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Attention Based Pruning for Shift Networks
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! Université de Montréal, MILA, 2IMT Atlantique, Lab-STICC

Abstract—In computer vision and many other domains, Con-
volutional Layers (CLs) are the key to the accuracy and perfor-
mance of deep learning methods. However, it is often required to
assemble a very large number of CLs with tons of parameters to
reach state-of-the-art accuracy, thus resulting in complex and
demanding systems that are poorly fitted to resource-limited
devices. Recently, methods have been proposed to replace the
convolution by the combination of a shift operation and a 1x1
convolution. The result operation, called Shift Layers (SLs) is an
efficient alternative to CLs that allow to reach similar accuracy
on various tasks with faster computations and less parameters.
In this contribution, we introduce Shift Attention Layers (SALs),
a particular version of SLs using an attention mechanism that
learns which shifts are the best at the same time the network
function is trained. We demonstrate SALs are able to outperform
vanilla SLs in various tasks in vision while significantly reducing
computations and parameters for the inference.

I. INTRODUCTION

Convolutional Neural Networks (CNNSs) are the state-of-
the-art in many challenges in computer vision, such as image
classification, object detection and face recognition [20]. To
achieve top-rank accuracy, CNNs rely on a the use of a
very large number of trainable parameters, and considerable
computational complexity. This is why there has been a lot of
interest in the past few years towards the compression of CNNss,
so that they can be deployed in embedded systems. The main
purpose of compressing DNNs is to reduce memory footprint
and/or computational complexity while having a limited impact
on accuracy.

Prominent works to compress neural networks include
binarizing (or quantifying) weights and activations [2], [19],
[16], [15], [13], [?], [25], pruning network connections during
or before training [6], [5], [14], [1], using grouped convolu-
tions [?], [8], [17], introducing new components [29], [12],
using convolutional decomposition [21], [18], or searching for
a lightweight neural network architectures [10].

Recently, the authors of [24], [4] have proposed to replace
the convolution operator with the combination of shifts and
1x1 convolutions. In their work, the shifts are hand-crafted
and all parameters to be trained are in the convolutions. These
operations are particularly well fitted to embedded devices [4],
[27]. In [11], the authors have proposed to learn shifts by
making them differentiable. Their solution implies to use
interpolation of pixel and neuron values throughout the CNN
architecture.

In this paper, we introduce the Shift Attention Layer (SAL),
which can be seen as an alternative to [11]. This layer starts
with a vanilla convolution and learns to transform it into a
shift layer throughout the training of the network function. It
uses an attention mechanism [23] that selects the best shift

for each feature map of the architecture. We demonstrate it
is able to significantly outperform original shift layers [24]
and the method introduced in [11], even though it requires
more parameters during training. It is thus of particular interest
for implementing the inference process on resource-limited
systems.

The outline of the paper is as follows. in Section II we
present the related works. In Section III we explain the
proposed method. In Section IV we perform experiments using
challenging computer vision datasets. Finally, In Section V we
discuss future work and conclude.

II. RELATED WORK

In this section we introduce works aiming at reducing
complexity and memory footprints of CNNs.

In a first line of works, authors have proposed to binarize
weights and activations [2], [3], [16], and then replace all
multiplication operations by low cost multiplexers. Other works
have proposed to use K-means to quantize weights [5], [22],
[25] and thus reduce CNN model size.

Another line of work is to rely on network pruning [6].
For example Li et al [14] use the sum of absolute weights of
each channel to select and prune redundant ones. In the same
vein, He et al [7] proposed a novel Soft Filter Pruning (SFP)
approach to prune dynamically filters in a soft manner. Using
the reconstruction error of the last layer before classification, Yu
et al [28] introduce the Neuron Importance Score Propagation
(NISP) method to estimate the importance of each neuron
in each layer in the backward propagation of the scores
obtained from the reconstructed error. Huang et al [9] propose
a reinforcement learning based method, in which an agent is
trained to maximise a reward function in order to improve the
accuracy when pruning selected channels. Yamamoto et al [26]
use a channel-pruning technique based on attention statistics by
adding attention blocks to each layer and update them during
training process to evaluate the importance of each channel.

