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Transport properties of disordered quantum confined helical Dirac systems are investigated in the
large energy limit. As long as the 2D transport length is larger than the perimeter of the nanowire,
the conductance and the Fano factor are sensitive to disorder only when the Fermi energy is close
to an opening of a transverse mode. In the limit of a large number of transverse modes, transport
properties are insensitive to the geometry of the nanowire or the nature and strength of the disorder
but, instead, are dominated by the properties of the interface between the ohmic contact and the
nanowire. In the case of a heavily doped Dirac metallic contact, the conductance is proportional to
the energy with an average transmission T = π/4 and a Fano factor of F ' 0.13. Those results can
be generalized to a much broader class of contacts, the exact values of T and F depending on the
model used for the contacts. The energy dependence of Aharonov-Bohm oscillations is determined,
when a magnetic flux is threaded through the cross section of the nanowire.

Transport properties of two dimensional helical Dirac
fermions were first studied in carbon nanotubes1–5 and
more recently in graphene6,7 and topological insulators8.
For massless fermions, the linear dispersion relation
and the symmetries that constrain scattering not to
connect orthogonal (pseudo)spins, induce a strongly
anisotropic scattering, leading to a large transport
scattering time9–12. The long length scale for the
transport length ` results in large conductivities and
in quantum confinement effects in disordered systems
with one or more dimensions smaller than `. Prior
work6,7 highlighted for instance the properties of Dirac
fermions either in absence of quantum confinement9,10

or disorder13–15 or in presence of both but focusing on
low energy1–3,8,16,17. Although the transport properties
are roughly understood close to the Dirac point, the co-
existence of strong quantum confinement and low Fermi
energy in Dirac fermion system is rarely realized in real
systems like 3D topological insulator nanowires18,19 or
narrow graphene nanoribbons20–22.

A clear understanding of the interplay between scat-
tering and quantum confinement at large Fermi energies
would shed light on recent experimental works18,19,23–27.
In particular, accounting for both contacts and disorder
allows us to evaluate their relative contributions to the
transport properties. Moreover, in the case of weakly dis-
ordered topological insulator nanowires, we provide the
energy dependence of Aharonov-Bohm oscillations close
to and far from the Dirac point. This makes it possible to
distinguish topologically trivial features from nontrivial
ones18,19,26.

In this work, more specifically, we investigate the prop-
erties of disordered topological insulator nanowires with
`/W > 1 where W is the perimeter of the nanowire.

We consider the case of a perfect interface with metallic
electrodes and we focus on the high-Fermi-energy regime
(ε � ∆ with ∆ = hv/W and v the Fermi velocity) in
the presence of a magnetic field parallel to the nanowire
axis. Starting from an approximate analytical derivation
of the transmission of transverse modes, we calculate the
transport properties at any energy and magnetic flux, in-
cluding quantum corrections induced by intermode scat-
tering. Comparison with a numerical simulation validate
our analytical approach and an excellent agreement is
found at high energy as long as `/W > 1. In this regime,
the energy and disorder strength dependence of the con-
ductance and shot noise reveal the ballistic nature of the
transport. Finally, we generalize our study to the case
where a magnetic flux is thread through the cross section
of the nanowire, leading to Aharonov-Bohm oscillations
of the conductance.

I. MODEL

We consider the case of a band structure with a single
spin-helical Dirac cone (Fig. 1a), as realized for example
in Bi2Se3

28, but our results are easily generalized to the
case of graphene nanoribbons or carbon nanotubes in ab-
sence of intervalley scattering. The system is described
by the Dirac Hamiltonian

H = vp · σ + V (r) + Vc (1)

with σ = (σx, σy) the Pauli sigma matrices, r = (x, y)
where x is the longitudinal coordinate and y the trans-
verse coordinate, and V (r) stands for a Gaussian corre-
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FIG. 1. a) 2D band structure of a massless fermion system
with spin-momentum locking. The planes correspond to the
section of the cone for discrete values of the transverse wave
vector due to quantum confinement. b) section of the 2D band
structure at a given Fermi energy. c) 1D cut of the disorder
and contact potential at y = 0, plotted together with the
corresponding θ angle.

