Songchao Chen 
email: songchao.chen@inra.fr
  
Dominique Arrouays 
  
Denis A Angers 
email: c.denis.angers@canada.ca
  
Claire Chenu 
email: d.claire.chenu@inra.fr
  
Pierre Barré 
  
Manuel P Martin 
email: a.manuel.martin@inra.fr
  
Nicolas P A Saby 
email: nicolas.saby@inra.fr
  
Christian Walter 
email: b.christian.walter@agrocampus-ouest.fr
  
  
  
  
  
National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones

Keywords: Soil organic carbon, Storage potential, Data-driven approach, Carbon-landscape zones, Gaussian mixture models, Soil management practices

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Globally, the soil C pool (2500 Gt) is 3.3 times the size of the atmospheric pool (760 Gt) and 4.5 times the size of the above-ground vegetation pool (560 Gt). Therefore, soils have the potential to partly offset anthropogenic greenhouse gas emissions by sequestering SOC [START_REF] Lal | Soil carbon sequestration impacts on global climate change and food security[END_REF][START_REF] Paustian | Climate-smart soils[END_REF]. Moreover, increasing soil organic carbon (SOC) generally improves soil quality and functioning, and thus can potentially contribute to enhance agricultural production and food security, restore degraded land, and promote ecosystem services such as erosion mitigation, soil water provision, nutrient availability for plants, and soil biodiversity [START_REF] Lal | Soil carbon sequestration impacts on global climate change and food security[END_REF][START_REF] Stockmann | The knowns, known unknowns and unknowns of sequestration of soil organic carbon[END_REF].

Recognizing the importance of increasing SOC at the global scale, a voluntary action initiative "4 per 1000 carbon sequestration in soils for food security and the climate" (http://4p1000.org/) was launched at the COP21. The 4 per 1000 initiative aims at promoting land management practices (e.g., conservation agriculture, cover cropping, agroforestry) leading to an increase in SOC stocks in the 0 to 0.4m layer at an aspirational annual growth rate of 0.4% of current SOC stocks [START_REF] Lal | Beyond COP 21: potential and challenges of the "4 per Thousand" initiative[END_REF][START_REF] Minasny | Soil carbon 4 per mille[END_REF].

The SOC storage potential generally refers to the maximum gain in SOC stock attainable at a given timeline by implementing changes in land use or management, and will vary under different pedoclimatic conditions [START_REF] Post | Soil carbon sequestration and land use change: processes and potential[END_REF][START_REF] Stockmann | The knowns, known unknowns and unknowns of sequestration of soil organic carbon[END_REF][START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF][START_REF] Chenu | Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations[END_REF].

The concept of SOC saturation has been used to estimate the maximum amount of SOC that can be associated with the fine fraction [START_REF] Hassink | The capacity of soils to preserve organic C and N by their association with clay and silt particles[END_REF] and therefore considered as relatively stable. In the context of the 4 per 1000 initiative, the aspirational target of increasing SOC stocks at an annual growth rate of 0.4% relates to the total (whole-soil) SOC stocks in the 0-0.4 m layer (whole-soil, including the coarse fraction). Therefore, determining whole-soil SOC storage potential using the maximum SOC associated with the fine fraction is not appropriate because the SOC stored in the coarse fraction can represent a large percentage of the total SOC stocks. As summarized by [START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF], under temperate climate, SOC in the coarse fraction could account, on average, for 15%, 34% and 31% of total SOC stocks under cropland, forest and grassland, respectively, in topsoil, and account for nearly 25%, 14% and 7% of SOC stocks for cropland, forest and grassland in subsoil.

For an improved quantification of SOC storage potential, [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF] proposed one avenue: i) First, establish the reference stocks with an estimate of the highest reachable SOC stock for a given soil; ii) second estimate possible SOC storage between the current SOC stock of a given soil and this reachable highest SOC stock under a given land-use for different land management practices. Furthermore, [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF] suggested that this avenue can be achieved using either a data-driven approach (empirical observation of SOC stocks and storage) or mechanistic simulation models.

