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Multiscale Characterization and Model 
for the Dynamic Behavior of Ferroelectric 
Materials Using Fractional Operators

Benjamin Ducharne, Grzegorz Litak, Bin Zhang, and Bhaawan Gupta

10.1 Introduction

Ferroelectric and piezoelectric materials are widely used in many areas of technol-

ogy and science. The sensors based on the piezoelectric effect transform mechanical

signals into electrical signals and are used as accelerometers or for pressure and

vibration measurements [1–3]. Except in memory applications, which are based

on polarization switching and hysteresis polarization-electric field relationships,

hysteresis is undesired in high-precision sensor, actuator, and capacitor applications.

Origins and mechanisms of the piezoelectric hysteresis are complex, and they

manifest themselves in qualitatively different forms. An ideal hysteresis loop is
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symmetrical, so the absolute value of the positive and negative coercive fields and

positive and negative remnant polarizations is equal [4, 5]. Hysteresis loops are

highly frequency dependent. The main consequences of a frequency increase on

hysteresis loops are:

– Increasing coercive fields.

– Decreasing remnant polarizations.

– Varying hysteresis loop areas [6–8].

Fractional operators are particularly well adapted to model the frequency depen-

dence of the dielectric hysteresis of a ferroelectric material. Where usual integer

derivative operators are usually limited to a relatively weak frequency bandwidth,

an approach based on fractional derivatives provides good accuracy between

measured hysteresis loops and simulated ones far beyond frequency bandwidth

of classical piezoelectric systems. The behavior of piezo ceramics under weak

electric fields excitation is usually described by constitutive relations linearized

around an operating point. The ceramic comportment as the frequency is varying

known as the dielectric relaxation gives important information about the piezo

ceramic constitution and about the physical relations describing the polarization

behavior. These characteristics are usually monitored using impedance analyzer.

Dielectric relaxation is defined as the momentary delay in the dielectric constant of

a material. This relaxation is usually described in terms of permittivity as a function

of frequency, which can, for ideal systems, be described by the Debye complex

formula [9]:

ε∗(ω) = ε∞ +
Δε

1 + iωτ
. (10.1)

Here ε∞ is the sample permittivity under high-frequency excitation, Δε =

εs − ε∞ where εs is the quasi-static, low-frequency permittivity, and τ is the

characteristic relaxation time. In the case of BaTiO3 classic piezo ceramic, the

Debye equation for the frequency dependence of the complex permittivity is

extended to Cole-Cole model [10, 11]:

ε∗(ω) = ε′(ω) − iε′′(ω) = ε∞ +
Δε

1 + (iωτ)α
, (10.2)

where ε′(ω) and ε′′(ω) are the real and imaginary part of the permittivity, respec-

tively. α is linked to the distribution of relaxation time (0 < α < 1). Cole-Cole

model gives a fractional dependence of the permittivity versus the frequency and

gives correct simulation results of a piezo ceramic sample. In case of ferroelectric

polymers, an extended version is proposed to consider the unsymmetrical and

broadness of the dielectric dispersion curve. This extension called Havriliak-Negami

[12] relaxation requires two fractional parameters:

ε∗(ω) = ε′(ω) − iε′′(ω) = ε∞ +
Δε

(1 + (iωτ)α)β
, (10.3)
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with an additional fractional exponent β. In this article, we establish the link

between the fractional operators used in the high-amplitude dielectric hysteresis

model and the fractional dielectric permittivity models (Cole-Cole), well adapted

to the large bandwidth frequency dependence of the permittivity. We also verify if

the dynamic mechanisms responsible to the hysteresis frequency dependence are

similar to those linked to the frequency dependence of the permittivity.

10.2 Nonlinear Model Using a Fractional Derivative

10.2.1 High Excitation Amplitude Fractional Hysteresis Model

The high-amplitude fractional dielectric hysteresis model is used in this study. This

model has already been tested successfully previously [13, 14]. Furthermore, it is

described precisely with a large number of comparisons of measure/simulation to

illustrate its efficiency [15, 16]. The model is constituted of two contributions. A

quasi-static contribution related to the low-frequency behavior (f ≪ 1 Hz) and

a dynamic contribution based on fractional operators and related to the frequency

dependence of the hysteresis.

