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SATURATED BOUNDARY FEEDBACK STABILIZATION
OF A LINEAR WAVE EQUATION\ast 

CHENG-ZHONG XU\dagger AND GEN QI XU\ddagger 

Abstract. In this paper, we study boundary feedback stabilization of a linear wave equation
by saturated linear or nonlinear Neumann control laws. Firstly we prove asymptotic stabilization
of the closed-loop system when the feedback control law has a linear growth rate around zero. In
particular, we study the effect of spatial dimension on the decay rate of the closed loop system. More
precisely, we prove that in the one-dimensional (1D) case the smooth solutions of the closed-loop
system decay exponentially to zero as t \rightarrow \infty ; in the two-dimensional case the smooth solutions decay
asymptotically to zero faster than any polynomial (1/t)\alpha \forall \alpha > 0; and in the three-dimensional case
the smooth solutions decay to zero like (1/t)2 as t \rightarrow \infty . Secondly we study robustness of the
stabilization faced with the boundary disturbances. We show that, in the 1D case, every solution of
the closed-loop system decays asymptotically to zero provided that the unknown disturbance is in
the Sobolev space W 1,1(0,\infty ). Finally we consider a sliding mode output feedback control law that
is regarded as the limit case of the Yosida approximation of the sign function. We prove that the
resulting system is not asymptotically stable. However each smooth solution of the resulting system
is bounded and converges asymptotically to a periodic solution as t \rightarrow \infty .

Key words. wave equation, saturated nonlinear feedback stabilization, boundary disturbance,
sliding mode control, periodic trajectories, asymptotic stability
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1. Introduction. In this paper, we consider a control problem of one-dimensional
(1D) linear wave equation with unknown boundary disturbance as follows:

(1.1)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) = u(t) + d(t), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1),

where u(t) is the control and d(t) is the disturbance assumed bounded and continuous
on [0,\infty ). Suppose that the collocated information is valid, i.e., y(t) = wt(1, t). Then
the closed-loop system by the output feedback F is described by

(1.2)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) =  - F (wt(1, t)) + d(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1),

where F : \BbbR \rightarrow \BbbR is a continuous monotone increasing function satisfying F (s)s > 0
\forall s \not = 0 and F (0) = 0.

F is said to be a saturated linear function if there are some positive constants
M1,M2, C1, and C2 such that the following conditions are satisfied:

(1.3)

\biggl\{ 
C1| \sigma | \leq | F (\sigma )| \leq C2| \sigma | \forall | \sigma | < M1,
| F (\sigma )| \leq M2 \forall | \sigma | \geq M1.
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That means F has linear growth rate around zero and bounded by some constant M2

at infinity. A simple example of the saturated linear function is

(1.4) F (\sigma ) =

\biggl\{ 
Msign(\sigma ) if | \sigma | \geq M,

\sigma if | \sigma | < M,

where M is a positive real number and sign(\sigma ) = \sigma 
| \sigma | , \sigma \not = 0.

Usually the function sign(x) is defined as sign(x) = x
| x| if x \not = 0 and sign(0) =

[ - 1, 1]. The Yosida approximation of Msign(x) is F\lambda (x) defined by, for \lambda > 0,

(1.5) F\lambda (x) =

\biggl\{ 
M sign(x) if | x| > \lambda M,

\lambda  - 1x if | x| \leq \lambda M.

Clearly, F\lambda (x) is a saturated linear function for \lambda > 0. Note that lim\lambda \rightarrow 0 F\lambda (x) =
Msign0(x), where sign0(x) denotes the element z \in sign(x) of the least norm. There-
fore, as a limit case of saturated control laws, we further consider the sliding mode
feedback controlled system (1.1), and the associated closed-loop system described by

(1.6)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) \in  - M sign(wt(1, t)) + d(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1).

In the present paper we are specifically interested in the feedback stabilization of
(1.1) by the saturated control law in (1.3). Secondly we are interested in whether or
not the stability of the system with the sliding mode control law can be deduced from
that of the system with the saturated feedback control.

Mathematically speaking the systems (1.2) and (1.6) are nonlinear and nonau-
tonomous because of the presence of the disturbance d(t). In the literature, the wave
equation with nonlinear boundary feedback control has been extensively studied (cf.
[11], [17], [5], [6], [26], and [27] to cite only a few). It has been proved in [26] and [27]
that, to obtain uniform exponential stabilization of the wave equation, the nonlinear
boundary velocity feedback must have a linear growth not only around zero but also
at infinity. Vancostenoble and Martinez [26] have proved that, with the nonlinear
feedback (1.4), the energy decay rate being nonuniform depends on the initial con-
dition. This fact has been illustrated by a recent work of Prieur, Tarbouriech, and
Gomes Da Silva [20].

Unlike the standard feedback control problem where the goal is to find a linear
stabilizing feedback control law, in the present paper we restrict ourselves to the case
where the control has the a priori constraint | | u| | L\infty \leq M , M > 0. The constraint
necessitates a choice of nonlinear feedback law which drives the state (w,wt) to zero
as t \rightarrow \infty . In a neighborhood of zero the feedback law may be nonlinear but is
bounded below and above by some linear functions (see the condition (1.3)). Inspired
by the work of Slemrod [24] (see also Chen [4], Conrad and Pierre [7], and Rao [21]),
we propose saturated feedback control laws to asymptotically stabilize the system
around the origin. Thanks to the result in [27] and [26], with the saturated feedback
control law, the nonuniform exponential decay is the best decay rate to be expected.
In the present paper, our main results are stated as follows.

(1) In absence of the disturbance, the smooth solutions of the system (1.2) with
the saturated feedback control (1.3) decay exponentially to zero in the energy space,
as time goes to infinity. Specifically, the decay rate of smooth solutions to the wave
equation changes with the spatial dimension.
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292 CHENG-ZHONG XU AND GEN QI XU

Due to the result in [27] and [26], we have no uniform exponential stability of the
closed-loop system (1.2) since F has no linear growth at infinity. However, for smooth
initial conditions we still get exponential decay of the solutions to zero, and the expo-
nential decay rate depends on the initial condition. Vancostenoble and Martinez [26]
have proved that, with the nonlinear feedback (1.4), the decay rate being nonuniform
depends on the initial condition. Our result is established for the general nonlinear
feedback (1.3).

Different from the 1D case, we prove that, in the two-dimensional (2D) case,
the smooth solutions decay asymptotically to zero faster than any polynomial (1/t)\alpha 

\forall \alpha > 0 and that the smooth solutions decay to zero like (1/t)2 as t \rightarrow \infty in the
three-dimensional (3D) case.

(2) In presence of the disturbance, for the nonlinear feedback (1.3), the solutions
to the system (1.2) decay asymptotically to zero in the energy space, provided that
d \in W 1,1(0,\infty ).

(3) As a limit case of the Yosida approximation of sign function we consider the
sliding mode output feedback control law. We prove that, even in absence of the
disturbance, the closed-loop system (1.6) is nonasymptotically stable in the energy
space. However every smooth solution of the resulting system is bounded and con-
verges asymptotically to a periodic solution as t \rightarrow \infty . Similarly, in presence of the
disturbance, each smooth trajectory of the closed-loop system is bounded and con-
verges asymptotically to a periodic trajectory whose energy is constant and smaller
or equal to M2.

(4) Finally the saturated feedback stabilized 1D wave equation is shown to be
robust faced with the boundary disturbance from the Sobolev space W 1,1(0,\infty ).

From point (3) we see that the solution of the closed-loop system by the saturated
feedback control does not converge to that of the sliding mode feedback controlled
system as \lambda \rightarrow 0. To the best of our knowledge, the results on the saturated feedback
control are new for the high-dimensional wave equation.

The rest of the paper is organized as follows. In section 2 we discuss the boundary
stabilization of the wave equation by the saturated feedback control law in (1.3). We
prove that the closed-loop system is globally asymptotically stable in the cases 1D,
2D, and 3D. We estimate the decay rate of the smooth solutions for the closed-loop
system. In section 3, by using the LaSalle principle, we prove asymptotic stability of
the closed-loop system in the energy space and that holds independent of unknown
disturbances in the Sobolev spaceW 1,1(\BbbR +). In section 4, the sliding mode control law
is taken as the limit of a sequence of saturated feedback control laws. Existence and
uniqueness of the solutions are established in the energy space by using the maximal
monotone operator technique. The long-time asymptotic behavior of the closed-loop
system is described in detail. In particular we prove that each regular trajectory is
bounded and converges asymptotically to a periodic one. Section 5 is devoted to our
conclusions.