For mobile applications with limited resources, specific
neural network architectures have been introduced. Iandola
et al [10] propose a fire module to define SqueezeNet, a very
small neural network with an acceptable accuracy. Howard et
al [8] use depthwise separable convolutions to define MobileNet
and build lightweight CNNs.

Other approaches focus on decomposition of convolution.
Simonyan et al [18] reduce the number of parameters of VGG
by replacing a 5 X 5 convolution by two 3 X 3 convolutions.
In [20], the authors decompose 7 x 7 convolutions into 1 x 7
and 7 x 1 convolutions. More closer to our proposed work,
Wu et al [24] introduce a shift operation as an alternative to
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Fig. 1. Overview of the proposed method: we depict here the computation for a single output feature map d. The figure on the left represents a standard
convolutional operation: the weight filter W . . containing SL weights is moved along the spatial dimension of the input to produce each output in Y 4. In
the middle figure, we depict the attention tensor A on top of the weight filter: the darker the cell, the most important the corresponding weight has been
identified to be. At the end of the training process, A should contain only binary values with a single 1 per slice A ... In the right figure, we depict the
corresponding obtained shift layer: for each slice along the input feature maps, the cell with the highest attention is kept and the others are disregarded. As a
consequence, the initial convolution with a kernel size S has been replaced by a convolution with a kernel size 1 on a shifted version of the input X.

spatial convolutions. The authors deconstruct 3 x 3 spatial
convolution into 1 x 1 convolution and a shift operation to
reduce the complexity and memory usage of CNNs. In [11],
the authors propose an active shift layer (ASL) to improve
the accuracy of the shift operation method, and replace the
handcrafted shifts by learnable parameters which are optimised
during back-propagation.

In this contribution, we introduce Shift Attention Layer
(SAL), a novel pruning-shift operation method. SAL uses
pruning concept in such a way to not only reduce the memory
footprint and the number of operations in CNNs, but also to
replace the convolution by only a shift operation followed
by a 1 x 1 convolution, and thus reduces CNNs memory and
complexity, and make easier the implementation of large CNNs
on embedded systems.

III. METHODOLOGY

In this section, we first review the classical spatial convo-
Iution operation and see how it can be related to the shift
operation defined in [24]. We then introduce our proposed
method.

A. Convolution/Shift operation

Let us consider the 1d case (other cases can be easily
derived). Let us denote by X € R“*L an input tensor of a
convolutional layer, where C' is the number of channels and L is
the dimension of each feature map. We denote W € RP*Cx5
its weight tensor, where D is the number of output channels, .S
the kernel size, and Y € RP*L its output tensor. Disregarding
downsampling and padding (i.e. border effects), the convolution
operation is defined through Equation (1) and depicted in
Figure 1: left.
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A shift layer is obtained when connections in W are
pruned so that remains exactly one connection for each slice
Wa,,., Vd, c. We denote £y, the index such that wge, ., is
not pruned. Then the shift operation is defined in Equation (3)
and depicted in Figure 1: right.
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where Z. ¢ = Teotey .—[5/2] and Wq,c = Wd,c,e, .. We Observe
that the shift operation boils down to shifting the input tensor
X then convoluting with a kernel of size 1 (in the equation,
the kernel W is indexed only by the input and output feature
maps). In the original work [24], the authors proposed to
arbitrarily predetermine which shifts are used before training
the architecture. To the contrary, in this work, we propose a
method that learns which shifts to perform during the training
process.

B. Shift Attention Layer (SAL)

The idea we propose is to enrich a classical convolution
layer with a selective tensor A which aims at identifying which
connections should be kept in each slice of the weight tensor.
As such, we introduce A € RP*¢*L a tensor containing as
many elements as weights in the weight tensor. Each value of
A is normalised between 0 and 1 and represents how important
the corresponding weight in W is (c.f. Figure 1: middle). At



the end of the training process, A becomes binary, with only
one nonzero element per slice Ag .., corresponding to the
weights in W that should be kept.

More precisely, each slice Ag .. is normalised using a
softmax function with temperature 7. The temperature is
increased smoothly along the training process. Note that in
order to force the mask A to be selective, we first normalise
each slice Ag .. so that it has 1 standard deviation (sd).
Algorithm 1 summarises the training process of one layer.
At the end of training, the selected weight in each slice W ..
corresponds to the maximum value in Ay ..

