure 10 but with PUBI method are shown in 

Figure 11. The peak values and the corresponding secondary energies are monotonic 

for the data obtained by the PUBI method. Figure 11 shows physically reasonable 

energy distributions for incident energies between two given neighbor energies. 

 

Figure 11. Same results as Figure 10 but with PUBI 
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Figure 12. Energy-angle-integrated damage energy. The red square points are 

computed with energy-angular distributions given in the ENDF, the red line is linear 

interpolation between two incident energies, the blue circles (orange stars) are 

calculated with UBI (PUBI) energy-angular distributions. The lower figure plots the 

ratio of blues circles to the interpolated damage energies. 

 

In order to verify the direct interpolation of energy-angle-integrated damage 

energy, the DPA cross sections computed with the interpolation of damage energy are 

compared with those calculated with interpolated energy-angular distributions. Figure 

12 reveals the energy-angle-integrated damage energies at different incident energies. 

The red square points are computed with energy-angular distributions given in ENDF, 

the red line is linear interpolation between two incident energies, the blue circles 

(orange stars) are calculated with UBI (PUBI) energy-angular distributions. The ratios 

of damage energies computed with interpolated energy-angular distributions to the 

linear interpolated damage energies are shown in the lower sub-plot. The 

discrepancies are within 0.5%. Therefore, the direct interpolation of 

energy-angle-integrated damage energies can give the same results as the damage 

computed with energy-angular distributions computed by standard and improved 

interpolations. By consequence, the computation of DPA cross sections can be largely 

simplified using the direct interpolation of energy-angle-integrated damage energies. 

Again, for a coarse incident grid, the verifications are always recommended to ensure 

the accuracy of DPA cross sections. 

4. DPA and high-order Legendre polynomials 

4.1. DPA cross sections and Legendre orders 

The angular distribution is conventionally presented in the form of Legendre 
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polynomials of the emission angle. The high-order Legendre polynomials play an 

important role in describing the anisotropy of angular distribution. Taking the neutron 

elastic scattering of 56Fe in JEFF-3.1.1 [7] as an example, as shown in Figure 13, up to 

19th order Legendre polynomials are required to describe the angular distribution for 

incident energies higher than 17.5 MeV, while only up to 4th order are sufficient at 

incident energies below 1.4 MeV. As discussed in Section 3, higher order Legendre 

polynomials requires more points for GLQ to ensure the convergence. In addition, 

because the Legendre coefficients are strongly correlated [28], more Legendre 

polynomials need much more calculations for uncertainty propagation due to the 

much larger size of the covariance matrix. Jouanne showed that the first order 

Legendre polynomial of 56Fe is sufficient to determine the neutron fluence with 

energy higher than 40 keV on the capsule in a Pressurized Water Reactor (PWR) [10]. 

If high-order Legendre polynomials are not important for DPA calculation, fewer 

points should be used for the numerical integral. Moreover, the uncertainty 

propagation from nuclear data to damage cross sections can be largely simplified. It is 

of interest to investigate the influence of high-order Legendre polynomials on DPA 

calculations. 

Figure 14 shows the neutron elastic scattering DPA cross sections of 56Fe 

computed with different maximum Legendre (Lmax) polynomials. Lmax = 0 is 

equivalent to the isotropic angular distribution. As shown in Figure 13, at high 

incident energies, the forward-oriented distribution of the emission neutron is more 

probable than other directions. Eq. (11) indicates the decrease of the recoil energy 

with the cosine in the CM frame. Therefore, the anisotropic angular distribution has a 

negative contribution on DPA cross sections. This result is in accordance with the 

DPA cross sections of 58Ni studied in Refs. [8], [9]. The first order Legendre 

polynomial (L1) can describe somewhat the forward-oriented anisotropy. 

Nevertheless, L1 is not sufficient to reveal the anisotropy for high incident energies. 

For example, at an incident neutron energy of 20 MeV, L1 contributes 1.23 (i.e. 

6.15%) to the value of probability density f at Y = 1, while the probability density is ^
20 MeV, Y = 1� = 20. In other words, the probability density calculated with L0 

and L1 at Y = 1 is only 11% of the value in JEFF-3.1.1. The example shown in 

Figure 14 points out that Lmax = 3 (Lmax = 4 resp.) has lower than 5% (2% resp.) 

overestimation for the neutron elastic scattering DPA cross section of 56Fe with 

incident energy below 20 MeV. 
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Figure 13. Angular distributions of the neutron elastic scattering reaction of 56Fe in 

JEFF-3.1.1 [7] with the incident energies in the interval [200 keV, 1 MeV] (left) and 

[4 MeV, 20 MeV] (right) plotted by NJOY-2016 [26]. 