The data-driven approach assumes that the highest reachable SOC stocks under a specific land use/cover or land management practices for each different pedoclimatic conditions could be empirically determined by the highest values (e.g., by the mean of using top quantiles) among the observed SOC stocks for these conditions. This hypothesis implicitly assumes that the values of the top quantiles reflect the optimal management practices for SOC storage and they are thus considered as 'proxies' of the maximum reachable SOC stocks under these different pedoclimatic conditions.

Based on the detailed and extensive French Soil Monitoring Soil Network data base, our objective was to test a data-driven approach for estimating SOC storage of arable soils in mainland France. We developed a procedure which consisted of: i) determining carbon-landscape zones by clustering the data from a combination of net primary production (C input), climatic decomposition index (C decomposition) and soil clay content (C protection from decomposition); ii) estimating the maximum SOC stocks of arable soils (topsoil and subsoil) for each carbon-landscape zone using four percentiles (0.80, 0.85, 0.90 and 0.95); iii) calculating by difference with the current SOC stocks, the SOC storage potential of arable topsoil and subsoil under these four percentiles.

Materials and methods

Soil data

Covering the entire mainland France under different soil, climate, relief and land cover conditions, 2092 sites from the first campaign of the French Soil Monitoring Network (RMQS) were sampled from 2001 to 2009. The RMQS is based on a 16 km × 16 km square grid and all sites were selected at the centre of each grid cell. Topsoil (0-30 cm) and subsoil (30-50 cm) were collected using a hand auger. For each site, 25 samples were merged into a composite sample and then were air-dried (controlled at a temperature of 30 ºC and an air-moisture of 30%) and sieved to 2 mm before laboratory analysis.

A soil pit was dug at 5 m from the south border of sampling sites, and the main soil characteristics were recorded and bulk density and percentage of coarse elements were measured [START_REF] Martin | Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees[END_REF]. For some RMQS sites, subsoil did not exist as soils were thin at these locations. SOC was determined by dry combustion. Only these RMQS sites (n=1089) located on arable soils were used in this study (Figure 1).

The SOC stock was calculated as below:
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where is the SOC stock (kg m -2 ), p is the actual thickness (cm) of topsoil or subsoil, SOC, BD and ce are the content of SOC (g kg -1 or ‰), bulk density (kg m -3 ), and percentage of coarse elements (%). WorldClim Version 2 [START_REF] Fick | WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas[END_REF], which is spatially interpolated using between 9000 and 60000 weather stations globally, was used for climatic data: It has average monthly climate data for minimum, mean, and maximum temperature and for precipitation, solar radiation, wind speed and water vapour pressure for 1970-2000 at 1 km resolution.

Maps of soil clay content for topsoil (0-30 cm) and subsoil (30-50 cm) were derived from GlobalSoilMap France products [START_REF] Mulder | GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth[END_REF]. As these were produced at six standard depth intervals (e.g., 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm), soil clay content maps were harmonized using a depth-weighted method (Appendix Figure A1).

The Corine Land Cover 2006 (UE-SOeS, 2006) was used as the land cover/use classification map. It has an original resolution at 100 m and was resampled to 90 m in order to meet the requirement of the GlobalSoilMap project [START_REF] Sanchez | Digital soil map of the world[END_REF][START_REF] Arrouays | GlobalSoilMap: Toward a fineresolution global grid of soil properties[END_REF]. The Corine Land Cover map was reclassified as cropland, forest, grassland and others, and only cropland was presented in this study (Figure 1).

The current SOC stocks map for topsoil (0-30 cm) was produced using RMQS dataset by a hybrid model coupling the boosted regression trees (BRT) and robust geostatistical approaches described in [START_REF] Martin | Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale[END_REF]. The covariates used in modelling were explicitly documented in [START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF].

To remove the interference of the positions without SOC stocks in subsoils (where subsoil does not exist), a three-stage approach was applied for SOC stocks modelling in the subsoil (30-50 cm): 1) produce a map to identify whether subsoils exist using BRT model; 2) produce a SOC stocks map by the hybrid model, where the RMQS sites without SOC stocks are excluded; 3) merge the two maps by keeping the SOC stock values where subsoils exist and setting the locations where subsoil do not exist as NA (not available). The SOC stocks maps for topsoil and subsoil have a spatial resolution of 90 m and they can be found in the Appendix Figure A2. The national SOC stocks were 3.65 Gt and 1.04 Gt for topsoil and subsoil, respectively. Cropland contained 1.37 Gt and 0.44 Gt SOC in the topsoil and subsoil.