Algorithm 1 SAL algorithm of one layer

Inputs: Input tensor X,
Initial softmax temperature 7', Constant @ > 1.

for each training iteration do
T =aT
for d:=1to D do
for c:=1to C do
Ad,c,- =

d,c,-

sd(Aqc,.)
Ag.,. = Softmax(Aqgye,.,T)
end for
end for

W, 4 =W . A (. is the pointwise multiplication)
Compute standard convolution as described in Equation 1
using input tensor X and weight tensor W 4 instead of
Ww.
Update W and A via back-propagation.

end for

Note that contrary to the vanilla shift layers where the same
number of shifts is performed in every direction, at the end
of the training process the resulting shift layer can have an
uneven distribution of shifts, as shown in the next section. This
comes with a price, which correspond to the memory needed
to retain which shift is performed for each input feature map.
In order to be fair, we thus reduce the number of feature maps
in the networks we use in the experiments so that the total
memory is comparable.

IV. EXPERIMENTS

In this section we present the benchmark protocol used to
evaluate the proposed method, and then compare the obtained
performance with CNNs baseline, pruning methods and shift-
module based methods.

A. Benchmark Protocol

We compute our evaluation on three vision datasets: CI-
FAR10, CIFAR100 and ImageNet ILSVRC 2012. To evaluate
the proposed method, we test the architecture Resnet-20/56
on CIFARI10 and the architecture Resnet-20/50 on CIFAR100
using the following parameters: the training process consists
of 300 epochs for Resnet-20 and 400 epochs for Resnet-50/56,
the learning rate starts at 0.1 and is divided by 10 after each
100 epochs. For all these evaluations, the training batch size is

128, the initial/final softmax temperature are 0.15/50, and the
temperature is increased at each step (each time a mini batch
is processed).

For ImageNet ILSVRC 2012, we tested Resnet-w32 defined
in [11] and Resnet-50 using the following parameters: the total
number of epochs is 90, the training batch size is 256, the
learning rate starts at 0.1 and is divided by 10 after each 60
epochs, initial/final softmax temperature are 0.15/60.

B. Results

The first experiment is performed on CIFARI10 and CI-
FAR100, and compares the performance of the proposed
method with shift-based module methods (c.f. Table I) and
pruning methods(c.f. Table II). Table I shows that our method
achieves a better accuracy with fewer parameters than the
baseline and other shift-module based method. Table II shows
that the proposed method is comparable in term of accuracy
and number of parameters/floating point operations (FLOPs)
with other pruning methods.

As a second evaluation, we plot the average of A at the end
of the learning process along the channel dimension. As such,
we observe the proportion of each position in slices Ag,. .
that are kept at the end of the training process. In Figure IV-B,
a heat-map represents the amount of kept weights through
W...,Vd,cslices, for the 4 first layers (first row), and the 4
last layers (second row), of Resnet-20 trained on CIFAR10, and
where attention tensors A values are initially drawn uniformly
at random. We observe that at the end of the training process,
initial layers seem to yield a uniform distribution of kept
weights. To the contrary, for the last layers, there is a clear
asymmetry that favours corners. This interestingly suggests
that shift-layers would benefit from a non regular number of
shifts in each direction.

To see how much the initialisation of A is related to the
amount of kept weights, we then perform another experiment
where A is initialized uniformly at random but then the centre
value Ay . |s/2, 5/2) is changed to the maximum over the
corresponding slice max(Ag,.,..). We observe in Figure IV-B
that almost all kept weights in the first layer are slices centres.
Subsequent layers yield an almost uniform distribution, and we
observe the same kept weights distribution for the last layers as
the previous experiment. This suggests that the initialisation of
A is not the cause for the first layers kept weights distribution.
We also plot a heat-map of kept weights in Resnet-56 trained
on CIFARI10, and where attention tensor A values are initially
drawn uniformly at random. Figure IV-B shows that for the
first layers, the number of kept weights is more important on
the centre row than other positions. However, we see on the
last layers that there is more kept weights in the corners than
other positions.

From all these experiments, we consistently observe that in
deeper layers, the method tends to keep more weights in corner
positions than others, and this independently from initialisation
process or neural network architecture.