10.2.1.1 Quasi-Static Contribution

The easiest way to observe the quasi-static contribution is to plot the spontaneous

polarization P , versus the electric field E, at very low frequencies (f ≪ 1 Hz).

At such frequency levels, we assume that Bloch wall movements will behave

similarly to mechanical-like dry friction oscillations [13, 14]. Stressed by an external

excitation, Bloch walls jump successively from one pinning defect to another

until they reach a steady state where a minimum energy level is obtained. Each

jump can be considered as a small mechanical dry friction, and consequently as

a small amount of losses. A static (frequency-independent) equation based on its

mechanical dry-friction counterpart has been established in order to consider this

property. Basically, this equation describes how a major symmetrical hysteresis loop

P(E) can be obtained by translating a hysteretic curve. The sign of the translation

is equal to the sign of the time derivative of the polarization and the amplitude equal

to the coercive field, Ec. In the time domain, the polarization can be written as:

P(t) = F

(

E(t) − Ecsgn

(

dP(t)

dt

))

. (10.4)

Here, F(E) (or inversely F−1(P )) represents the behavior of a nonlinear

dielectric. Its mathematical description is as follows:

F(E(t)) = σ tan−1

(

E(t)

γ

)

. (10.5)
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An experimental protocol has been defined to obtain this F(.) function. This

procedure details are explained in detail in [13]. The parameters γ , σ and the

function F are obtained by fitting the tested samples’ experimental anhysteretic

curve to the analytical expression (Eq. 10.5). Unfortunately, due to its simplicity,

Eq. 10.4 is limited to the description of symmetrical major hysteresis loops observed

during steady state and for high-amplitude electrical field (E0 ≫ Ec). Differences

with experimental results will appear as soon as the excitation is no longer

symmetrical (first polarization curve, minor hysteresis loops). Equation 10.4 is

limited to just a single Bloch wall movement. To overcome this limitation and to get

an accurate model independent of the experimental situation, we need to take into

account a large number of domain wall dry frictions, as is the case experimentally.

A distribution of mechanical dry frictions (called spectrum), characterized by their

own coercive fields Eci and polarization Pi in addition to their own weights, is taken

into account to converge into much more precise simulation result:

Pi = F

(

E(t) − Ecisgn

(

dPi(t)

dt

))

, (10.6)

k
∑

i=1

Spectrum(i) × Pi(t) = P(t). (10.7)

Spectrum(i) represents the distribution of these basic dry frictions (wall move-

ments). A deconvolution between the experimental first polarization curve and the

F function allows to obtain this distribution. Large number of results as well as

further information concerning the static model are available in [13–17].

10.2.1.2 Dynamic Contribution

Usually, frequency dependence in ferroelectric hysteresis models (Eqs. 10.6, 10.7)

is considered by adding a viscous losses term to the quasi-static contribution. Such

a consideration modifies Eq. 10.4 in the following way:

P(t) = F

(

E(t) − Ecsgn

(

dP(t)

dt
+ ρ

dP(t)

dt

))

. (10.8)

Unfortunately, simple experimental test quickly demonstrates that this equation

can only be used with a moderate accuracy on a restrained frequency bandwidth.