All the datasets were reprojected to Lambert 93, which is an official projection for mainland France.

Calculation of climatic decomposition index

Carbon decomposition generally increases with temperature and moisture, a climatic decomposition index (CDI) was used to characterise the interaction between temperature and water stress as suggested by Carol [START_REF] Adair | Simple three pool model accurately describes patterns of long-term litter decomposition in diverse climates[END_REF].

Before determining the CDI, potential evapotranspiration (PET) was calculated using Hargreaves model [START_REF] Hargreaves | Irrigation water requirements for Senegal River Basin[END_REF], which performs well and requires less parameterization than the Penman-Monteith method [START_REF] Hargreaves | History and evaluation of Hargreaves evapotranspiration equation[END_REF]. Monthly PET (mm month -1 ) is defined below:

= 0.0023 × × !" + 17.8 × & '!"( 2
where SR is monthly solar radiation (mm month -1 , transformed from KJ m -2 day -1 ), T mean is monthly mean temperature (ºC) and T range is the difference between the monthly maximum and minimum temperature (ºC).

The CDI is calculated as a function of the mean monthly mean temperature (T), monthly precipitation (PPT) and monthly PET (Carol [START_REF] Adair | Simple three pool model accurately describes patterns of long-term litter decomposition in diverse climates[END_REF]: are the monthly effects of temperature and water stress on decomposition.
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Delineation of carbon-landscape zones using Gaussian mixture models

Generally, SOC dynamics depend on the trade-off between the SOC input and SOC loss processes. When SOC input is greater than OC loss, the soil will accumulate C, and otherwise, soil C will decrease [START_REF] Lal | Carbon sequestration in soil[END_REF].

Climatic decomposition index and NPP are here considered as proxies of C loss and input that control the SOC balance, and clay content considered as a controlling factor of SOC persistence. The underlying simplifying assumption is that decomposition mainly depends on both climate and soil characteristics.

Therefore monthly CDI and NPP, and soil clay content were used to compute the carbon-landscape zones (CLZs) using Gaussian mixture model (GMM)

which is a similar approach to that used by [START_REF] Mulder | Understanding large extent controls of soil organic carbon storage in relation to soil depth and soil landscape systems[END_REF]. To reduce multicollinearity and computing time, principal component analysis (PCA) was performed before the clustering step on monthly CDI and NPP data separately.

We retained only the first three and four principal components that explained more than 95% of the variance for CDI and NPP, respectively. Therefore, after adding soil clay content for topsoil and subsoil, a total of nine variables were used for GMM clustering. Moreover, to reduce computing complexity, we also selected 20000 pixels in France as calibration data set of the GMM clustering.

The resulting clustering model was then used to predict to which CLZ each pixel of the entire territory belongs.

Gaussian mixture model was conducted to compute clusters that were considered as CLZs in this study. GMM is one of the model-based clustering techniques, which optimizes the fit between the measured data and mathematical models using a probabilistic approach. GMM is based on the assumption that the data are generated by a mixture of Gaussian distributions.

Then, the parameters of GMMs are estimated by maximisation of the likelihood using the Expectation Maximization (EM) algorithm. EM algorithm starts with a random initialization and then iteratively optimizes the clustering using two steps: (i) Expectation step determines the expected probability of assignment of data to clusters using current model parameters; (ii)

Maximisation step updates the optimal model parameters of each mixture based on the new data assignment.

The number of clusters was tuned from 1 to 30 and their associated Bayesian information criterion (BIC) was calculated for the evaluation of clustering performance. The number of clusters was selected considering a trade-off between the BIC values and the available number of RMQS sites within each land use for each cluster. GMMs were performed using ClusterR package in R 3.3.2 [START_REF] Mouselimis | Clustering using the ClusterR package[END_REF][START_REF] Core | R: A language and environment for statistical computing[END_REF]. The optimized CLZs map was resampled to 90 m resolution.