lated scalar disorder such that

〈V (r)V (r′)〉 = g
(~v)2

2πξ2
e−|r−r

′|2/2ξ2 . (2)

Here ξ is the disorder correlation length and g is a dimen-
sionless parameter that measures the disorder strength.
The qualitative results of our study do not depend
strongly on the exact nature of the disorder correla-
tion function. The contacts are modeled by a potential
Vc → −∞ for x < 0 and x > L and Vc = 0 otherwise13,16

(see Fig. 1c). This model corresponds to a strong dop-
ing of the topological insulator below metallic electrodes,
or, equivalently, to the injection of quasiparticles from a
metallic electrode with kx � ky (kx and ky are the com-
ponent of the wave vector k parallel and perpendicular to
the axis of the nanowire). Our results, as we we will see
below, can be generalized to a broader class of contacts.

In a nanowire geometry, ky is quantized due to peri-
odic boundary conditions (Fig. 1a and b). In general,
k⊥,n = εn/~v = (n+ φ/φ0 − 1/2)×∆/~v where the 1/2
comes from the Berry phase induced by spin-momentum
locking29–31 (absent in graphene nanoribbons), n ∈ Z is
a mode index, φ is the magnetic flux threaded through
the cross section of the nanowire, φ0 = h/e is the mag-
netic flux quantum and εn is the energy of the mode n.
In addition to the transverse quantized energy ∆, we also
consider the longitudinal quantized energy ∆‖ = π~v/L
where L is the length of the wire.

Ignoring first the quantum confinement and consider-
ing the 2D limit only, the transport relaxation time τ and
the transport length ` = vτ can be explicitly determined
for a Gaussian potential, starting from Fermi’s golden

rule16,32. As expected, ` and τ do not depend on the
incident direction of the k-vector of the wave function33:

` = vτ =
2kξ2

g

exp(k2ξ2)

I1(k2ξ2)
(3)

where I1 is the modified Bessel function of the first kind.
Even if the 2D limit is valid only for k` � 4π, such
that the divergence of ` at low energy is smoothed out,
` reaches a minimum `m at energy ε corresponding to
kξ ∼ 1. As a result, for a conductor with a finite width
W < `m, the disorder is not strong enough to set the sys-
tem in the 2D diffusive limit. Boundary conditions then
modify the density of states that exhibits a maximum at
each transverse mode opening, a feature typical of the
1D nature of the subband associated to the mode—the
system is then quantum confined. This condition reads
g . 0.5 for ξ/W = 0.05 (see Appendix A).

II. TRANSMISSION MODES AND DISORDER

At high energies, ` is larger than the system size and
transport properties are determined by the interface be-
tween the nanowire and the lead. A perfect interface
simply consists of a step in the chemical potential at
x = 0 and x = L. As long as the step does not depend
on y, translational invariance implies the conservation
of ky such that only intra-mode backscattering processes
takes place at the interface. Each transverse mode can
be considered independently following Refs. 13 and 34.
For a given mode n with θ = arctan([(ε/εn)2 − 1]−1/2),
the reflection (rθ′,θ) and transmission (tθ′,θ) coefficients
only depend on θ in the nanowire and θ′ in the contact.
Contrary to the massive case, the Hamiltonian (1) does
not require the continuity of the spatial derivative of the
wave function but rather only the continuity of the two-
component wave function, which gives rθ′,θ = sin([θ −
θ′]/2)/ cos([θ + θ′]/2) and tθ′,θ = cos(θ′)/ cos([θ + θ′]/2).
The total transmission amplitude t of the mode n consid-
ering a non-disordered nanowire and two contacts with
perfect interfaces is

t =
cos θ cos θ′

cos θ cos θ′ cosϕ+ i (sin θ sin θ′ − 1) sinϕ
(4)

with ϕ = kxL. This expression is a generalization to an
arbitrary θ′ of the transmission amplitude for propagat-
ing modes found in Ref. 13 (where θ′ = 0). Contrary to
Ref. 13, we do not consider evanescent modes which ex-
ponentially vanish far from the Dirac point and for long
distances between the contact (L > W ) such that trans-
port properties are strongly dominated by propagating
modes. The transmission is T = |t|2.