If the comparison of simulation/measure for the amplitude-versus-frequency curve

correctly fits the low-frequency range, the difference for the increasing frequency

is important. The viscous losses term ρdP/dt , where ρ is a material constant,

in Eq. 10.8 leads to an overestimation of the high-frequency component of the

polarization signal. To overcome this problem, we need an operator that balances

the low-frequency and the high-frequency component in a different way than a

straight time derivative. Such operators exist in the framework of fractional calculus;
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there are so-called non-entire derivatives or fractional derivatives. The fractional

derivative generalizes the concept of derivative to non-integer orders. The fractional

derivative of a smooth (arbitrary) function g(t) is defined through a convolution

between g(t) function and tα�(t)/Ŵ(1 − α) where Ŵ(α) is the gamma function; α,

the order of fractional derivation; and �(t) is the step Heaviside function (see [12],

while a summary of various representations can be found in [18]). After addition of

fractional terms in our simulation, the model equations (Eqs. 10.6, 10.7) become:

Pi = F

(

E(t) − Ecisgn

(

dPi(t)

dt
+ ρ

dαPi(t)

dtα

))

, (10.9)

k
∑

i=1

Spectrum(i) × Pi(t) = P(t). (10.10)

10.2.2 Model for the Complex Permittivity Under Weak

Electric Field

At room temperature and as the electric field is weak, we admit that the real part

ε(ω) and the imaginary part ε(ω) of the complex permittivity measured around

an operating point are just frequency dependent. Both components of the complex

dielectric permittivity are linked to each other by the well-known Kramers-Kronig

relations [17]. Debyes model has been one of the first models proposed to deal

with the dielectric relaxation. But first experimental results have rapidly shown that

corrections of that simple model will be necessary for a correct description. The

Cole-Coles model introduces an improvement considering a distribution function

for the relaxation time. This correction has been possible as a result of the extension

of the Debyes model to a non-entire order. Cole-Coles model is indeed a frequency

fractional dependence of the evolution of the complex permittivity. From the Cole-

Coles model, ε(ω) and ε(ω) can be written as:

ε′(ω) = ε∞ +
Δε′

2

{

1 −
sinh(βz)

cosh(βz) + cos
(

β π
2

) , (10.11)

ε′′(ω) =
Δε′

2

{

1 −
sinh(β π

2
)

cosh(βz) + cos
(

β π
2

) , (10.12)

In the above expressions z = ln(ωτ), Δε = εs − ε∞, and β = (1 − α), where

α shows the deformation of the semicircle arc in the Cole-Cole plot, i.e., it is the

angle from the ε axis to the center of the semicircle arc. ε(ω) is related to the stored

energy within the sample. ε(ω) is related to the dissipation (loss) of energy within

the medium. According to the Cole-Coles model, the complex permittivity ε∗ may

be written as:
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ε∗ = ε′(ω) − iε′′(ω) = ε∞ +
Δε

1 + (iωτ)α
(10.13)

with Δε = εs − ε∞ and 0 < α = 1 − 2σ/π ≤ 1, while σ is the angle with

respect to the semicircle center. Various methods can be employed to determine this

angle [18].

10.2.3 Relation Between High Excitation Amplitude Dielectric

Hysteresis Fractional Model and the Complex

Permittivity Cole-Cole Model

We start with a weak excitation contribution, sufficiently weak to assume that

even for hysteretic material cases, there are linear relations between the dielectric

polarization P and the electric field E. If the frequency is small and the polarization

is harmonic:

P(t) = P0cos(ωt) (10.14)

the static (instantaneous) contribution of E is given by:

Estat(t) =
P0cos(ωt)

εstat
(10.15)

As the frequency is increasing, the dynamic contribution of the electric field

is considered because of the fractional relation as it is the case in the hysteresis

fractional model:

Edyn(t) = ρ
dαP

dtα
. (10.16)

Here P is a harmonic-type waveform, so the dynamic contribution of the electric

field can be expressed by its analytical solution:

Edyn(t) = ρP0ω
α cos

(

ωt + α
π

2

)

. (10.17)

Finally, for higher frequencies, the electrical field including all contributions is

described by:

E(t) = ρP0ω
α cos

(

ωt + α
π

2

)

+
P0cos(ωt)

εstat
(10.18)

In the complex representation, an electric field ℜ{E(t)} = E(t) and a corre-

sponding dielectric coefficient ε can be written as follows:
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E(t) = P0 exp(iωt)

[

1

εstat
+ ρωα exp

(

iα
π

2

)

]

, (10.19)