2.5 SOC storage potential and analysis of the sensitivity to the percentile setting Empirical maximum SOC stock values were estimated for arable topsoil and subsoil under given CLZs using RMQS dataset (point observations). Four percentiles at 80%, 85%, 90% and 95% were tested to estimate the empirical maximum SOC stock values that could be reached under a given CLZ. A bootstrapping approach was applied to assess the uncertainty from data source both for each CLZ and tested percentiles. We repeated the bootstrapping procedure 100 times and thus obtained 100 estimates of the maximum SOC stock values for each CLZ and percentile. The mean value obtained from these one hundred estimates was used as an estimate of the maximum SOC stock value for each CLZ and percentile. We then estimated the uncertainty (90% confidence intervals, 90% CIs) of these maximum SOC stock values by using the 5 and 95 percentile of the bootstrapping results.

The SOC storage potential was calculated as the difference between the empirically-determined maximum SOC stocks and current SOC stocks (Figure A2) under arable land use. Four SOC storage potential maps were produced using the four tested percentiles for both topsoil and subsoil, and their associated 90% CIs.

We evaluated the effect of percentile setting on the estimation of SOC storage potential by both comparing the differences in the SOC storage potential spatial distribution and national SOC storage potential estimates.

Results

Spatial distribution of CDI, NPP and their principal components

Figure 2 shows the spatial distribution of CDI and NPP in mainland France.

Globally, CDI increased gradually from January to August and then decreased gradually to December. Different from CDI, NPP started to increase from January and reached the peak in June, and then decreased gradually to December.

Accounting for 98.3% and 97.0% of the total variances (95% was set as a threshold), the first three and four principal components (PCs) were kept for CDI and NPP, respectively. Figure 3 presents the final seven PCs used in clustering. The 3 PCs of CDI showed long range spatial patterns in mainland

France while the spatial patterns for 4 PCs of NPP were mainly characterized by median and short ranges.

Carbon-landscape zones

The BIC value decreased quickly when the number of clusters was less than 10, and then it decreased slowly after 10 clusters (Figure 4). The result indicated that more clusters were helpful for separating the differences within clusters. However, more clusters meant less available RMQS sites falling into each cluster. Figure 5 shows the number of RMQS sites located in each cluster. Our aim was to avoid clusters having a number of RMQS sites less than ten, which may not be enough to derive a robust estimate of the quantiles. Two clusters had less than ten RMQS sites when the number of clusters varied from 8 to 10. When the number of clusters increased from 11 to 13, three clusters were found with less than ten RMQS sites. We optimized the number of clusters at ten as it appeared to be the best compromise between separating the differences between clusters and keeping an acceptable number of clusters having less than ten RMQS sites.

Figure 6 illustrates the spatial distribution of CLZs in mainland France.

CLZ 1 is mainly distributed in north-eastern France which is characterized by a rather continental climate and relatively high soil clay contents, mostly ranging from 22% to 35% in topsoil, and being even higher in subsoil (Appendix Figure A3). CLZ 2 represents most of western France characterized by a mild and wet oceanic climate and relatively homogeneous soil clay contents (mostly ranging from 15 to 20% both in top-and subsoil, Appendix Figure A3). CLZ 3 is located in northern France and mainly corresponds to the maximal extension of deep loess deposits. It exhibits clay contents centred around 20% for topsoil and a bit higher for subsoil, both with a rather low statistical dispersion. CLZ 4 is located in the Massif Central and the Vosges mountains, and is characterized by a rather cold climate due to elevation and rather homogeneous clay contents, mostly ranging from 15% to 20% for both layers (Appendix Figure A3). CLZ 5 is located in southern