We first consider a weak disorder and follow a Wentzel-
Kramers-Brillouin approach35. The main effect of the
disorder is to randomly redistribute the phase ϕ of each
mode without inducing any inter-mode scattering. Thus,
the position of the Fabry-Pérot resonances that corre-
sponds to kxL = pπ (p ∈ N) in the clean case will
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be shifted depending on the disorder configuration and
the disorder-averaged transmission is given by 〈T 〉 =

1/2π ×
∫ 2π

0
|t(ϕ)|2 d(ϕ). This approach is equivalent to

a temperature smearing with 4kBT > ∆‖. 〈T 〉 can be
explicitly calculated:

〈T 〉 =
cos θ cos θ′

1− sin θ sin θ′
. (5)

More particularly, when Vc → −∞ we have θ′ ' 0 and

〈T 〉 = cos θ =

√
1−

(εn
ε

)2
. (6)

We note that the transmission of a mode differs from
1 except for θ = 0 that corresponds to the perfectly
transmitted mode discussed in16,36,37. This mode cor-
responds to εn = 0 which requires half a quantum of flux
to be threaded through the cross-section of the nanowire
to compensate the Berry phase picked up by a particle
when it goes around the nanowire. This approach is valid
as long as (i) the system is quantum confined, which re-
quires ` > W and (ii) |dλ/dx|� 2π where λ = 2π/kx

35.
It is therefore not valid close to the onset of a mode but
it is satisfied for ε & εn for the conditions we are using
here.

We compare the analytical expression (6) to numeri-
cal simulations following the method presented in16,38,39.
The transmissions of a disordered nanowire with W =
200 nm and L = 500 nm is calculated up to ε/∆ ∼ 25
and averaged over ∼ 103 disorder configuration for differ-
ent strength of disorder ranging from the ballistic limit
(g = 0) to the diffusive limit (g = 1). We choose a cor-
relation length ξ = 10 nm consistent with experimental
measurements12.

Results are presented in Fig. 2 for half a flux quantum
threading the cross section of the nanowire. Due to time
reversal symmetry, the zero energy mode is topologically
protected and its transmission is equal to 1 independently
of the strength of the disorder16,37. All other modes ex-
hibit Fabry-Pérot resonances that are not fully averaged
out for a weak disorder (g . 0.02). Nevertheless, the av-
erage transmission roughly follows the analytical formula
(6) in general.

We notice two kinds of deviation from the adiabatic
limit for the simulated data. Firstly, dips appears close
to the onset of each mode for g & 0.05. They are smeared
out for g & 1. This is the signature of the modification
of the density of states by quantum confinement. More
quantitatively, starting from the Fermi golden rule and
assuming ` > W , we obtain:

1

τk
=

gv

2W

∑
kn

∣∣∣∣1− cos2 θq
cos θn

∣∣∣∣ exp

(
−q

2ξ2

2

)
(7)

where τk is the transport time of a k-state, q = kn − k,
θn is the angle of final kn-state and θq = θ−θn. Contrary
to the diffusive case, τk explicitly depends on the initial
state k. Dips in the transmission come from the opening

of transverse mode associated to the divergence of the 1D
density of state (cos θn = 0). Far from the onset (ε−εn �
∆), this effect is strongly reduced by the exponential cut-
off of the Gaussian disorder (q2ξ2/2 � 1). For g & 1,
the disorder broadening induces overlapping dips and the
transmission deviates clearly from its ballistic limit (see
Fig. 2c).