2. Boundary feedback stabilization with saturated control laws. In this
section we consider the boundary feedback stabilization of a wave equation with sat-
urated control laws in (1.3).

2.1. 1D wave equation. In this subsection we study the stability of the closed-
loop system governed by the following 1D wave equation:

(2.1)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) =  - F (wt(1, t)), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1),
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where the nonlinear feedback F : \BbbR \rightarrow \BbbR is continuous, increasing, and satisfying
the condition (1.3). To study asymptotic stability of the system (2.1) we need to
accomplish two tasks: (i) prove existence and uniqueness of its solutions in some
Hilbert space; (ii) guarantee required regularity for smooth trajectories.

We take the state space to be the real Hilbert space X = H1
L(0, 1) \times L2(0, 1)

suggested by the energy of the system, where H1
L(0, 1) = \{ g \in L2(0, 1) | g\prime \in 

L2(0, 1), g(0) = 0\} . By \langle f, g\rangle X we denote the inner product of f, g \in X. The
induced Hilbert norm is given by the energy

\| f\| 2X =

\int 1

0

\bigl[ 
f2
1x(x) + f2

2 (x)
\bigr] 
dx.

The nonlinear contraction semigroup theory (cf. [3], [10], [2], [13]) is made use of to
fulfil (i) and (ii).

Define the nonlinear operator \~A : \scrD ( \~A) \rightarrow X such that

(2.2) \scrD ( \~A) =

\biggl\{ 
f =

\biggl( 
f1
f2

\biggr) 
\in X

\bigm| \bigm| \bigm| \bigm| f1 \in H2(0, 1), f2 \in H1
L(0, 1)

f1x(1) =  - F (f2(1))

\biggr\} 
and

(2.3) \~Af =

\biggl( 
 - f2
 - f1xx

\biggr) 
\forall f \in \scrD ( \~A).

We set \phi 1(t) = w(x, t) and \phi 2(t) = wt(x, t), and \phi (t) = (\phi 1(t), \phi 2(t))
T . Then the

state equation of the system (2.1) is written as follows:

(2.4) \.\phi + \~A\phi = 0, \phi (0) = \phi 0 \in X.

Lemma 1. The operator \~A defined by (2.2)--(2.3) is maximal monotone, \scrD ( \~A) is
a dense set in X, and the resolvent operator (I + \lambda \~A) - 1 is compact \forall \lambda > 0.

Proof. The operator \~A is monotone if and only if \langle \~Af  - \~Ag, f  - g\rangle X \geq 0 \forall f, g \in 
\scrD ( \~A). Indeed, by integration by parts we have

\langle \~Af  - \~Ag,f  - g\rangle X =

\biggl\langle \biggl( 
 - f2 + g2

 - f1xx + g1xx

\biggr) 
,\biggl( 

f1  - g1
f2 - g2

\biggr) \biggr\rangle 
X

= (g2  - f2)(f1x  - g1x)| 10.

Using the boundary condition we get easily

(2.5) \langle \~Af  - \~Ag, f  - g\rangle X = (g2(1)) - f2(1))[F (g2(1)) - F (f2(1))].

As the function F is monotone increasing on \BbbR , it follows from (2.5) that the inner
product is positive or zero, and hence \~A is monotone.

Since \scrD ( \~A) contains C\infty 
0 (0, 1) (the set of infinitely differential functions with

compact support in (0, 1)), so it is dense in X.
To show that \~A is maximal, it is sufficient to prove that Ran(I + \~A) = X. Let

g \in X. We solve the equation (I+ \~A)f = g for some f \in \scrD ( \~A). Equivalently we solve
f2 = f1  - g1 and

(2.6)
f1  - f1xx = g1 + g2,
f1(0) = 0,
f1x(1) =  - F (f2(1)).
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294 CHENG-ZHONG XU AND GEN QI XU

We set \~g12(x) = g1(x) + g2(x). The second order differential equation (2.6) has a
unique solution, given by

f1(x) = sinh(x)\eta 0 +

\int x

0

sinh(x - \xi )\~g12(\xi )d\xi ,

f2(x) = f1(x) - g1(x),

where \eta 0 is the unique constant determined by the equation

cosh(1)\eta 0 +

\int 1

0

cosh(1 - \xi )\~g12(\xi )d\xi 

=  - F

\biggl( 
sinh(1)\eta 0 +

\int 1

0

sinh(1 - \xi )\~g12(\xi )d\xi  - g1(1)

\biggr) 
.

We check that f1 \in H2(0, 1) \cap H1
L(0, 1) and f2 = f1  - g1 \in H1

L(0, 1). Hence Ran(I +
\~A) = X, i.e., \~A is maximal.

From the above we see that (I + \~A) - 1 maps a bounded set in X into a bounded
set in H2(0, 1) \times H1(0, 1). Since the injections H2(0, 1) \lhook \rightarrow H1(0, 1) and H1(0, 1) \lhook \rightarrow 
L2(0, 1) are compact, the resolvent operator (I + \~A) - 1 is compact. Hence every
resolvent operator (I + \lambda \~A) - 1 is compact for \lambda > 0.

Theorem 1. (i) The operator ( - \~A) generates a semigroup of contractions
(\BbbT (t))t\geq 0 on X. (ii) For each \phi 0 \in X the state equation (2.4) has a unique solu-

tion \phi (t) in C([0,\infty ), X), given by \phi (t) = \BbbT (t)\phi 0. (iii) If \phi 0 \in \scrD ( \~A), the unique
solution \phi (t) \in \scrD ( \~A) is differentiable at a.e. t > 0, and (2.4) is satisfied at a.e.
t > 0 in L\infty ((0,\infty ), X). (iv) The orbit (or trajectory) \gamma (\phi 0) through \phi 0 \in X such
that \gamma (\phi 0) = \{ \BbbT (t)\phi 0 | t \geq 0\} is precompact. (v) The zero solution of (2.4) is globally
asymptotically stable in X such that limt\rightarrow \infty \BbbT (t)\phi 0 = 0 \forall \phi 0 \in X.

Proof. The statements (i)--(iv) are directly proved by applying Lemma 1 and the
theory of nonlinear semigroups (cf. [10], [3], [2], [13], [5]).

(v) The zero solution of (2.4) is Lyapunov stable since the mapping \BbbT (t) is a
contraction. To prove asymptotic stability it is sufficient to prove that \BbbT (t)\phi 0 tends
to zero as t \rightarrow \infty \forall \phi 0 \in \scrD ( \~A). Take an initial condition \phi 0 \in \scrD ( \~A) and a Lyapunov
function candidate V (\phi ) = \| \phi \| 2X . By (iii) and differentiating V (\phi (t)) along the
trajectory \phi (t) = \BbbT (t)\phi 0 we get

\.V (\phi (t)) =  - 2\langle \~A\phi (t), \phi (t)\rangle X =  - 2\phi 2(1, t)F (\phi 2(1, t)) \leq 0 a.e. t > 0

or

V (\phi (t)) = V (\phi 0) - 
\int t

0

2\phi 2(1, \tau )F (\phi 2(1, \tau ))d\tau .

Hence the energy is decreasing with time, and so we have limt\rightarrow \infty V (\phi (t)) = c.
Since the trajectory is precompact, the \omega -limit set \omega (\phi 0) is not empty and con-

tained in \scrD ( \~A). Moreover the \omega -limit set is contained in a constant energy set Ec for
some c \geq 0,

Ec = \{ f \in \scrD ( \~A) | V (f) = c, f2(1) = 0\} .