France and strictly corresponds to the area of the 'Landes of Gascony' which is characterized by a mild climate and nearly pure sandy aeolian deposits having clay content nearly always less than 5% [START_REF] Augusto | Is grey literature a reliable source of data to characterize soils at the scale of the region? A case study in a maritime pine forest of south-western France[END_REF]. CLZ 6 is located in central France and corresponds to the foothills of the Massif Central, with a lower elevation than its central part. Part of the CLZ 6 is also spread in various other locations, all of which corresponding to ancient alluvial deposits coming from these foothills. In topsoil, most clay contents range from 15% to 20% and slightly higher in subsoil. CLZ 7 is exclusively located in the highest elevations located at the top of the main mountain ranges (Pyrenees, Alps, Jura and Massif Central), with soil texture being rather clayey (around 30%). This CLZ also includes many thin soils [START_REF] Lacoste | Evaluating large-extent spatial modelling approaches: a case study for soil depth for France[END_REF], and thus the information on clay content of the 0.3 to 0.5 m layer is often missing. CLZ Figure 7 presents the design-based estimates of SOC stocks for arable soils for the ten CLZs in topsoil and subsoil. In order to get unbiased estimates, these estimates were computed using the values obtained from the RMQS grid values within each CLZ. The median SOC stocks of topsoil ranged from 4.89 to 9.67 kg m -2 under the 10 CLZs. Fewer differences of SOC stocks were found in subsoil, and subsoil had much lower SOC stocks than topsoil with a range of median SOC stocks from 1.31 to 2.08 kg m -2 .

Empirical maximum SOC stocks under four percentile settings

As expected, there was a clear trend that the maximum SOC stocks for topsoil and subsoil increased when percentile became higher, however, the magnitude of these increases varied among different CLZs (Figure 8). In topsoil, large differences (>4 kg m -2 ) in maximum SOC stocks between percentile of 0.95 and percentile of 0.8 were observed in CLZ 1 and CLZ 4, and the differences ranged from 0.28 to 3.65 kg m -2 for other CLZs. In subsoil, differences in maximum SOC stocks between percentile of 0.95 and percentile of 0.8 were below 1.5 kg m -2 for almost all the CLZs, except for CLZ 4 with a value of 2.71 kg m -2 .

The 90% CIs also differed between CLZs as well as between percentiles.

A large percentage of high 90% CIs (upper limit minus lower limit > 10 kg m -2 for topsoil or > 5 kg m -2 for subsoil) of maximum SOC stocks were found in CLZ 4 and CLZ 7, which indicated large variability for these two mountainous

CLZs having a rather low number of sites. Besides, subsoil in arable soils had lower 90% CIs than topsoil.

Spatial distributions of SOC storage potential

Figure 9 and Figure 10 show the spatial distributions of SOC storage potential and 90% CIs under four percentile settings for topsoil and subsoil, respectively. When percentile was set at 0.8, French arable topsoil had a SOC storage potential less than 2 kg m -2 except for a part of Brittany and southeastern France near the Mediterranean Sea. With the increasing percentile, intensively cultivated plains of the central, the northern half and the southwestern part of France showed a large potential to store more SOC.

Cropland located around mountainous regions including the Pyrenees, the Alps, the Jura and the Vosges generally had a relatively low SOC storage potential across all percentiles. Large differences were observed for total SOC storage potential under different percentile settings ( Mt for percentiles of 0.85, 0.9 and 0.95, respectively.

Discussion

Optimizing and mapping Carbon Landscape Zones

The estimates of SOC storage potential using a data-driven approach were based on a stratification of the study area using the CLZs, therefore a procedure for optimizing the number of CLZs was necessary. We observed a negative trend between the number of clusters and BIC, which indicated that using more clusters allowed to explain more variance of our covariates.

However, as soil data was finite, creating too many clusters would have resulted in fewer soil data available for each CLZ. We assumed in this study that performing a statistical analysis with less than 10 samples was not robust; therefore we decided to optimize the number of clusters by considering a trade-off between the BIC value and the number of RMQS sites located within each cluster. Interestingly, though using a very different set of covariates and soil point data (different covariates, and a much larger number of soil point data), [START_REF] Mulder | Understanding large extent controls of soil organic carbon storage in relation to soil depth and soil landscape systems[END_REF] found that the same number of clusters ( 10) was optimal to partition points data into soil-landscape systems relevant to SOC.

Moreover, their maps showed rather similar spatial patterns (e.g. in the Mediterranean region, mountains, and western France).