 

Figure 14. Neutron elastic scattering DPA cross sections of 56Fe performed with 

different maximum Legendre (Lmax) polynomials. 
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Figure 15. Angular distributions of the neutron first (left) and second (right) levels 

inelastic scattering reactions (MT51 and MT52) of 56Fe in JEFF-3.1.1 [7] 

 

Figure 16. First level neutron inelastic scattering DPA cross sections of 56Fe 

performed with different maximum Legendre (Lmax) polynomials. 

 

Compared with elastic scattering, less Legendre polynomials should be used for 

inelastic scatterings because of the more isotropic angular distribution, as the 

examples shown in Figure 15. The elastic scattering is more forward-oriented than the 

inelastic scatterings due to the contribution of the potential scattering. Figure 16 

shows the example of the first-level inelastic scattering DPA cross sections. The first 

order Legendre polynomial can provide enough information on the calculations of 

DPA cross sections. Since the conclusion is similar for different excitation levels, the 

results for higher levels of inelastic scattering are not shown in this paper. 

Figure 17 illustrates the neutron continuum inelastic scattering DPA cross sections 

of 56Fe computed with different Lmax. Figure 17 shows that L1 can well reproduce 

the DPA cross section at incident energy below 20 MeV, while up to 13th order 
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Legendre polynomials are required to describe the anisotropic angular distributions 

for the continuum inelastic scattering of 56Fe in JEFF-3.1.1. Comparing the DPA cross 

section calculated with full-order Legendre polynomials, the maximum deviation of 

the DPA cross section calculated with [L0 (isotropic) + L1] is within 1% for incident 

energy below 20 MeV. 

 

Figure 17. Neutron continuum inelastic scattering DPA cross sections of 56Fe 

performed with different maximum Legendre (Lmax) polynomials and the 

corresponding ratios to the DPA with full order Legendre polynomials. 

 

 

Figure 18. Neutron elastic scattering (left) and first-level inelastic scattering 

(right)-induced DPA cross sections of 56Fe with different Lmax using ENDF/B-VIII 

 

Since the above results are based on 56Fe of JEFF-3.1.1, Figure 18 shows the 

examples on elastic and first-level inelastic scattering for 56Fe of ENDF/B-VIII [29]. 

The ratios to the reference case (i.e. using full-order Legendre polynomial) of 56Fe are 

quite similar between JEFF-3.1.1 and ENDF/B-VIII. Even if higher orders of 
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Legendre polynomials are used in 56Fe of ENDF/B-VIII, the coefficients with order 

higher than 4 have limited influence on DPA cross sections. 

The analysis on the role of high-order Legendre polynomials is also carried out for 
52Cr and 58Ni, which are the most abundant isotopes in nature Cr and Ni, respectively. 

Figure 19 illustrates the damage cross section of neutron elastic scattering of 58Ni 

using JEFF-3.1.1 and ENDF/B-VIII. The results for 52Cr and 58Ni are similar to those 

of 56Fe. Therefore, high-order (normally > 4) Legendre polynomials have quite 

limited influence on DPA cross sections. 

 

Figure 19. Neutron elastic scattering-induced DPA cross sections of 58Ni with 

different Lmax using JEFF-3.1.1 (left) and ENDF/B-VIII (right) 

4.2. Application in nuclear facilities 

Section 4.1 reveals that the high-order Legendre polynomials are not necessary for 

DPA cross sections computation because the latter are the angle-integrated values. In 

order to evaluate the corresponding effect on DPA rates, the examples of the fuel 

cladding in the Sodium Fast Reactor (SFR) Phenix and the inner surface of RPV in a 

French 900 MWe PWR are shown because the DPA of the fuel cladding (RPV) in fast 

reactors (thermal reactors) is the most important factor concerning the fuel cycle 

length (operating lifetime) reactors. In addition, the DPA rates in a first mirror unit of 

the Equatorial Visible Infra-Red Wide Angle Viewing System, which is in the 

diagnostic first wall of the International Thermonuclear Experimental Reactor (ITER) 

[30], are investigated to evaluate the influence on fusion reactors. 

The nuclear data library JEFF-3.1.1 [7] is used to determine the neutron flux. The 

neutron flux in the fuel cladding of Phenix is calculated with ERANOS [31]. Due to 

the penetration in the iron, the neutron flux decreases with the depth in RPV. The 

maximum DPA in RPV is found in the inner surface. The neutron spectrum in the 

inner surface of RPV in a typical PWR is computed with the stochastic code 

TRIPOLI-4® [32]. The spectrum of the diagnostic mirror in ITER is also computed by 

TRIPOLI-4®. The corresponding neutron spectra are shown in Figure 20. 
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Figure 20. Neutron spectra in the fuel cladding of Phenix reactor, in the inner surface 

of RPV in a typical PWR, and in the diagnostic mirror of a fusion reactor. 