Secondly, at high energy, the transmission is above the
ballistic limit for any value of g. We attribute this to
an interplay between the contact and the disorder due to
weak anti-localization when inter-mode scattering is al-
lowed as described in Ref. 2. The disorder induces a de-
viation from the ballistic transmission T0 that takes into
account quantum interferences in a given mode (Fabry-
Pérot interferences) and we have generally T = T0 + δT
with δT/T0 � 1 for a weak disorder. We consider weak
anti-localization type interferences between the two time
reversal symmetric states k+ = ky + kx and −k+. The
ballistic transmission T0 corresponds to a situation where
only intra-mode scattering occurs (at the interface with
the contact) with no inter-mode scattering. As a first
approximation, we take into account processes involving
only one inter-mode scattering event. The transmission
T of a given mode corresponding to a perpendicular wave
vector ky relates the incoming plane wave (k+ = ky+kx)
to the outcoming plane wave (k− = ky − kx) such
that the two kind of interfering paths that lead to weak

FIG. 2. The transmission of the transverse modes calcu-
lated and disorder-averaged for different disorder strength g
(0, 0.02, 0.2 and 1) ranging from the ballistic to the diffusive
regime. Black lines indicate the ballistic transmission with no
quantum corrections (γ0 = γ1 = 0). Red lines are the best fit
of the transmission with quantum corrections for a) and b)
(γ0 = 0.39 and 0.43 and γ1 = −0.80 and −0.92 for g = 0 and
g = 0.02 respectively). Good agreement with numerical data
with γ0 = 0.4 and γ1 = −0.85 for g = 0.2 is seen, whereas no
satisfactory parameters fit the g = 1 data; the γ0 = 0.4 and
γ1 = −0.85 transmissions are indicated by dotted lines.
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anti-localization can be described by the two following
scattering sequences: k+ → k− → −k+ → k− and
k+ → −k− → −k+ → k− (see Fig. 3). Due to the π
Berry phase that a particle picks up along a backscat-
tering loop associated to a 2π rotation of the spin, the
correction contribute to an enhancement of the trans-
mission at high energy for quantum confined spin-helical
Dirac systems2. Such scattering events involve both adia-
batic backscattering at the contact interface (q1 = −2kx)
and inter-mode scattering on the disorder (q2 = −2ky),
which limits the corrections to small ‖q2‖ < 1/ξ due to
the cutoff of the disorder in the formula (2). The q1-
scattering process is related to the reflection coefficient
|r| = | sin θ/(1 + cos θ)| ' | sin θ| for small θ. Therefore
the first order correction due to weak anti-localization is
∝ (sin θ)2 = (εn/ε)

2. In general, higher order are pro-
portional to (εn/ε)

2p with p ∈ N and the transmission of
the nth-mode including the quantum corrections can be
written as

〈T 〉 = cos θ ×

(
1 +

∞∑
p=0

γp

(εn
ε

)2(p+1)
)

(8)

In general, the coefficients γp depend on the effectiveness
of the disorder in coupling k+ to −k−. We find good
agreement with the numerical simulation by including
only first two order corrections γ0 and γ1, see Fig. 1, for
the full set of transmissions up to g = 0.5 at high energy.

Importantly, γ0 and γ1 only weakly depend on L, ξ and
γ0 as long as ` > W (see Appendix B) with γ0 ≈ 0.43 and
γ1 ≈ −0.93. Hence, transport properties of the system
depend neither on the length nor on the detail of the
microscopic disorder (g and ξ) anymore.

III. CONDUCTANCE AND SHOT NOISE

From the transmissions of the different transverse
modes, we extract the conductance G = e2/h ×

∑
i〈Ti〉

and the Fano factor F =
∑
i〈Ti〉(1 − 〈Ti〉)/

∑
i〈Ti〉 for

a quantum confined nanowire. For a large number of
modes (ε� ∆), we can take the continuous limit and we
replace the discrete sum by an integral where i is con-
sidered as an continuous index. Keeping only γ0 and γ1
corrections, we have

G =
e2

h

2ε

∆
T , (9)