Knowing that the \omega -limit set is invariant under the semigroup (\BbbT (t))t\geq 0, we apply
the multiplier method to prove that it is reduced to a single point, i.e., \omega (\phi 0) = \{ 0\} .
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Indeed, take anyone \varphi \in \omega (\phi 0). As \varphi \in \scrD ( \~A), the trajectory \BbbT (t)\varphi is differen-
tiable at a.e. t > 0 and \BbbT (t)\varphi \in \scrD ( \~A) \forall t > 0. Let (w(\cdot , t), wt(\cdot , t))T = \BbbT (t)\varphi . Then
the trajectory (w(\cdot , t), wt(\cdot , t)) satisfies the following PDE:

(2.7)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) = 0, wt(1, t) = 0, t > 0,
w(x, 0) = \varphi 1(x), wt(x, 0) = \varphi 2(x), x \in [0, 1].

Using the multiplier xwx in (2.7) we get

(2.8)

\int T

0

w2
t (1, t)dt =

\int T

0

\int 1

0

(w2
x + w2

t )dxdt+ 2

\int 1

0

(wtxwx)| T0 dx \forall T > 0.

As the energy is constant along the trajectory, by using the Cauchy inequality in (2.8)
we get the following:

(T  - 2)V (\varphi ) \leq 
\int T

0

w2
t (1, t)dt \leq (T + 2)V (\varphi ) \forall T > 0.

By taking T > 2 and the fact that wt(1, t) = 0, it is deduced that \varphi = 0. Hence
\omega (\phi 0) = \{ 0\} . Therefore every trajectory \BbbT (t)\phi 0 converges to zero as t \rightarrow \infty \forall \phi 0 \in X
(cf. Theorem 1.1.8, p. 12 of [14]). The proof of Theorem 1 is complete.

As shown in [27] and [26], to obtain uniform exponential stabilization of the wave
equation the nonlinear boundary velocity feedback must have a linear growth not only
around zero but also at infinity. Since we do not have linear growth at infinity, we
have no uniform exponential stability of the closed-loop system (2.4). If the initial
data has certain smoothness, we want to know whether or not the solution decays
exponentially. The following theorem gives an answer.

Theorem 2. For each initial condition \phi 0 \in \scrD ( \~A) the solution of the system
(2.4) decays exponentially to zero in X as t \rightarrow \infty .

Proof. Consider the Lyapunov function candidate E : X \rightarrow \BbbR + (cf.[8], [12], [18])
such that

E\epsilon (w, v) = E(w, v) + \epsilon \rho (w, v),

where

E(w, v) =
1

2

\int 1

0

(w2
x + v2)dx, \rho (w, v) = 2

\int 1

0

x v wxdx

and

(2.9) \epsilon = min

\biggl( 
1

4
,

C1

1 + C2
2

\biggr) 
,

where the constants C1 and C2 are defined as in (1.3). It is easy to see that

(2.10)
1

2
E(w, v) \leq E\epsilon (w, v) \leq 

3

2
E(w, v).

Since \phi 0 \in \scrD ( \~A), the solution (w(\cdot , t), wt(\cdot , t))T = \BbbT (t)\phi 0 is a strong solution
to (2.4) or a smooth solution to the PDE (2.1). For the sake of simplicity we set
E\epsilon (t) = E\epsilon (w(\cdot , t), wt(\cdot , t)) and E(t) = E(w(\cdot , t), wt(\cdot , t)). Differentiating the Lya-
punov functional E\epsilon (t) along the trajectory of (2.1) leads to following identity for a.e.
t > 0:

(2.11) \.E\epsilon (t) =  - wt(1, t)F (wt(1, t)) + \epsilon 
\bigl[ 
F 2(wt(1, t)) + w2

t (1, t)
\bigr] 
 - 2\epsilon E(t).
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We claim that limt\rightarrow \infty wt(1, t) = 0. By the claim, given the constant M1 in (1.3)
there exists some time T1 > 0 such that

(2.12) | wt(1, t)| < M1 \forall t \geq T1.

By (2.10), (1.3), and (2.12) we get easily the following:

(2.13) \.E\epsilon (t) \leq  - [C1  - \epsilon (1 + C2
2 )]w

2
t (1, t) - 2\epsilon E(t) \forall t \geq T1.

Since \epsilon satisfies the condition (2.9), it follows from (2.13) that

(2.14) \.E\epsilon (t) \leq  - 2\epsilon E(t) \forall t \geq T1.

Using (2.14) and (2.10) we can get

(2.15) E(t) \leq 3e - 
4\epsilon (t - T1)

3 E(T1) \forall t \geq T1.

Thanks to decreasing property of energy E(t) the inequality (2.15) holds \forall t \geq 0:

(2.16) E(t) \leq 3 exp

\biggl\{ 
4\epsilon T1

3

\biggr\} 
exp

\biggl\{ 
 - 4\epsilon t

3

\biggr\} 
E(0) \forall t \geq 0.

Hence the trajectory decays exponentially to zero in X as t \rightarrow \infty .
To finish the proof we need to prove the claim limt\rightarrow \infty wt(1, t) = 0. Denote by

L the linear functional L : X \rightarrow \BbbR such that Lf = f1(1) \forall f \in X. Since f1 \in 
H1

L(0, 1), L is a bounded linear functional on X. One can write wt(1, t) =  - L \~A\phi (t).
For each \phi 0 \in \scrD ( \~A), \| \~A\phi (t)\| being decreasing with t (see [3, Theorem 3.1, p. 54]
[2, Theorem 1.2, p. 102] and its proof, or [23, Corollary 3.11, p. 231]), we have
\| \~A\phi (t)\| \leq \| \~A\phi 0\| . Therefore, it holds that

| wt(1, t)| \leq \| L\| \| \~A\phi 0\| .
From the equality

(2.17) wt(1, t)F (wt(1, t)) = \langle \~A\phi (t), \phi (t)\rangle X ,

we see that wt(1, t)F (wt(1, t)) is bounded and tends to zero as t \rightarrow \infty , since
limt\rightarrow \infty \| \phi (t)\| X = 0 by Theorem 1. By (1.3) and the monotonicity of F , there
exists some T2 > 0 such that

C1| wt(1, t)| 2 \leq wt(1, t)F (wt(1, t)) \leq C2| wt(1, t)| 2 \forall t \geq T2.

Hence limt\rightarrow \infty wt(1, t) = 0, and the claim is proved. The proof is complete.

Remark 1. For uniform exponential stabilization the feedback control law must
have a linear growth rate not only around zero but also at infinity (see Chen [4] for
linear feedback and Zuazua [27] for nonlinear feedback). As proved in [26], with the
saturated feedback control law in (1.4) the nonuniform exponential decay is the best
decay rate to be expected. Here the (nonuniform) exponential decay of the smooth
solutions is proved for the more general case (1.3).

2.2. High-dimensional wave equation. In this subsection we study the sat-
urated nonlinear feedback stabilization of the wave equation in spatial higher dimen-
sion. We want to know whether or not, by means of saturated velocity feedback
Neumann boundary control, the exponential decay property of the smooth solutions
in the 1D case remains true for the higher dimensions.

Let \Omega be a bounded, open, and connected set in \BbbR n (n \leq 3) having a boundary
\Gamma = \partial \Omega of class C2. For a fixed x0 \in \BbbR n we set m(x) = x - x0, and we consider the
following partition of the boundary \Gamma = \Gamma + \cup \Gamma 0:

\Gamma + = \{ x \in \Gamma | m(x) \cdot \nu (x) > 0\} , \Gamma 0 = \{ x \in \Gamma | m(x) \cdot \nu (x) \leq 0\} = \Gamma \setminus \Gamma +,
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where \nu (x) is the unit normal vector at x \in \Gamma pointing toward the exterior of \Omega ,
and ""."" denotes the scalar product in \BbbR n. Let \partial \nu and \Delta denote the outward normal
derivative and the Laplacian operator, respectively. Though \Gamma + \cap \Gamma 0 = \varnothing , we do not
need to assume that \Gamma + \cap \Gamma 0 = \varnothing , but we do assume that int(\Gamma 0) \not = \varnothing and \Gamma + \not = \varnothing .
(\Gamma + denotes the closure of \Gamma +.)