National SOC storage potential

As expected, the percentile setting had a strong influence on the estimation of SOC storage potential (Table 2). If we use the national SOC storage potential at a percentile of 0.8 as a benchmark, the total SOC storage potential at percentiles of 0.85, 0.9 and 0.95 were 1.40, 2.01 and 3.04 times larger, respectively, in topsoil and were 1.38, 1.87 and 2.62 times larger, respectively, in the subsoil. Clearly, the estimates of SOC storage potential are very sensitive to the percentile chosen, especially at high values setting (e.g., 0.95).

Limitations of the data-driven approach

The data-driven approach has previously been implemented in a few pedoclimatic regions to estimate SOC storage potential. [START_REF] Stolbovoy | Application of soil organic carbon status indicators for policy-decision making in the EU[END_REF] used data from the European Soil Portal database to determine the maximum observed SOC stocks for a given soil type under a given climate, from which they subtracted the observed SOC stocks under cultivated land. [START_REF] Lilly | The potential for Scottish cultivated topsoils to lose or gain soil organic carbon[END_REF] determined for each typological soil unit the observed maximum SOC stocks, from which they subtracted the observed median SOC stock under cultivated topsoils. One main difference between these studies and the present one is that they did not calculate percentiles but used only as reference the maximum observed values which are obviously much more sensitive to the presence of very high values.

Another difference is that they used coarse resolution data, some of which may not always be directly related to controlling factors of SOC (e.g., soil type, highly aggregated data for delineating large bioclimatic regions).

We show here that this approach has some limitations. It is very sensitive to percentile setting. This is partly attributable to the fact that the SOC distributions are highly skewed with long tails at high SOC values (e.g., CLZs 1, 3, 4, 6, 8 and 10, see Fig. 7 and Fig. 8). This approach could be also considered as data 'hungry'. This sensitivity is also linked to the fact that we have a rather limited number of observations for some CLZs, especially those with a small crop land area (e.g. CLZs, 4 and 7, see Fig. 8), which hampers the robustness of the data-driven approach. Another limitation may come from the fact that some cultivated soils may have been recently converted from other land uses (e.g., grassland, forest) and may not have yet reached an equilibrium level, which could partly explain the long tails that we observed.

One alternative approach would consist in performing dedicated sampling in the CLZs following a probability sampling as suggested by De Gruitjer et al.

(2016). In this approach, the number of sites is selected with a minimum number in order to get precise estimates of the quantiles.

In addition, [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF] already mentioned two other limitations.

Firstly, this approach provides an estimate of soil storage potential under present management practices, therefore this estimate could be largely underestimated when new SOC aggrading techniques are adopted. As discussed by [START_REF] Sparling | Three approaches to define desired soil organic matter content[END_REF], current management practices may strongly affect the outcomes of a data driven approach when deriving desirable soil organic carbon contents from the median of observed SOC contents. Secondly, another limit of data-driven approaches would be that, for most available databases, management practices are not documented, and thus make it difficult to determine their influence [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF]. Indeed, in some cases there is still a large diversity of soils within a same CLZ and also very different land use histories which are not considered in this approach. The influence of these two factors on the potential storage maps can be easily seen for instance for western France (CLZ2, characterized by a gradient linked to the date of grasslands conversion to croplands). Similarly, the gradients observed in piedmont areas may be linked to the fact that large parts of them have been more or less recently converted from forest or grassland to cropland (e.g., [START_REF] Arrouays | Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France[END_REF]Arrouays et al., , 1995aArrouays et al., , 1995b;;[START_REF] Saby | Changes in soil organic carbon content in a French mountainous region, 1990-2004[END_REF] and thus still have quite large SOC stocks reflecting their past land use.

Finally, a CLZ may include very different agricultural production systems and in some cases reaching the storage potential would not only require to change the management practices, but the whole production system. The estimates we provide may be refined in the future taking into account the different agricultural production systems (for CLZ with enough sites).

Despite these limitations, we consider that this first national approximation of SOC storage potential is valuable in making use of a detailed and robust nation-scale database. We further point out some operational advantages of the data driven approach in section 4.6.