F = 1−
(

2

3
+

4

15
γ0 +

4

35
γ1

)
/T (10)

with the average transmission per transverse mode

T =
π

4
+

π

32
(2γ0 + γ1) . (11)

Agreement with the simulations is excellent for g < 0.05
even at low energy and it remains very good up to g ' 0.5
in the limit of large number of modes. We note that for

FIG. 3. Upper panel: Energy dependence of the conductance.
Gray lines are numerical data for g = 0.02, 0.2 and 0.5 (from
light to dark gray). The red line is the conductance calculated
from Eq. (9) with γ0 = 0.43 and γ1 = −0.92 and blue dashed
line is the large number of mode limit for the same values of
γ0 and γ1. A schematic of a WAL backscattering process is
shown in the inset. Lower panel: Energy dependence of the
Fano factor shown with the same color code as for the con-
ductance. The ballistic limit (γ0 = γ1 = 0) is indicated by the
dotted line and the arrow points at the energy corresponding
to kξ = 1.

all g, best fits gives 2γ0 ∼ −γ1 such that the conductance
and the Fano factor can be approximated by

G ' e2

h

2ε

∆

π

4
(12)

F ' 1− 8

3π
(13)

As already reported for graphene nanoribbons21,22, the
linear dependence of the conductance with ε or kF is
an indication of quantum confinement. In our case the
proportional factor is T = π/4 instead of 1 when the
coupling to the contact is perfect. Generally, the trans-
mission of a mode 〈T 〉 depends on the model used for
the contact far from the Dirac point40–42. Nevertheless,
as long as the transmission (t) and reflection (r) coeffi-
cients of the contact-to-nanowire junction are functions
of the energy through the ratio ε/εn only, the high energy
conductance and the Fano factor can be expressed in a
similar way to that in Eq. (12) and Eq. (13). Indeed,
the transmission 〈T 〉 is then also a function of ε/εn and
if we note 〈T 〉 = f(εn/ε), we have

G ' e2

h

2ε

∆

∫ 1

0

f(x)dx, (14)

F ' 1−
∫ 1

0
(f(x))

2
dx∫ 1

0
f(x)dx

. (15)



5

The average transmission is given by T =
∫ 1

0
f(x)dx. In

the model we used so far, this condition is satisfied as
long as we neglect intermode scattering.

We can now examine the conditions related to the en-
ergy dependence of t and r depending on the model for
the contact. We focus here on Dirac type contact for any
value of Vc and on a (massive) metallic contact and de-
termine the energy dependence of t and r, with the Fermi
energy in the contact a constant. This corresponds to the
real situation of a gated device for which the field effect
is screened under the contact and not in the nanowire.
We consider the case of a perfect interface which induces
no intermode scattering (∂Vc/∂y = 0).

For a contact modeled by a highly doped Dirac
fermions, the global transmission between a mode de-
fined by any θ′ in the contact and θ in the nanowire is
given by Eq. (5). As a result, 〈T 〉 depends on the energy
ε through cos θ and sin θ that depend on ε/εn only so
that the previous condition is satisfied.

For a massive contact, each transverse mode is spin
degenerate and the nanowire acts as a perfect spin filter:
only the spin oriented along θ is transmitted, the orthog-
onal spin being completely reflected. The transmission
properties of the quasi-particle are then given by the con-
tinuity of wave function and its spatial derivative as for
massive particles only. The transmission and reflection
coefficient between the contact and the nanowire are now
given by t = 2kx/(kx + k′x) and t = (kx − k′x)/(kx + k′x).
Taking into account the conservation of ky at the inter-
face, we have kx tan θ = k′x tan θ′. Hence, t and r again
depend on ε through the ratio ε/εn only and following
the method developed above for Dirac contact, we can
show that 〈T 〉 = 2 tan θ tan θ′/(tan2 θ + tan2 θ). Again,
this expression satisfies the energy dependence condition.