Consider the following wave equation controlled by the saturated feedback law F :

(2.18)

\left\{         
wtt(x, t) = \Delta w(x, t) \forall (x, t) \in \Omega \times \BbbR +,
w(x, t) = 0 \forall (x, t) \in \Gamma 0 \times \BbbR +,
\partial \nu w(x, t) =  - [m(x) \cdot \nu (x)]F (wt) \forall (x, t) \in \Gamma + \times \BbbR +,

w(x, 0) = w0 \in H1
\Gamma 0
(\Omega ), wt(x, 0) = w1 \in L2(\Omega ),

where H1
\Gamma 0
(\Omega ) = \{ f \in H1(\Omega ) | f = 0 on \Gamma 0\} and F : \BbbR \rightarrow \BbbR is defined as (1.3). The

state space for (2.18) is the Hilbert space X = H1
\Gamma 0
(\Omega ) \times L2(\Omega ) equipped with the

inner product

\langle f, g\rangle X =

\int 
\Omega 

\{ \nabla f1(x) \cdot \nabla g1(x) + f2(x)g2(x)\} dx.

We define the nonlinear operator W in X by
(2.19)

W (f1, f2) = ( - f2, - \Delta f1),

\scrD (W ) =
\Bigl\{ 
(f1, f2) \in 

\bigl[ 
H1

\Gamma 0
(\Omega )

\bigr] 2 | \Delta f1 \in L2(\Omega ), \partial \nu f1 =  - m \cdot \nu F (f2) on \Gamma +

\Bigr\} 
.

Notice that, in general, \scrD (W ) \not \subset 
\bigl[ 
H2(\Omega ) \cap H1

\Gamma 0
(\Omega )

\bigr] 
\times H1

\Gamma 0
(\Omega ). Hence \scrD (W ) may

contain elements (f1, f2) \in (H1
\Gamma 0
(\Omega ))2 such that f1 \not \in H2(\Omega ). The Neumann boundary

condition should be understood in the following sense: for each (f1, f2) \in \scrD (W ),
\partial \nu f1 =  - m \cdot \nu F (f2) on \Gamma + is satisfied if and only if the following holds:
(2.20)\int 

\Omega 

\Delta f1(x)\varphi (x)dx+

\int 
\Omega 

\nabla f1(x)\cdot \nabla \varphi (x)dx =  - 
\int 
\Gamma +

m\cdot \nu F (f2(x))\varphi (x)d\Gamma \forall \varphi \in H1
\Gamma 0
(\Omega ),

where d\Gamma denotes the surface measure associated to the boundary \Gamma . It is wellknown
that W is a maximal monotone operator on X, \scrD (W ) is dense in X, and the resolvent
operators of W are compact (see [22] and [25]). Then the system (2.18) can be written
into the form

(2.21)
( \.\phi 1(t), \.\phi 2(t)) +W (\phi 1(t), \phi 2(t)) = 0, t > 0,
(\phi 1(0), \phi 2(0)) = (w0, w1),

where \phi 1(t) = w(\cdot , t) and \phi 2(t) = wt(\cdot , t). Thus  - W generates a semigroup of
nonlinear contractions \BbbG (t) on X. If (w0, w1) \in \scrD (W ), then the solution \phi (t) =
\BbbG (t)(w0, w1) \in \scrD (W ), \phi \in C([0,\infty ), X) and \.\phi \in L\infty ([0,\infty ), X), \.\phi (t) + W\phi (t) = 0
for a.e. t > 0, and \| W\phi (t)\| X \leq \| W (w0, w1)\| X \forall t \geq 0.

The following theorem gives a description of the long-time asymptotic behavior
to the system (2.18).

Theorem 3. Assume that x0 \in \BbbR n is such that int(\Gamma 0) \not = \varnothing . Let F : \BbbR \rightarrow \BbbR be
continuous and increasing such that F (0) = 0 and F (s)s > 0 \forall s \not = 0, and let the
condition (1.3) be satisfied. Then the following statements are true:

(1) If n = 2, for every initial condition (w0, w1) \in \scrD (W ) the solution (w,wt) of
(2.18) decays like t - 2/\alpha to zero in X as t \rightarrow \infty for any \alpha > 0.

(2) If n = 3, for every initial condition (w0, w1) \in \scrD (W ) the solution (w,wt) of
(2.18) decays like t - 2 to zero in X as t \rightarrow \infty .
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The proof of Theorem 3 is technical and so postponed to Appendix A.

Remark 2. In the 2D case every smooth solution decays to zero faster than any
polynomial (1/t)\alpha \forall \alpha > 0, as t \rightarrow \infty . In the 3D case the decay rate is like (1/t)2.
If \Gamma + \cap \Gamma 0 = \varnothing , then Theorem 3 is valid for all n \geq 1. For a more general case the
reader is referred to [17, 15].

Such a result shows that, under the saturated velocity feedback Neumann bound-
ary control, decaying property of the smooth solutions for the closed-loop system has
a great change with spatial dimensional change.

3. Asymptotic rejection of boundary disturbance. In the previous sec-
tion we proved that the saturated output feedback control stabilizes asymptotically
the wave system at the equilibrium state (0, 0). In this section we shall study the
robustness of the closed-loop system. In what follows, the state space always is
X = H1

L(0, 1)\times L2[0, 1].
The robustness of the closed-loop system depends on where the disturbance enters

the system. It also depends on the type of stability of the the closed-loop system
(see an interesting case in [19]). For example, if we consider an internal disturbance
f \in L1((0,\infty ), X) as follows

(3.1) \.\phi + \~A\phi = f, \phi (0) = \phi 0,

we can prove easily that every trajectory converges to zero as t \rightarrow \infty . Here we are
interested in what happens to the boundary disturbances. In particular we consider
the matched disturbance and control, i.e.,

(3.2)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) =  - F (wt(1, t)) + d(t), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1).

We will show that if the disturbance is smooth, the system (3.2) has a unique solution
in C([0,\infty ), X). In particular, if the disturbance d belongs to the Sobolev space
W 1,1(0,\infty ) (i.e., d and d\prime \in L1(0,\infty )), the system (3.2) has a unique solution in
C([0,\infty ), X). Notice that limt\rightarrow \infty d(t) = 0 \forall d \in W 1,1(0,\infty ). We set \BbbR + = (0,\infty )
and Wn,1(\BbbR +) = \{ d \in L1(\BbbR +) | d\prime , . . . , d(n) \in L1(\BbbR +)\} (see [1]).

The main result of the section is stated as follows.

Theorem 4. Let d \in W 1,1(\BbbR +) and let (w0, w1) \in X. Then the system (3.2) has
a unique weak solution (w(\cdot , t), wt(\cdot , t)) that decays to zero in X as t \rightarrow \infty .

Because of the presence of the disturbance, the system (3.2) is a nonautonomous
system. Before proving Theorem 4, let us recall next the weak solutions and the
strong solutions to the system (3.2).

Definition 1. Let T > 0. A continuous function w(\cdot , t) from [0, T ] to H1
L(0, 1)

is called strong solution to the system (3.2) on [0, T ] if it is continuously differentiable
from [0, T ] to L2(0, 1) and if (w(\cdot , t), wt(\cdot , t)) is absolutely continuous from every com-
pact interval of (0, T ) to X with (w(\cdot , t), wt(\cdot , t)) \in H2(0, 1) \times H1

L(0, 1) \forall t \in [0, T ],
and wx(1, t) =  - F (wt(1, t)) + d(t) such that the PDE (3.2) is satisfied in L2(0, 1) at
a.e. t \in (0, T ).

Theorem 5. Let d \in W 2,1(\BbbR +), and let (w0, w1) \in X \cap 
\bigl( 
H2(0, 1)\times H1

L(0, 1)
\bigr) 

such that the compatibility condition w\prime 
0(1) =  - F (w1(1)) + d(0) is satisfied. Then

the system (3.2) has a unique strong solution \varphi (t) = (w(\cdot , t), wt(\cdot , t)) \in C([0,\infty );X).
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Moreover the strong solution continuously depends on the initial condition and the
input signal as follows:

(3.3) \| \varphi (t) - \~\varphi (t)\| X \leq \| \varphi (s) - \~\varphi (s)\| X+| d(s) - \~d(s)| +| d(t) - \~d(t)| +
\int t

s

| d\prime (\tau ) - \~d\prime (\tau )| d\tau ,

where \~\varphi (t) is the strong solution corresponding to ( \~w0, \~w1) and \~d, and 0 \leq s \leq t < \infty .