ε =
1

1

εstat
+ ρωαe

iα
π

2

, (10.20)

ε =
εstat

1 + εstatρωαiα
. (10.21)

Finally,

ε =
εstat

1 + (iωτ)α
, where τα = ρεstat. (10.22)

If we assume ε(0) ≫ ε∞ which is obviously our case as we work with

piezoceramic where ε(0) ≈ 1800 and ε∞ ≈ 100, the relation between Cole-Coles

model and our high electric field amplitude model is clear:

ε = ε∞ +
ε(0) − ε∞

1 + (iωτ)α)
≈

εstat

1 + (iωτ)α)
. (10.23)

10.3 Characterization and Experimental Validation

A soft PZT composition (P188 obtained from Quartz & Silice, France, Navy type

II) has been tested in this study (Table 10.1).

Cylindrical specimens (of 6.35 mm diameter and 4 mm height) are exposed to

the external electric field. Constant temperature conditions and free mechanical

properties of the sample are assumed.

10.3.1 High-Amplitude Electric Field Characterization

The excitation electric field is dimensioned to provide a maximal value close to

2 kV/mm. Under such level of excitation, we highly exceed the coercive field of the

Table 10.1 PZT (P188) material parameters

Parameter Symbol Units Typical value

Density ρ′ 103 kg m−3 7.7

Poisson’s constant σ ′ – 0.3

Curie temperature Tc
◦C 340

Dielectric permittivity εT
33/ε0 – 1850

Piezoelectric coefficient d33 pC/N 425
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Fig. 10.1 Experimental measuring setup

material. A sinus signal of controlled frequency is used as input of a 10 kV Optilas

Trek high-voltage amplifier. To avoid dielectric breakdown, the specimens are

electrically insulated with silicon grease. The electric current is monitored by charge

measurement (Kistler amplifier 5011). The polarization field is determined by

integration of the charge measurement. Post processing, the numerical integration

is performed. Figure 10.1 presents the experimental measuring setup especially

developed for the high-amplitude electric field characterization. The role of the rod

in the middle of the frame is to transmit the tested samples displacement to the

displacement sensor. Even if the rod can have side effect because of its inertia,

we have checked using laser vibrometer that the mechanical displacements are

correctly transmitted by the system. For an electric field amplitude close to 2 kV, the

frequency limitation of the high-voltage amplifier is close to 100 Hz for ceramics of

6 mm diameter.

The excitation signal provided by the impedance analyzer consists of an AC

sine of varying frequency with a maximal value corresponding to 1 V. The analyzer

behaves as a perfect voltage source. The electrical current crossing the tested sample

is monitored simultaneously. From the imposed voltage and from the measured

current, the impedance analyzer provides instantaneously the paralleled voltage-

equivalent capacitance and the losses angle versus the frequency. The analyzer

generates a linear sweep on a large frequency bandwidth available (40 Hz–40 MHz).

In this study the maximum frequency tested has been reduced to 50 kHz to avoid the

mechanical resonances which completely disturb the measure.
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10.4 Experimental Results

Among others, an objective of this study is to check the accuracy of the fractional

operators taken into account and the frequency dependence of the dielectric losses

in a ferroelectric material. Both situations were tested then, the complex dielectric

permittivity and the dielectric hysteresis dynamic under high level of external

electric field.

As illustrated, in the model description in the above section, a theoretical

frequency dependence relation can be established between Cole-Cole dielectric per-

mittivity model and high excitation amplitude hysteresis model. In this experimental

part, comparison of simulation/measure is exposed to validate first the viability of

our theory and to check next if the dynamic parameters can be conserved through

the scales. If this statement is confirmed, it means that whatever the scale, the

dynamical behaviors are similar. It confirms too that a simple impedance meter

analysis is enough to parameterize the materials ferroelectric dynamic behavior.

Figure 10.2 shows comparisons of simulation/measure obtained under quasi-static

conditions.

Figure 10.3 shows the quasi-static, high excitation amplitude, model parameters.