From Eq. (14) and (15), we observe that the exact
nature of the contact influences the slope of the energy
dependence of the conductance and the high energy limit
of the Fano factor. We focus below on the effect of dis-
order in the nanowire. For strong values of the disor-
der strength, the worst agreement is found when kξ ∼ 1
which roughly corresponds to ` ≈ `m (see Fig. 3). There,
deviations to the weak disorder regime are related to in-
termode scattering that induces dips in the mode trans-
missions as shown in Fig. 2. Those dips are responsible
for the oscillations in G(ε).

Remarkably, the transport properties strongly deviate
from the diffusive limit, for which G ∝ g−1 and G ∝ L−1
(see Appendix C). For ` > W , scattering to modes
close to their onset dominates [Eq. (7)], inducing oscilla-
tions of the transmission. As long as the disorder broad-
ening δ = h/τ is smaller than ∆, scattering only has
marginal effect on G since the nonoverlapping condition
∆/δ = `/W > 1 holds for any mode index and therefore
over the full energy scale. Hence, quantum confinement
drives the system in the ballistic regime. This weaken-
ing of the scattering by the quantum confinement leads
to a conductance that is not proportional to the length
between the contact as observed in Ref. 18. The ballistic

feature of the conductance is confirmed by the low value
of F that is significantly smaller than its diffusive value
F = 1/3 at large energy (see Fig. 3). This value is given
by the nature of the interface between the nanowire and
the contact. In the case of a perfect transmission of the
interface like for a quantum point contact geometry20–22,
the Fano factor should vanish. For the perfect interface
considered here, the transmission of each mode is not
equal to 1 but F is nevertheless considerably reduced
with respect to its diffusive limit.

The consequences of the quantum confinement on the
transport regime are specific to Dirac systems. For mas-
sive particles with mass m, the quantum confinement
condition reads `/W ' ∆0N/δ > 1 where N is the num-
ber of transverse modes and ∆0 = π2~2/(mW 2). As the
energy spacing between the modes n and n+ 1 is ' n∆0

for n � 1, the quantum confinement condition at large
energy (N � 1) does not guarantee the non-overlapping
between two consecutive transverse modes, especially for
small index modes (n ' 1). As a result strong deviation
from the ballistic regime is expected for massive particles
even for ` &W .43

IV. AHARONOV-BOHM OSCILLATIONS

The influence of an Aharonov-Bohm flux on the trans-
mission of the mode n is entirely contained in the value of
εn. We neglect here the effect of a Zeeman coupling that
only shifts the position of the Dirac point and renormal-
izes the value of the Aharonov-Bohm period. We use our
model to extract the complete flux dependence of the
conductance at low and large energy in the clean limit
where intermode scattering is neglected (g < 0.1). As we
can see in Fig. 4, the Aharonov-Bohm amplitude δG(ε) is
maximum at ε = 0 where δG = e2/h. Close to ε = ∆/2,
δG drops down and oscillates in a sawtooth manner with
a period ∆/2 as experimentally observed in18,26. More
information on the specific shape of the Aharonov-Bohm
oscillations are given in Appendix D. Fig. 4 indicates
that each period is associated to a π-phase shift which
has been experimentally observed in Ref. 26. Such phase
shifts are a consequence of the quantum confinement and
has a trivial origin. Only the low energy pinning of δG
at e2/h for any values of g, L, W or ξ is a signature of
the nontrivial topology.

V. CONCLUSION

In summary, we determined the transmission of any
mode of a quantum confined Dirac nanowire including
quantum correction in the presence of disorder and for a
perfect interface with the contact. Our analytical analy-
sis is in good agreement with numerical simulations and
shows that quantum confinement (`/W > 1) drives the
system into a ballistic regime, with an average trans-
mission per mode of π/4 and a Fano factor F ' 0.13.
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FIG. 4. Upper panel: Energy dependence of Aharonov-Bohm
oscillations for g = 0.02 (γ0 = 0.43 and γ1 = −0.92) at a
temperature 4kBT/∆ = 0.01. The inset is a zoom closed
to ε/∆ = 0. Lower panel: the flux dependence of the con-
ductance for different energy at the same temperature. The
smaller value of the conductance corresponds to ε/∆ = 0 and
the larger one to ε/∆ = 4.5 in steps of ε/∆ = 0.05. Energies
such that 2ε/∆ ∈ N are indicated with bold lines.