Proof. Let \varphi (x, t) = (w(x, t), wt(x, t))
\top . Consider the affine state transformation

in X:

(3.4) \phi (x, t) = \varphi (x, t) - 
\biggl( 

x
0

\biggr) 
d(t).

Obviously \varphi (x, t) is a strong solution to the PDE (3.2) if and only if \phi (x, t) is a strong
solution to the following PDE :

(3.5)

\biggl\{ 
\phi 1t(x, t) = \phi 2(x, t) - xd\prime (t),
\phi 2t(x, t) = \phi 1xx(x, t),

(3.6) \phi 1(0, t) = 0, \phi 1x(1, t) =  - F (\phi 2(1, t)),

(3.7) \phi 1(x, 0) = \phi 0
1(x) = w0(x) - xd(0), \phi 2(x, 0) = \phi 0

2(x) = w1(x).

Therefore, equivalently we prove existence and uniqueness of the strong solution to
the system (3.5)--(3.7). Let us set f(x, t) = ( - x, 0)\top d\prime (t). Then the system is written
as an evolution equation of the form (3.1).

By the assumptions we have f \in W 1,1(\BbbR +) and \phi (0) \in \scrD ( \~A). The PDE (3.5)--
(3.7) or (3.1) has a unique strong solution \phi (t) as defined as in Definition 1 (cf.
the existence theorem of [10] or [3, p. 64]). If \~\phi (t) is a strong solution of (3.1)
corresponding to (\~\phi (0), \~f), it is well known that the following continuous dependence
condition is satisfied:

(3.8) \| \phi (t) - \~\phi (t)\| X \leq \| \phi (s) - \~\phi (s)\| X +

\int t

s

\| f(\tau ) - \~f(\tau )\| Xd\tau \forall 0 \leq s \leq t.

Hence the required inequality (3.3) is easily established by using (3.8), f , and the
transformation (3.4). The proof of Theorem 5 is complete.

In particular the following estimate holds for the system (3.5)--(3.7):

(3.9) \| \phi (t) - \~\phi (t)\| X \leq \| \phi 0  - \~\phi 0\| X +

\int t

0

| d\prime (\tau ) - \~d\prime (\tau )| d\tau \forall t \geq 0.

Definition 2. By (3.9) the nonlinear mapping \Lambda , which to each (\phi 0, d) \in \scrD ( \~A)\times 
W 2,1(\BbbR +) associates the strong solution of (3.5)--(3.7), \Lambda (\phi 0, d)(t) = \phi (t) , is contin-
uous from X\times W 1,1(\BbbR +) to C([0, T ];X). It admits a unique continuous extension on
the whole space X \times W 1,1(\BbbR +). For each (\phi 0, d) \in X \times W 1,1(\BbbR +), \phi (t) = \Lambda (\phi 0, d)(t)
is called a weak solution of (3.5)--(3.7). Through the transformation (3.4), \varphi (t) is
called a weak solution of (3.2).

By density of \scrD ( \~A)\times W 2,1(\BbbR +) in X \times W 1,1(\BbbR +), the following is true.
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Corollary 3.1. For each (\phi 0, d) \in X \times W 1,1(\BbbR +), the system (3.5)--(3.7) or
(3.2) has a unique weak solution.

Remark 3. By density of \scrD ( \~A)\times W 2,1(\BbbR +) in X \times W 1,1(\BbbR +) and the continuity
(3.9) it suffices to prove Theorem 4 for strong solutions.

Proof of Theorem 4. Let (\phi 0, d) \in \scrD ( \~A) \times W 2,1(\BbbR +), and let us consider the
system (3.5)--(3.7) on the extended state space Z = X \times W 1,1(\BbbR +). The state space
Z is a Banach space equipped with the norm\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\left(  \phi 1

\phi 2

d

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Z

=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( \phi 1

\phi 2

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
X

+

\int \infty 

0

(| d(t)| + | d\prime (t)| )dt.

The semigroup (\BbbZ (t))t\geq 0 on Z is defined by the solution of (3.5)--(3.7) as follows:

\BbbZ (t)
\bigl( 
\phi 0, d

\bigr) 
= (\phi (t), d(t+ \cdot )) =

\bigl( 
\Lambda (\phi 0, d)(t), d(t+ \cdot )

\bigr) 
.

By (3.9), (\BbbZ (t))t\geq 0 is a semigroup of nonlinear contractions on Z. Since \| \BbbZ (t + s)\bigl( 
\phi 0, d

\bigr) 
\| Z \leq \| \BbbZ (t)

\bigl( 
\phi 0, d

\bigr) 
\| Z \forall t, s \geq 0, the limit exists: limt\rightarrow \infty \| (\phi (t), d(t+ \cdot ))\| Z = c

for some real number c \geq 0. Immediately, we have

lim
t\rightarrow \infty 

\| d(t+ \cdot )\| W 1,1(\BbbR +) = 0.

As the resolvent operator of \~A is compact, the orbit \gamma (\phi 0, d) is precompact (cf. [10]):

\gamma (\phi 0, d) =

\biggl\{ 
\BbbZ (t)

\biggl( 
\phi 0

d

\biggr) \bigm| \bigm| \bigm| \bigm| t \in \BbbR +

\biggr\} 
.

Hence the \omega -limit set \omega (\phi 0, d) is nonempty. It is clear that

\omega (\phi 0, d) = \{ (\varphi , 0) | \exists (tn) such that lim
n\rightarrow \infty 

tn = \infty , \varphi = lim
n\rightarrow \infty 

\phi (tn)\} .

We claim that the \omega -limit set is reduced to (0, 0). By the Theorem 1.1.8 in Haraux
(p. 12 of [14]) it follows that limt\rightarrow \infty \phi (t) = 0. By transformation (3.4) and limt\rightarrow \infty 
d(t) = 0,

lim
t\rightarrow \infty 

(w(\cdot , t), wt(\cdot , t)) = 0.

Now it is sufficient to prove the claim. Take (\varphi , 0) \in \omega (\phi 0, d). By the LaSalle in-
variance principle \BbbZ (t)(\varphi , 0) \in \omega (\phi 0, d). As (\varphi , 0) \in \scrD ( \~A)\times \{ 0\} , (\phi (t), 0) = \BbbZ (t)(\varphi , 0)
is a strong solution of (3.5)--(3.7). Hence \phi 2(1, t) = 0 \forall t \geq 0, as the energy is constant
along the trajectory. By the same argument as for the proof of Theorem 1, it is proved
that \varphi = 0. Therefore the \omega -limit set is reduced to (0, 0). So the claim is proved and
the proof of Theorem 4 is complete.

Remark 4. By direct computation the generator \BbbA of the C0 semigroup (\BbbZ (t))t\geq 0

is given by

\scrD (\BbbA ) = \scrD ( \~A)\times \times W 2,1(\BbbR +), \BbbA (\phi , d) = ( - \~A\phi +Bd\prime (0), d\prime ) \forall (\phi , d) \in \scrD (\BbbA ),

whereB = ( - x, 0)
\top 
and \~A is defined in (2.2)--(2.3). The resolvent operator (I - \lambda \BbbA ) - 1

is not compact for \lambda > 0. However the resolvent operator (I + \lambda \~A) - 1 is compact for
any \lambda > 0. By similar arguments as in [10], one proves that the orbit \gamma (\phi 0, d) is
precompact.
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4. Sliding mode control as limit of saturated feedback laws. Let M be
a positive constant. We consider the specific control law u(t) =  - F\lambda (wt(1, t)), \lambda > 0
for (1.2), where F\lambda is defined by (1.5). Note that sign(x) is a multivalued function.
F\lambda (x) is the Yosida approximation of M sign(x): lim\lambda \rightarrow 0+ F\lambda (x) = M sign0(x), where
sign0(x) is the element y \in sign(x) of the least norm. Here we have sign0(0) = 0 and
sign0(x) = sign(x) \forall x \not = 0. In this section we shall discuss the stabilizability of the
wave equation by two feedback control laws.

First we consider the closed-loop system governed by

(4.1)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) =  - F\lambda (wt(1, t)), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1).