 

Table I. Ratio of DPA rate for 56Fe with different maximum orders of Legendre 

polynomials (Lmax) to the reference calculations in different facilities using 

JEFF-3.1.1 and ENDF/B-VIII (in parenthesis) 

 Lmax 0 1 2 3 4 Ref.a 

 MT2 1.405 (1.339)b 1.022 (1.020) 1.002 1.000 1.000 19.61 (20.09) 

Phenix MT51 1.022 (1.014) 1.001 (1.000) 1.000 1.000 1.000 2.715 (2.922) 

 MT52 1.007 (1.005) 0.998 1.000 1.000 1.000 0.202 (0.215) 

 MT91 1.003 1.000 1.000 1.000 1.000 0.262 (0.262) 

 MT2 1.577 (1.504) 1.036 (1.034) 1.004 1.001 1.000 2.10E-3 (2.14E-3) 

PWR MT51 1.025 (1.017) 1.001 (1.000) 1.000 1.000 1.000 4.23E-4 (4.52E-4) 

 MT52 1.009 (1.006) 0.998 1.000 1.000 1.000 3.34E-5 (3.46E-5) 

 MT91 1.004 1.000 1.000 1.000 1.000 8.08E-5 (8.21E-5) 

 MT2 2.425 (2.309) 1.192 (1.182) 1.036 (1.034) 1.009  1.003  1.028 (1.071) 

ITER MT51 1.125 (1.106) 1.007 1.000 1.000  1.000  0.1917 (0.1899) 

 MT52 1.083 (1.015) 1.003 (0.997) 1.000 1.000  1.000  0.0152 (0.0157) 

 MT91 1.029 (1.031) 1.002 (1.001) 1.000 1.000 1.000 0.5788 (0.5711) 
a Reference DPA rate (in DPA/year) with full-order of Legendre polynomials 
b Data in parenthesis are calculated with ENDF/B-VIII but different to the 

JEFF-3.1.1-based results. No data in parenthesis signifies the same results as 

JEFF-3.1.1. 

 

 The DPA rate induced by particles with a continuous spectrum is calculated by 

[6]: 

 �$7 =  .!��� ] [\
��¼
��_�m  (64) 
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where ¼
�� is the flux of the incident particle. Table I lists the relative DPA rates of 
56Fe with different Lmax in the fuel cladding of Phenix, in the inner surface of RPV in 

PWR, and just after the first-wall of ITER fusion reactor. MT2, MT51, MT52, and 

MT91 refer to the elastic, the first-level, the second-level, and the continuum inelastic 

scatterings, respectively. The DPA rates are normalized by those calculated with all 

orders of Legendre polynomials provided in ENDF (19 for JEFF-3.1.1 and 24 for 

ENDF/B-VIII). It is noteworthy that the relative DPA rates for other discrete levels of 

inelastic scattering are quite similar to MT51 and MT52. The absolute DPA rates of 

different reactions in different facilities are shown in the last column. In the case that 

the results based on ENDF/B-VIII are different to those from JEFF-3.1.1, the former 

data are given in parenthesis. 

The numerical results indicate that Lmax = 2 for the elastic scattering can ensure 

the DPA rates within 0.5% overestimation for fission reactors, while the uncertainties 

of the neutron elastic scattering cross sections are about 5% [28]. For fusion reactors, 

up to 4th order Legendre polynomials are required to calculate neutron elastic 

scattering DPA rate. Due to the more isotropic angular distribution as explained in 

Section 4.1, only the first order Legendre polynomial is necessary to ensure the DPA 

rates of the inelastic scatterings for both fission and fusion reactors. Because 

high-order Legendre coefficients and reaction cross sections (and also low-order 

Legendre coefficient) are strongly correlated [28], the uncertainty quantification in 

DPA calculations can be largely simplified due to the negligible contribution of 

high-order Legendre polynomials. 

Since the neutron elastic scattering requires higher order of Legendre 

polynomials, Table II summarizes the neutron elastic scattering-induced DPA rates for 
58Ni and 52Cr using JEFF-3.1.1 and ENDF/B-VIII. The conclusions about the 

importance of high-order Legendre polynomials on DPA calculation for 58Ni and 52Cr 

are quite similar to 56Fe: up to L2 are sufficient for damage calculation in fission 

reactors, while up to L4 (L1 resp.) for elastic (inelastic resp.) scattering can give DPA 

rate for fusion reaction within 1% overestimation. 