Complementarity with other approaches

Using a method based on the carbon saturation equation of Hassink Their results showed that arable topsoil and subsoil could theoretically sequester 646 Mt and 752 Mt SOC, respectively. Though SOC associated with the soil fine fraction does not represent the total SOC, their estimate of SOC sequestration potential in arable topsoil was close to the percentile of 0.9 derived SOC storage potential (674 Mt), suggesting that SOC sequestration potential can hardly be reached under current management practices. The maps of SOC sequestration potential obtained applying

Hassink's equation [START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF] and the maps of SOC storage potential obtained through the data driven approach show rather good qualitative agreements in the western part of France. However, noticeable differences are observed in mountain areas and in the most clayey CLZs for which the data driven approach predicts a much lower additional storage potential than the theoretical SOC sequestration potential. Apart from the fact that the two maps rely on different concepts (sequestration and storage, e.g., [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF][START_REF] Chenu | Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations[END_REF] and different modes of calculation, this may also suggest that the pedoclimatic conditions in rather cold or clayey situations do not allow to reach the theoretical SOC sequestration potential because of insufficient plant biomass inputs. In arable subsoil, SOC storage potentials derived from a data-driven approach (under all percentiles) were much lower than C-saturation theoretical SOC sequestration potential. This may be attributed to the fact that the present data-driven estimate of SOC storage potential is based on current land management practices, while reaching the estimated SOC sequestration potential for subsoil may need more advanced land management practices with more potential to raise the SOC in both topsoil and deeper layers [START_REF] Chenu | Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations[END_REF]. This may be also simply due to the fact that the French pedoclimatic conditions do not allow to reach the Csaturation theoretical SOC sequestration potential.

As suggested by [START_REF] Barré | Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?[END_REF], the model-driven approach would be another way of estimating SOC storage potential. In a model-driven approach, process-based models are used for determining highest reachable SOC stocks by simulating different management scenarios. Such an approach has been applied to EU by [START_REF] Lugato | Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices[END_REF]. Compared to a data-driven approach, this process-based model may be more suitable as it is able to monitor SOC stock dynamics. However, there are also some limitations to this model-driven approach: i) a lot of input data is required for modelling, for instance, a CENTURY model needs site-specific precipitation, temperature, soil texture, bulk density, initial SOC, land use and corresponding management practice; ii) the initialization for C dynamic models is still very problematic and the simulation for large dataset is time-consuming; iii) the accuracy of C dynamics model prediction needs to be validated by resampled soil data and (iv) the soil management options considered are limited to those accounted for in current SOC dynamics models (e.g. agroforestry may not be considered in most models).

4.5 SOC storage potential and 4 per 1000 goal Based on our current SOC stock maps shown in Figure A2, the total SOC stocks are estimated at 1.37 Gt and 1.81 Gt for French arable soils for the 0-on the total area of French arable soils, reaching the 4 per 1000 aspirational target would require a storage rate of 5.48 Mt C year -1 for 0-30 cm, or 7.24 Mt C year -1 for 0-50 cm. According to the C storage rate for 0-30 (0-50) cm, it would take 61 (69), 85 (96), 122 (135) and 186 (200) years to reach the SOC storage potential under percentiles of 0.8, 0.85, 0.9 and 0.95, respectively.

Thus our data-driven estimates of C storage potential suggest that achieving an annual rate of increase of 0.4% would have to be maintained for decades before reaching the SOC storage potential of these soils, provided that relevant management options can be implemented for such an annual SOC storage, and keeping in mind that an equilibrium level may be reached after a few decades.

4.6

The data driven approach, a potentially operational tool

We observed that that SOC storage potential is very sensitive to the percentile used in the calculation. We submit that this approach offers potential for operational purposes as it enables to set targets of SOC carbon storage for both policy makers and farmers. For instance, decision-makers may decide to implement policies aiming at reaching a minimal objective (for instance, all sites should reach the 0.6 percentile), an intermediate objective (0.8 percentile) or an ambitious objective (0.9 percentile). It could therefore be a very suitable tool to determine to which extent soils can contribute to Intended Nationally Determined Contributions (INDCs). As an additional step, more emphasis should be put both on policy and recommendations to reach these objectives for different soils, agricultural productions systems and land use histories within each CLZ, and ultimately on developing methods to verify that the targeted objectives are reached. This approach could then be further used to improve the data-driven approach and to design future objectives.