According to Theorem 1 the closed-loop system (4.1) is globally asymptotically stable
for any \lambda > 0.

Secondly, as a limit case of the Yosida approximation, we consider the sliding
mode control law, i.e.,

(4.2)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) \in  - Msign(wt(1, t)), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1).

We want to know whether or not the closed-loop system (4.2) has asymptotic stability.
Contrary to the intuitive feeling the situation is not so simple. To guarantee

existence and uniqueness of physically reasonable solutions to the system (4.2) the
boundary condition is understood as

(4.3) wx(1, t) \in  - Msign(wt(1, t)).

Equation (4.3) is said to be satisfied if the left-hand member evaluated at time t has
value in the subset defined by the right-hand member.

To study asymptotic stability of the system (4.2) we first prove existence and
uniqueness of its solutions in the energy space X = H1

L(0, 1) \times L2(0, 1). Then some
required regularity of the trajectories will be established for the purpose of asymptotic
analysis.

Define the nonlinear operator A : \scrD (A) \rightarrow X by

(4.4) \scrD (A) =

\biggl\{ 
f =

\biggl( 
f1
f2

\biggr) 
\in X

\bigm| \bigm| \bigm| \bigm| f1 \in H2(0, 1), f2 \in H1
L(0, 1)

f1x(1) \in  - Msign(f2(1))

\biggr\} 
,

and, for each f \in \scrD (A),

(4.5) Af =

\biggl( 
 - f2
 - f1xx

\biggr) 
.

Above f1x(x) or \partial xf1(x) denotes the first order derivative of f1(x) w.r.t. x. No-
tice that Hn(0, 1) = \{ f | f, f \prime , . . . , f (n) \in L2(0, 1)\} where f \prime and f (n) denote the
derivatives of first order and nth order, respectively, \forall n \in \BbbN .

We set \phi 1(t) = w(\cdot , t) and \phi 2(t) = wt(\cdot , t) in what follows. We use the notation
\phi (t) = (\phi 1(t), \phi 2(t))

T whenever there is no confusion. Then the closed-loop system
(4.2) is written formally as

(4.6)

\biggl\{ 
\.\phi (t) +A\phi (t) = 0,
\phi (0) = \phi 0 \in X.
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Lemma 2. The operator A defined by (4.4)--(4.5) is maximal monotone on X,
\scrD (A) is dense in X, and the resolvent operator (I + \lambda A) - 1 is compact \forall \lambda > 0.

Proof. The proof is similar to that of Lemma 1 and so omitted. Remark only
that A is monotone maximal if and only if sign(x) is monotone maximal from \BbbR to
\BbbR . The function sign(x) is clearly monotone. It is also maximal because (I + sign) is
onto. Indeed,

(I + sign) - 1(x) =

\left\{   x - 1, x > 1,
0, x \in [ - 1, 1],
x+ 1, x <  - 1.

So the proof of Lemma 2 is complete.

The following result can be proved by applying the classical theory of nonlinear
semigroups (see [3] or [10]).

Lemma 3. The operator ( - A) generates a nonlinear semigroup (\BbbS (t))t\geq 0 of con-
tractions on X. The nonlinear system (4.6) has a unique solution in C([0,\infty ), X)
given by \phi (t) = \BbbS (t)\phi 0. For every \phi 0 \in \scrD (A), the solution \phi (t) \in \scrD (A) \forall t \geq 0; \phi (t)
is strongly differentiable at a.e. t > 0; \.\phi \in L\infty ((0,\infty ), X); and the equation (4.6) is
satisfied at a.e. t > 0.

Direct computations give all equilibrium states of the system (4.6).

Lemma 4. The set of all equilibrium states for the system (4.6) is given by

(4.7) \Gamma e =

\biggl\{ \biggl( 
c x
0

\biggr) 
\in X

\bigm| \bigm| \bigm| \bigm| c \in [ - M,M ]

\biggr\} 
.

Moreover each state in \Gamma e is Lyapunov stable.

Proof. Solving the equation A\phi = 0 with \phi \in \scrD (A) gives us \phi 1 = c x and \phi 2 = 0.
The boundary condition \phi 1x(1) \in M sign(0) implies that c \in [ - M,M ].

Let \phi e \in \Gamma e. Since the semigroup is contractive, we have \| \BbbS (t)\phi 0  - \phi e\| X \leq 
\| \phi 0  - \phi e\| X \forall t \geq 0. Hence \phi e is Lyapunov stable.

Let \gamma (\phi 0) be the orbit through \phi 0 \in X such that \gamma (\phi 0) = \{ \BbbS (t)\phi 0 | t \geq 0\} . Let
the \omega -limit set \omega (\phi 0) be defined by

\omega (\phi 0) =
\Bigl\{ 
\varphi 

\bigm| \bigm| \bigm| \exists (tn) such that lim
n\rightarrow \infty 

tn = \infty , \varphi = lim
n\rightarrow \infty 

\BbbS (tn)\phi 0
\Bigr\} 
.

The long-time asymptotic behavior of the trajectory \phi (t) = \BbbS (t)\phi 0 is described by the
following theorem.

Theorem 6. (i) For each \phi 0 \in X, the orbit \gamma (\phi 0) of the system (4.6) is pre-
compact. (ii) For each \phi 0 \in X, the \omega -limit set \omega (\phi 0) is nonempty, compact, and
connected in X; it is positively invariant under the semigroup (\BbbS (tn))t\geq 0, and the
following property holds:

lim
t\rightarrow \infty 

min
y\in \omega (\phi 0)

\| \BbbS (tn)\phi 0  - y\| X = 0.

(iii) For each \phi 0 \in \scrD (A), the corresponding trajectory \phi (t) converges to a periodic
trajectory noted \phi p(t) or to an equilibrium point of \Gamma e, as t \rightarrow \infty ; moreover the
periodic trajectory \phi p(t) has period equal to 2 and constant energy \| \phi p(t)\| 2X = \mu 2 \leq 
M2, M the feedback gain.
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Proof. By compactness of (I +A) - 1 and similar arguments of [10], the assertions
(i)--(ii) are proved (see [14]).

(iii) Let us analyze the asymptotic behavior of the trajectory through \phi 0 \in \scrD (A).
Let V (\phi ) = \| \phi \| 2X . We have \phi (t) \in \scrD (A) and a.e. differentiable \forall t \geq 0. Differentiat-
ing V (\phi (t)) along the trajectory gives us

\.V (\phi (t)) =  - 2\langle A\phi (t), \phi (t)\rangle X =  - 2M | \phi 2(1, t)| \leq 0, a.e. t > 0.

The function t \mapsto \rightarrow V (\phi (t)) is decreasing, and hence limt\rightarrow \infty V (\phi (t)) = \mu 2 \geq 0. As the
orbit is precompact, the \omega -limit set is nonempty and \omega (\phi 0) \subset \scrD (A) \cap E\mu (see [10,
Theorem 5] or [9, Lemma 2.3]), where

E\mu = \{ y \in \scrD (A) | \| y\| X = \mu , y2(1) = 0\} .

Take \varphi \in \omega (\phi 0). We set (w(x, t), wt(x, t)) = (\BbbS (t)\varphi )(x). By the LaSalle invariance
principle \BbbS (t)\varphi \in \omega (\phi 0) \forall t \geq 0. By Lemma 3 the following PDE is satisfied by w(x, t):

(4.8)

\left\{   wtt(x, t) = wxx(x, t) \forall x \in (0, 1), t > 0,
w(0, t) = 0, wt(1, t) = 0, wx(1, t) \in  - Msign(0),
w(x, 0) = \varphi 1(x), wt(x, 0) = \varphi 2(x),

where wt(1, t) = 0 because \| \BbbS (t)\varphi \| = \| \varphi \| = \mu . We know that the above PDE (4.8)
has a unique solution, but we prove the solution to be periodic of period T = 2.