 

Table II. Ratio of DPA rate for 58Ni and 52Cr neutron elastic scattering with different 

Lmax to the reference calculations using JEFF-3.1.1 and ENDF/B-VIII (in 

parenthesis) 

 Lmax 0 1 2 3 4 Ref.a 

 Phenix 1.234 (1.298)b 1.013 (1.014) 1.001 1.000 1.000 35.00 (33.18) 
58Ni PWR 1.384 (1.421) 1.025 (1.026) 1.003 1.000 (1.001) 1.000 .0034 (.0033) 

 ITER 2.080 (2.132) 1.140 (1.142) 1.025 1.006 1.002 1.696 (1.593) 

 Phenix 1.321 (1.330) 1.022 1.002 1.000 1.000 24.55 (23.23) 
52Cr PWR 1.464 (1.473) 1.036 (1.037) 1.004 1.001 1.000 .0027 (.0025) 

 ITER 2.103 (3.136) 1.168 (1.174) 1.033 (1.035) 1.008 (1.009) 1.002 1.234 (1.181) 
a Reference DPA rate (in DPA/year) with full order of Legendre polynomials 
b Data in parenthesis are calculated with ENDF/B-VIII but different to the 

JEFF-3.1.1-based results. No data in parenthesis signifies the same results as 

JEFF-3.1.1. 
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5. Conclusions  

The continuum inelastic scattering DPA cross section is computed with the double 

integral of the energy-angular distribution, which is recommended to be given in the 

Laboratory (Lab) frame. However, the double-differential cross sections are often 

given in the Center-of-Mass (CM) frame. Three methods can be applied to perform 

the DPA calculations with data provided in the CM frame, including the 

transformation of data from the CM to the Lab frames (used in NJOY), the change of 

variables in double integrals, and the direct calculation. The first method increases the 

computation burden because the interpolation is required for each emission angle. 

Moreover, additional error is introduced due to the loss of information during the 

transformation. The second one avoids the interpolations and additional error but has 

a more complex integrant due to the Jacobian. The last method is proposed and 

recommended in the present work for the energy-angular distributions provided in the 

CM frame. The direct calculation with the double-differential data in the CM frame is 

as simple as the method of DPA calculations with the data given in the Lab frame. 

The DPA cross sections are computed by integration over the emission angle. The 

usage of Gauss-Legendre Quadrature (GLQ) in the full range of [-1,1] is shown not 

convergent for the DPA cross sections due to the discontinuity of the damage energy 

versus the emission angle. The GLQ-based Piecewise Integration (GLQPI) method is 

proposed in the present work to ensure the convergence of numerical calculations. 

The GLQPI method uses the GLQ in each piecewise interval, on which the integrand 

is a smooth function. For 56Fe of JEFF-3.1.1, the convergence of the integral is 

ensured by the 20-point GLQPI, while the150-point GLQ calculation does not 

converge. 

For continuum reactions, the additional integration over secondary is required for 

DPA cross sections. The integration over the secondary energy is performed with the 

trapezoidal integration with the energy grid given in ENDF. Because the integrand of 

the integration over the secondary energy is not a linear function, the method of 

computations with additional points is proposed to verify the convergence of 

integration. The comparisons with 5 and 50 evenly inserted points show that the 

JEFF-3.1.1 energy grid-based trapezoidal integration can calculate accurately the DPA 

cross sections for 56Fe. 

Because the energy-angular distributions are only tabulated for several incident 

energies, the DPA cross sections between two neighbor incident energies cannot be 

directly computed with the double integration over the energy-angular distribution. 

The present work computes the energy-angular distributions between two incident 

energies using the standard ENDF interpolation method and an improved method 

proposed in this paper. The numerical results show that the directly interpolated 

energy-angle-integrated damage energies correspond well with those computed with 

the interpolated energy-angular distributions. By consequence, the direct interpolation 

of energy-angle-integrated damage energies can be used to calculate DPA cross 

sections. 
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The high-order Legendre polynomials are of importance to describe the anisotropy 

of angular distributions. Nevertheless, the high-order Legendre polynomials are 

shown not important for DPA calculations because the DPA cross section is an 

angle-integrated quantity. The DPA cross sections computed with isotropic angular 

distribution are higher than those calculated with the anisotropic emission angle due 

to the forward-oriented angular distributions, while the damage energy decreases with 

the cosine of the emission angle. Comparing with inelastic scatterings, higher 

maximum order of Legendre polynomials is required for the elastic scattering because 

of the more forward-oriented angular distribution due to the contribution of the 

potential scattering. Numerical results of neutron elastic scattering show that 2 orders 

of Legendre polynomials give DPA rates of 56Fe within 0.5% overestimation for 

fission reactors, while 4 orders are required for fusion reactors. For neutron inelastic 

scatterings, only the first order Legendre polynomial is sufficient to compute DPA rate 

for both fission and fusion reactors.  
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