Aharonov-Bohm oscillations are found to be periodically
modulated in energy with a period corresponding to ∆/2.
A phase shift of the oscillations occurs every time that
the Fermi energy crosses an integer value of ∆/2. At low
energy (ε < ∆/2), a signature of the topology can be
seen in the amplitude of oscillations which saturates at
e2/h, independently of the geometry or the microscopic
properties of the disorder.
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Appendix A: Energy dependence of `/W

We present in Fig. 5 the energy dependence of `/W .
For Dirac fermions, the transport length ` has a minimum

FIG. 5. Transport length ` as a function of energy ε for
ξ/W = 0.05 and g = 0.1 (light blue), 0.2 (blue) and 0.5 (dark
blue). Red dotted lines indicates the asymptotic dependence
at low and high energies for ξ/W = 0.05 and g = 0.2. The
black dashed line shows ` with ξ/W = 0.015 and g = 0.2.
The gray domains indicate the ballistic regime characterized
by ` > 2L with L = 2.5 × W and the quantum confined
(quasi-ballistic) regime for which ` > W .

`m for kξ ∼ 1 and diverges both at low energy (due to
the reduction of the density of states) and at large energy
(due to the anisotropy of scattering). In those two limits,
` can be approximated by its asymptotic form

` ∼

{
4/(gk) for kξ < 1,

2
√

2πk2ξ3/g for kξ > 1.
(A1)

This is different from the massive case for which ` → 0
at low energy. As the 2D approximation is only valid for
k`� 1, the low energy divergence will be smoothed out.

In Fig. 5, the quantum confinement condition `m > W
is satisfied for g . 0.5 for ξ/W = 0.05. We note that this
approach does not describe collective effects like Thomas-
Fermi screening. It is therefore not suitable for an accu-
rate determination of the energy dependence of ` that
requires to take into account the density dependence of
both ξ and δV = ~v/ξ

√
g/2π9,10. Nevertheless, the aim

of this work is to show that the transport properties of
quasi-ballistic systems are dominated by the interface be-
tween the contact and the nanowire and not by the dis-
order in the nanowire, such that the exact energy depen-
dence of ` does not play a role for our conclusions as long
as `m &W .

The values of ` explain the clear ballistic features
(Fabry-Pérot) observed for g = 0.02 (see Fig. 2a of the
main text) since `m lies above the ballistic limit whereas
those resonances are averaged out for g = 0.2 (see Fig. 2b
of the main text), for which `m is below this limit. Never-
theless, the dips due to intermode scattering for g = 0.2
reveal the quantum confinement as expected since `m
is above the diffusive limit for any ε. Finally, dips are
smeared out by disorder broadening for g = 1 as shown
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FIG. 6. The transmission for the modes corresponding to
n = 1, 5, 10, 15 and 20 (from light gray to black) as a func-
tion of εn/ε and for g = 0.02 and L/W = 2.5. The best fit
corresponds to the red line.

in Fig. 2c, pointing to a diffusive regime as expected from
`m that clearly lies below the diffusive limit in a broad
range of energy.

Appendix B: Fit of the transmissions and
dependence of the γ parameters

In order fit the transmissions of different modes to find
the best γ parameters, we used the fact that the trans-
missions of the different transverse modes are depend on
the ratio εn/ε only for weak enough disorder. We plot
the transmissions of the modes n = 1, 5, 10, 15 and 20
as a functions of εn/ε in Fig. 6. We restrict our anal-
ysis to only five modes but no significant differences are
obtained if all modes are taken into account. The trans-
missions are roughly superimposed and we fit the data
with a single set of free parameters γ0 and γ1 that de-
scribe the quantum corrections for all transmissions. For
systems close to the diffusive limit, we adjust the param-
eters to minimize the error in the high energy limit only,
without applying the full fitting procedure. Agreement
is found to be excellent over the full energy range for
g < 0.1 (ballistic regime). At high energy (ε/εn � 1)
excellent agreement can be found for g up to 0.5.