Similarly, at a local scale, farmers may compare their present SOC stocks to the theoretically reachable ones within their CLZ, and decide which goal may be reachable by implementing more or less drastic or costly changes to their management practices. They may even find out that the SOC stocks at their farm level are already close to the maximal reachable value, and thus concentrate on not losing SOC rather than on trying to increase the current stocks.

Conclusions

We tested a data-driven approach to estimate SOC storage potential under Carbon Landscape Zones for arable soils using the French National Soil Monitoring Network. Under the trade-off between the BIC index and available data for robust statistics, the optimized number of CLZs was determined at 10, using monthly NPP, CDI, and clay content data. The national SOC storage potential varied from 336 Mt to 1020 Mt for topsoil and from 165 Mt to 433 Mt for subsoil under four percentile settings (0.8, 0.85, 0.9 and 0.95), which shows that the data-driven approach is very sensitive to the selected percentile. This sensitivity was partly attributable to a rather low number of observations in some CLZs and mainly to skewed distributions with long tails of high SOC contents. However, we argue that this data driven approach offers meaningful advantages from an operational point of view, as it enables to adapt targets of SOC carbon storage by taking into account both policy makers' and farmers' considerations. We also argue that the data driven approach is also a convenient way to provide quantitative estimates of the SOC storage potential over large areas having widely distributed soil data.

Dedicated surveys and research on management practices effects are still necessary in order to better estimate the reachable SOC stocks and the feasibility of their implementation.

Further work will focus on estimating SOC storage potential by the modeldriven approach in mainland France. Producing model-driven estimates may enable to determine a more reliable percentile setting for the data-driven approach and thus provide references for the regions where exhaustive data for applying process-based models is not available. Figure 10 SOC storage potential for arable subsoil under four percentile settings.

Figure captions

Table captions

Table 1 National SOC storage potential stocks of French arable soils under different percentile settings. Lower limit and upper limit of 90% CIs are also provided. 

2. 2

 2 Net primary production, climatic data, soil clay content and SOC stocks maps Net primary production (NPP) was extracted from the MOD17A2H version 6 Gross Primary Production product (NASA LP DAAC, 2017) from 2000 to 2010. It is a cumulative 8-day composite of values with 500-meter original resolution. The 8-day NPP data is averaged into monthly data and resampled to 1 km resolution. Cities and water-covered regions have been masked in this product.
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  occupies most of south-western France characterized by mild winters and hot summers. It is characterized by a very large range and dispersion of clay content in both layers, although a large part (interquartile range) ranges from 20% to 30%. CLZ 9 is mainly distributed in central and northern France. Its clay content in topsoil and subsoil is centred around 25% (Appendix Figure A3) and showing a small increase in subsoil. Lastly, CLZ 10 shows low NPP values in autumn, because of land use consisting mainly of vineyards and wheat crops. It is clearly located in the Mediterranean region with very hot temperatures and very low NPP in summer. The clay content is centred around 20%, with a statistical dispersion similar to the other CLZs.

(

  1997),[START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF] estimated the SOC sequestration potential in mainland France using the same RMQS data. In their work, the concept of SOC sequestration potential referred to the additional SOC associated with soil fine fraction (< 20 µm), assumed to have pluri-decadal residence times.

Figure 1

 1 Figure 1 RMQS sites located in arable soils.

Figure 2

 2 Figure 2 Spatial distribution of monthly climatic decomposition index and net

Figure 3

 3 Figure 3 Spatial distribution of principal components for climatic

Figure 4

 4 Figure4Relationship between the number of clusters and BIC.

Figure 5

 5 Figure 5 Number of RMQS sites located in each carbon-landscape zone.

Figure 6

 6 Figure 6 Optimal 10 carbon-landscape zones in France.

Figure 7

 7 Figure 7 Boxplots of SOC content in topsoil and subsoil under 10 carbon-

Figure 8

 8 Figure 8 Empirically maximum SOC stocks in topsoil and subsoil under four

Figure 9

 9 Figure 9 SOC storage potential for arable topsoil under four percentile
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