Indeed, from (4.8), wt(1, t) = 0 implies that w(1, t) is constant. The compatibility
condition gives w(1, t) = c = \varphi 1(1). We set v(x, t) = w(x, t)  - c x. Clearly w(x, t)
satisfies the above PDE (4.8) if and only if v(x, t) satisfies the following PDE

(4.9)

\left\{   vtt(x, t) = vxx(x, t) \forall x \in (0, 1), t > 0
v(0, t) = 0, v(1, t) = 0,
v(x, 0) = \varphi 1(x) - c x, vt(x, 0) = \varphi 2(x)

with the constraint vx(1, t) + c \in Msign(0). The PDE (4.9) has a unique solution. It
is easy to see that the eigenvalues and eigenfunctions of (4.9) are given by

\lambda n = in\pi , en(x) =
\surd 
2 sin(n\pi x), n \in \BbbN \ast .

The family \{ en(x), n \in \BbbN \ast \} forms an orthonormal basis for L2(0, 1). To solve (4.9)
we write the initial condition as follows:

\varphi 1(x) - \varphi 1(1) x =

\infty \sum 
n=1

an sin(n\pi x), \varphi 2(x) =

\infty \sum 
n=1

bn sin(n\pi x),

where

an = 2

\int 1

0

(\varphi 1(x) - c x) sin(n\pi x) dx, bn = 2

\int 1

0

\varphi 2(x) sin(n\pi x) dx.

The solution to (4.9) is found to be

v(x, t) =

\infty \sum 
n=1

\biggl[ 
an cos(n\pi t) + bn

sin(n\pi t)

n\pi 

\biggr] 
sin(n\pi x).
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Then the solution to (4.8) is given by

(4.10) w(x, t) = \varphi 1(1) x+

\infty \sum 
n=1

\biggl[ 
an cos(n\pi t) + bn

sin(n\pi t)

n\pi 

\biggr] 
sin(n\pi x),

(4.11) wt(x, t) =

\infty \sum 
n=1

[ - n\pi an sin(n\pi t) + bn cos(n\pi t)] sin(n\pi x),

and

(4.12) wx(1, t) = \varphi 1(1) +

\infty \sum 
n=1

( - 1)n [n\pi an cos(n\pi t) + bn sin(n\pi t)] .

Each function in (4.10)--(4.12) is a periodic function of time t with period equal to
2. Moreover each series in (4.10)--(4.12) converges uniformly on [0, 1] \times [0, 2]. By
uniqueness of the solution the constructed \phi p(t) = (w(\cdot , t), wt(\cdot , t)) is the solution to
(4.8). If \phi 0(x) = (c x, 0), c \in \BbbR , then the trajectory converges to an equilibrium state
in \Gamma e, as t \rightarrow \infty .

As maxt\in [0,2] | wx(1, t)| \leq M , direct computations from (4.8) and (4.10)--(4.12)
lead us to

\| \varphi \| 2X =

\int 1

0

\bigl( 
w2

x(x, t) + w2
t (x, t)

\bigr) 
dx = \mu 2 =

1

2

\int 2

0

w2
x(1, t)dt \leq M2.

Since the \omega -limit set \omega (\phi 0) is connected, the trajectory through \phi 0 converges neces-
sarily to one (and only one) periodic solution or one equilibrium state of the norm
smaller than or equal to M . The proof of Theorem 6 is complete.

Remark 5. From Theorem 6 follow several important points:
(i) The closed-loop system with the sliding mode control is nonasymptotically stable.
It is shown that the stability of the system (4.2) cannot be deduced from that of the
system (4.1).
(ii) The system (4.2) may be taken as practically stabilized in the following sense: it
is sufficient to make M small for the system to be stabilized around the origin.
(iii) By the method of characteristics due to Greenberg and Li [11] we can check that
the trajectory from the initial condition \phi 0(x) = (2Mx, 0) converges to the equilibrium
state (0, 0) in finite time. By using the same method, it can be shown that the solution
of (4.6) from \phi 0(x) = (\varphi 1(x), \varphi 2(x)) \in X is a periodic solution of period T = 2 if
\phi 0(x) satisfies the condition: \| \varphi \prime 

1 + \varphi 2\| L\infty \leq M and \| \varphi \prime 
1  - \varphi 2\| L\infty \leq M .

Similarly we can consider the matched disturbance and control:

(4.13)

\left\{   wtt(x, t) = wxx(x, t), x \in (0, 1), t > 0,
w(0, t) = 0, wx(1, t) \in  - M sign(wt(1, t)) + d(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x), x \in (0, 1).

Similar arguments allow us to prove the following result.

Theorem 7. Let d \in W 2,1(\BbbR +), and let (w0, w1) \in \scrD (A). Then the unique
solution of (4.13), (w(\cdot , t), wt(\cdot , t)), converges to either a periodic solution \phi p(t) or
an equilibrium state of \Gamma e in X, as t \rightarrow \infty . Moreover the periodic solution \phi p(t) lies
on a sphere \| \phi p(t)\| X = \mu \leq M .
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5. Conclusions. In this paper we studied the stabilization problem of a wave
equation by means of a priori bounded nonlinear feedback control laws. Different
nonlinear feedback controllers have been designed to stabilize the system. Nonlinear
semigroup theory has been applied to prove existence and uniqueness of solutions for
the closed-loop system (with or without nonhomogeneous term on the boundary).
The LaSalle invariance principle has been applied to study asymptotic stability or the
long-time asymptotic behavior for the closed-loop system.

For the saturated output feedback control law, we established different decay
rates of the smooth solutions by using appropriate Lyapunov functionals: in the 1D
case the decay rate is exponential with time; in the 2D or 3D case the decay rate is
polynomial. Moreover, in the 1D case, the energy of the closed-loop system decays to
zero as t \rightarrow \infty , independently of unknown boundary disturbance in W 1,1(\BbbR +). It is
meant that the stabilized closed-loop system has robust asymptotic stability faced to
the boundary disturbance.

As the Yosida approximation limit case of the saturated output feedback laws,
we considered the sliding mode control law. According to Theorem 1 the closed-loop
system with the saturated feedback control law is globally asymptotically stable for
any \lambda > 0. However the closed-loop system obtained by passing to limit as \lambda \rightarrow 0,
i.e., the sliding mode control law, has no asymptotical stability: each trajectory of the
closed-loop system is bounded and converges asymptotically to a periodic one whose
energy is bounded by the feedback gain M .

Notice that our closed-loop system is governed by a nonlinear contraction
semigroup. However, in practice we do not always have dynamical systems governed
by contractive semigroups. For example, take the scalar system \.x(t) \in sign(x(t)) with
x(0) = 0. The system has three different solutions: x(t) = 0, x(t) = t, and x(t) =  - t.
Of course the system is not contractive. If we take another system \.x(t) \in  - sign(x(t))
with x(0) = 0, the only solution is x(t) = 0. To extend the sliding mode control to
infinite-dimensional Hilbert spaces, it is essential to study existence and uniqueness
of the associated solutions; that has been the motivation of our present work.

Appendix A.
As our proof is inspired by ingredients and reasoning in the literature (cf. [16,

27, 15]), only essential idea of proof is given here. Note that every solution decays
asymptotically to zero in X whatever is the initial condition (w0, w1) \in X (see [27]
or [17] for a proof). The following important technical lemma has been proved in [16]
and is restated here for the reader's convenience. Let (u, v) and \| u\| denote the inner
product and the induced norm in L2(\Omega ), respectively: (u, v) =

\int 
\Omega 
u(x)v(x)dx and

\| u\| 2 = (u, u).

Lemma 5. Assume that n \leq 3, and let (u, v) \in \scrD (W ). Then the following in-
equality holds:

(A.1) 2(\Delta u,m \cdot \nabla u) \leq (n - 2)\| \nabla u\| 2 + 2

\int 
\Gamma 

\partial \nu u(m \cdot \nabla u)d\Gamma  - 
\int 
\Gamma 

(m \cdot \nu )| \nabla u| 2d\Gamma ,

where d\Gamma is the surface measure associated to the boundary \Gamma .

Proof of Theorem 3. Let (w0, w1) \in \scrD (W ), and let (w,wt) be the trajectory from
(w0, w1). We set

E(t) =
1

2

\int 
\Omega 

\{ | \nabla w| 2 + | wt| 2\} dx, \rho (t) =

\int 
\Omega 

[2wt m \cdot \nabla w + (n - 1)wtw] dx.