The dependence of the γ parameters on the disorder
strength, wire length and correlation length is weak (see
Fig. 7, which is plotted on a semi-logarithmic scale). Nev-
ertheless, the dependence of the parameters corresponds
to what is roughly expected. The longer the nanowire is,
the stronger is the interaction with the disorder and the
stronger should be the quantum corrections as reported
by the dependence with L. Similar evolution is expected
and observed for the g dependence. As explained in the
main text, the ξ dependence leads to corrections that
vanish for long ξ since the q2 scattering process expo-

FIG. 7. The dependence of γ0 and γ1 is shown as a function
of L, g and ξ in a semi-logarithmic graphs.

nentially decays with ξ. The scattering processes that
lead to the first corrections of the transmission are indi-
cated in the Fig. 8.

Remarkably, the ratio γ0/γ1 is almost constant for any
value of the different parameters and we have γ1/γ0 '
−2. Hence, the contribution of the two first order trans-
mission corrections to the transport properties compen-
sate each other (see Eq. (9) and (10) in the main text)
and the conductance as well as the Fano factor are very
close to their pure ballistic limit.
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Appendix C: Length dependence of the transport
properties

We focus here on the length dependence of the trans-
port properties (G and F ) for g = 0.02 and g = 0.2
(Fig. 9). In the weak disorder limit (g = 0.02 in Fig. 9
left), the length has only a marginal effect on the con-
ductance or the Fano factor. Generally, it induces sharp
dips in the transmission (and then in the conductance)
for each energy corresponding to the onset of a trans-
verse mode that does not influence significantly the gen-
eral transport properties. This is expected since for such
a weak disorder, the system is in the ballistic regime
(`m > 2L) even for L = 2 µm (see Fig. 5).

For a stronger disorder (g = 0.2 in Fig. 9 right), the
system is far below the ballistic limit for L = 500 nm
to L = 2 µm and even very close to this limit for L =
200 nm. We indeed observe a length dependence of the
conductance but this dependence is much weaker than in
the diffusive regime, for which G ∝ 1/L. Likewise, the
Fano factor remains well below the diffusive limit(F =
1/3), which confirms the ballistic nature of the transport
even for large ratio L/W as long as the system is quantum
confined.

Appendix D: Aharonov-Bohm oscillations

The Fig. 4 in the main text shows the expected shape
of the Aharonov-Bohm oscillations for weakly disordered
system where the magnetic flux dependence of δG is plot-
ted for different positions of the Fermi energy. It indi-
cates a rich content in harmonics of δG as observed in
experiments18,25. At low energy (ε . ∆/2), the conduc-
tance exhibits sharp peaks for φ = φ0/2 and the Fourier
transform of the magnetoconductance contents therefore
many harmonics is particularly large. The harmonic con-
tent is strongly reduced when the energy increases but
the ratio between the fundamental and the first harmonic
remains generally energy dependent. Hence, this ratio is
small for 2ε/∆ ∈ N whereas 2ε/∆ + 1/2 ∈ N is associ-
ated with a large resurgence of the second harmonic. It
should be noticed that the presence of intermode scat-
tering is expected to significantly modify the amplitude

FIG. 8. Schematic describing weak-antilocalization implying
reflection on the contact (q1) and disorder scattering (q2) in
a quantum confined system.

and the shape of the Aharonov-Bohm oscillations (less
harmonics content) for rather strong disorder (g > 0.1).
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FIG. 9. Left: conductance and Fano factor (g = 0.02, W = 200nm, ξ = 10nm) for different wire lengths L. The large number
of modes limit is indicated by the red dashed line. Right: conductance and Fano factor (g = 0.2, W = 200nm, ξ = 10nm) for
different length. The large number of mode limit is indicated by the blue (conductance) and red (Fano factor) dashed lines.