Figure 10.4 shows similar comparisons for frequency varying from 2 MHz to 50 Hz.

It is worth noticing that Fig. 10.4 exhibits good simulation/measure correlations on

high-amplitude hysteresis loops. Unfortunately on such kind of measures, the high-

frequency limit is rapidly reached. Beyond this maximal frequency, the current

required to polarize the piezo ceramic is so high that the voltage amplifier is no

longer suitable to provide it. One solution is to reduce the surface area of the tested

sample, but even with a maximal reduction, we are rapidly limited. For better clarity,

Fig. 10.5 illustrates the limitation of the first-order derivative model. In this figure,

we have intentionally plotted only the high-frequency simulation results obtained

for α = 0.53. However, the results obtained for f = 0.5 Hz and higher are similar

to those obtained as α = 1. After validation of the high-amplitude excitation

dynamic hysteresis model, it is time now to focus on complex dielectric model.

Impedance meter gives the frequency evolution of the real and the imaginary part of

the permittivity.

Cole-Cole plot can be obtained then and compared to those obtained with the

Cole-Cole model. Cole-Cole model is configured using the same parameters to those

giving good results with the hysteresis model. Unfortunately, the high-frequency

limit of the impedance meter is relatively low. Indeed, as soon as the first mechanical

resonant appears, the impedance of the tested sample changes radically, and the

voltage source is no longer suitable to supply to the ceramic. The half circle

Cole-Cole plot obtained is actually not even one third of a circle. The frequency

bandwidth tested is sufficiently large to conclude that the comparisons obtained give

very interesting results. The simulated curves obtained with the Cole-Cole model

and the experimental ones fit almost perfectly and validate our expectations. The

physical behaviors responsible for the dynamic dielectric losses are similar under

9



Fig. 10.2 Comparison of simulation and measurement results in a quasi-static limit (f < 50 mHz)

for different initial polarizations (initial conditions for (a)–(c))
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Fig. 10.3 Spectrum distribution function and model parameters fitted to the experiment. The

system parameters are presented in Table 10.2

Table 10.2 Simulation

parameters
Quasistatic parameters Dynamic parameters

Symbol Value Symbol Value

γ 1000 α 0.53

σ 30 ρ 50,000

high and weak electrical excitation field. They can then be modelled using the same

operators. This observation is particularly interesting because it allows limiting the

piezo ceramic characterization to the impedance analyzer (where all the dynamic

model parameters can be set) and to anticipate the high electrical amplitude stress

behavior in simulation. Impedance analyzer measures are quick and easy and can be

repeated without special attention which is obviously not the case in high-amplitude

hysteresis measure.

10.5 Conclusions

Fractional operators taken into account the dynamic dielectric losses through a piezo

ceramic material under high electrical excitation were tested successfully in the

past [14, 19–21]. This technique gives good accuracy on frequency dependence of

hysteresis loops (see full black lines with α ≈ 0.5 in Fig. 10.4). It also allows to
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Fig. 10.4 Comparison of simulation and measurement results under dynamic conditions. Note

that the convergence of the simulated (black line) for α ≈ 0.5 and experimental results (black

points) and the lack of convergence (simulation results in red lines lower panels) for α = 1

envisage other dynamic manifestations such as creep behavior, ageing, and extended

electrode contacts. In this article, the link between the fractional consideration

used under high electric field amplitude in the limit of low frequency (required for

hysteresis loop plots) and very low excitation level but high-frequency bandwidth

measures was obtained using an impedance analyzer and discussed in the context

of the Cole-Cole model. In both limits, it was confirmed that the dynamic losses

exhibit the same physical origin, and consequently they could be modelled using

the same operators and the same parameters. This notation is particularly interesting

because it allows to reduce the piezo ceramic characterization to the impedance

analyzer characterization. In this article, authors have focused their study to soft

piezo ceramics. Future work will deal with other types of ferroelectric material such

as polymers.
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Fig. 10.5 Comparison of simulation and measurement results in the Cole-Cole plot (ε(ω) versus

(ε(ω))
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