In a third experiment, we observe the effect of initial and
final temperature choices on accuracy. Figure 5 represents the



TABLE I

COMPARISON OF ACCURACY AND NUMBER OF PARAMETERS BETWEEN BASELINE ARCHITECTURE (RESNET20), SHIFTNET, ASNET, AND SANET (THE
PROPOSED METHOD) ON CIFAR10 AND CIFAR100.

CIFAR10 CIFAR100
Accuracy | Params (M) | Accuracy | Params (M)
Baseline 94.66% 1.22 73.7% 1.24
ShiftNet [11] 93.17% 1.2 72.56% 1.23
ASNet [24] 94.53% 0.99 76.73% 1.02
SANet (ours) || 95.52% | 0.98 77.39% | 1.01
TABLE II

COMPARISON OF ACCURACY, NUMBER OF PARAMETERS AND NUMBER OF FLOATING POINT OPERATIONS (FLOPS) BETWEEN BASELINE ARCHITECTURE
(RESNET-56 FOR CIFAR10, AND RESNET-50 FOR CIFAR100), SANET (THE PROPOSED METHOD) , AND SOME OTHER PRUNING METHODS ON CIFAR10
AND CIFAR100. NOTE THAT THE NUMBER BETWEEN () REFERS TO THE RESULT OBTAINED BY THE BASELINE USED FOR EACH METHOD.

CIFAR10 CIFAR100
Accuracy Params (M) | FLOPs (M) | Accuracy Params (M) | FLOPs (M)
Pruned-B [11] 93.06%(93.04) | 0.73(0.85) 91(126) 73.6%(74.46) 7.83(17.1) 616(1409)
NISP [24] 93.01%(93.04) | 0.49(0.85) 71(126) — - -
PCAS [24] 93.58%(93.04) | 0.39(0.85) 56(126) 73.84%(74.46) | 4.02(17.1) 475(1409)
SANet (ours) 93.6%(93.04) 0.36(0.85) | 42(126) 77.6%(78) 3.9 (16.9) 251(1308)
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Fig. 2. Heat maps representing the average values in A for various layers in the Resnet-20 architecture trained on CIFARI0. In this experiment, values in A

are initialized uniformly at random.
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Fig. 3. Heat maps representing the average values in A for various layers in the Resnet-20 architecture trained on CIFARI10. In this experiment, values in A
are initialized uniformly at random but the centre value that takes the maximum over the corresponding slice.
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Fig. 4. Heat maps representing the average values in A for various layers in the Resnet-56 architecture trained on CIFARI0. In this experiment, values in A

are initialized uniformly at random.

evolution of accuracy of Resnet-20 trained on CIFARIO as
function of final temperature while initial temperature is fixed
at 0.15. It shows that the accuracy is highly increased when the
final temperature value is increased from 1 to 5, then beyond
this point, the effect of final temperature is negligible. Note
that when the final temperature is small, obtained values in

A at the end of the training process can be far from binary.

In all cases, we round the values in A to the nearest integer
before computing the accuracy. This experiment states that
final temperature value needs to be big enough so the softmax

can push the highest value to 1 and the other values to 0.

Figure 6 shows the behaviour of the accuracy of Resnet-20
trained on CIFAR10 when initial temperature is changed and
final temperature is fixed at 50. We see an interesting region
between 0.1 and 0.15 in which the accuracy is better.
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Fig. 5. Evolution of accuracy of Resnet-20 trained on CIFARI10 as function
of final temperature.

V. CONCLUSION

In this contribution, we proposed a novel attention-based
pruning method that transforms a convolutional layer into a shift
layer. The result network provides interesting improvements
in terms of memory and computation time, while keeping
high accuracy. Compared to existing methods, we showed
that the proposed method results in improved accuracy for
similar memory budgets as existing shift-layer based methods,
using challenging vision datasets such as CIFAR10/100 and
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Fig. 6. Evolution of accuracy of Resnet-20 trained on CIFARI10 as function
of initial temperature.

Imagenet. It provides an interesting alternative to channel-
pruning methods.

Future work will focus on how to reduce complexity of
the training process and combine the proposed method with
other out-of-the-shelf techniques to compress deep learning
architectures such as quantization.
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