D
ow

nl
oa

de
d 

01
/2

3/
19

 to
 1

29
.8

1.
22

6.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

306 CHENG-ZHONG XU AND GEN QI XU

We consider the Lyapunov functional candidate as follows:

E\epsilon (t) = E(t) + \epsilon E
p - 1
2 (t)\rho (t), \epsilon > 0, p > 1.

By differentiating w.r.t. time E\epsilon (t) along the trajectory we get

(A.2) \.E\epsilon (t) =

\biggl[ 
1 +

\epsilon (p - 1)

2
E

p - 3
2 (t)\rho (t)

\biggr] 
\.E(t) + \epsilon E

p - 1
2 (t) \.\rho (t),

where
\.E(t) =  - 

\int 
\Gamma +

(m \cdot \nu )F (wt(x, t))wt(x, t)d\Gamma ,

(A.3)

\.\rho (t) = 2(\Delta w,m \cdot \nabla w) - (n - 1)\| \nabla w\| 2 - \| wt\| 2+
\int 
\Gamma +

(m \cdot \nu )[| wt| 2 - (n - 1)F (wt)w]d\Gamma .

We claim that there exists some positive constant \epsilon > 0 such that the following holds:

(i) 1
2E(t) \leq E\epsilon (t) \leq 3

2E(t) \forall t \geq 0;

(ii) \.E\epsilon (t) \leq  - \epsilon 
\bigl( 
2
3

\bigr) p+3
2 E

p+1
2

\epsilon (t) \forall t \geq 0 \forall p > 1 if n = 2 (and \forall p \geq 2 if n = 3,
respectively).

Note that \epsilon may depend on the initial condition (w0, w1). Set \~\epsilon = \epsilon 
\bigl( 
2
3

\bigr) p+3
2 . From (i)

and (ii) it follows that

E(t) \leq 2E\epsilon (t) \leq 
2

p+1
p - 1E\epsilon (0)\Bigl( 

2 + \~\epsilon (p - 1)E
p - 1
2

\epsilon (0) t
\Bigr) 2

p - 1

\forall t \geq 0, \forall p > 1 if n \leq 2

(and \forall p \geq 2 if n = 3, respectively). The last inequality implies that the assertions
(1) and (2) of Theorem 3 hold.

To complete the proof it is sufficient to prove the claim. By the Cauchy inequality
and the Poincar\'e inequality there exists some constant \alpha 1 > 0 such that | \rho (t)| \leq 
\alpha 1E(t). Assume that E(0) > 0, and notice that E(t) is decreasing. By taking
0 < \epsilon \leq \epsilon 1 where

\epsilon 1 =
1

2\alpha 1E
p - 1
2 (0)

,

the assertion (i) is proved.
Let us prove (ii):

\forall \epsilon \leq \epsilon 2 =
1

(p - 1)\alpha 1E
p - 1
2 (0)

,

by (A.2) we have

(A.4) \.E\epsilon (t) \leq  - 1

2

\int 
\Gamma +

(m \cdot \nu )F (wt)wtd\Gamma + \epsilon E
p - 1
2 (t) \.\rho (t).

We set R = \| m\| L\infty (\Omega ). By the Neumann condition \partial \nu w =  - (m \cdot \nu )F (wt) on \Gamma + and
Lemma 5, the following estimate is true (see [27, p. 471] for a proof):

(A.5) 2(\Delta w,m \cdot \nabla w) \leq (n - 2)\| \nabla w\| 2 +R2

\int 
\Gamma +

(m \cdot \nu )F 2(wt)d\Gamma .
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Substituting (A.5) into (A.3) gives us

(A.6) \.\rho (t) \leq  - 2E(t) +

\int 
\Gamma +

m \cdot \nu 
\bigl[ 
R2F 2(wt) - (n - 1)F (wt) w + | wt| 2

\bigr] 
d\Gamma .

The mapping H1
\Gamma 0
(\Omega ) \rightarrow L2(\Gamma +) being continuous, there is some constant \beta > 0 such

that

(A.7)

\int 
\Gamma +

m \cdot \nu | w| 2d\Gamma \leq \beta \| \nabla w\| 2.

By (A.7) and the Cauchy inequality we prove that

(A.8)

\bigm| \bigm| \bigm| \bigm| \bigm| (n - 1)

\int 
\Gamma +

m \cdot \nu F (wt) wd\Gamma 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq E(t) +
(n - 1)2\beta 

2

\int 
\Gamma +

m \cdot \nu F 2(wt)d\Gamma .

Substituting (A.8) into (A.6) and then (A.6) into (A.4) gives us the following:

\.E\epsilon (t) \leq  - \epsilon E
p+1
2 (t)

+

\int 
\Gamma +

m \cdot \nu 
\biggl\{ 
\epsilon E

p - 1
2 (t)

\biggl[ \biggl( 
R2 +

(n - 1)2\beta 

2

\biggr) 
F 2(wt) + | wt| 2

\biggr] 
 - 1

2
F (wt)wt

\biggr\} 
d\Gamma .(A.9)

We decompose \Gamma + into two disjoint sets \Gamma 1 and \Gamma 2 which may vary with time:

(A.10) \Gamma 1 = \{ x \in \Gamma + | | wt(x, t)| < M1\} , \Gamma 2 = \{ x \in \Gamma + | | wt(x, t)| \geq M1\} .

For all \epsilon satisfying

(A.11) \epsilon \leq \epsilon 3 =
C1

2E
p - 1
2 (0)

\bigl[ 
1 +

\bigl( 
R2 + \beta (n - 1)2/2

\bigr) 
C2

2

\bigr] ,
we have
(A.12)\int 

\Gamma 1

m \cdot \nu 
\biggl\{ 
\epsilon E

p - 1
2 (t)

\biggl[ \biggl( 
R2 +

(n - 1)2\beta 

2

\biggr) 
F 2(wt) + | wt| 2

\biggr] 
 - 1

2
F (wt)wt

\biggr\} 
d\Gamma \leq 0.

Notice that C1 and C2 are defined in (1.3).
It is easy to see that, from (1.3),

(A.13) | F (wt)| \leq M - 1
1 M2| wt| \forall x \in \Gamma 2.

This implies that, \forall \epsilon satisfying

(A.14) \epsilon \leq \epsilon 4 =
M1

4M2E
p - 1
2 (0)

\bigl( 
R2 + \beta (n - 1)2/2

\bigr) ,
\int 
\Gamma 2

m \cdot \nu 
\biggl\{ 
\epsilon E

p - 1
2 (t)

\biggl[ \biggl( 
R2 +

(n - 1)2\beta 

2

\biggr) 
F 2(wt) + | wt| 2

\biggr] 
 - 1

2
F (wt)wt

\biggr\} 
d\Gamma 

(A.15) \leq \epsilon E
p - 1
2 (t)

\int 
\Gamma 2

m \cdot \nu | wt| 2d\Gamma  - 1

4

\int 
\Gamma 2

m \cdot \nu F (wt)wtd\Gamma .
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Since F is monotone increasing, by setting Fmin = min(F (M1), | F ( - M1)| ) we
have

(A.16) | F (wt)| \geq Fmin \forall x \in \Gamma 2.

Let us set s = 2
p+1 \forall p > 1. By the H\"older inequality we get\int 
\Gamma 2

m \cdot \nu | wt| 2d\Gamma \leq F - s
min

\int 
\Gamma 2

m \cdot \nu | wt| 2 - s(F (wt)wt)
sd\Gamma 

(A.17) \leq F - s
min

\biggl( \int 
\Gamma 2

m \cdot \nu | wt| 
2 - s
1 - s d\Gamma 

\biggr) 1 - s \biggl( \int 
\Gamma 2

m \cdot \nu F (wt)wtd\Gamma 

\biggr) s

.

By (A.17) and the Young inequality we get

E
p - 1
2 (t)

\int 
\Gamma 2

m \cdot \nu | wt| 2d\Gamma \leq 

F - s
minR

1 - s

\biggl[ 
\delta (1 - s)E

p+1
2 (t)

\int 
\Gamma 2

| wt| 
2 - s
1 - s d\Gamma + s(1/\delta )

1 - s
s

\int 
\Gamma 2

m \cdot \nu F (wt)wtd\Gamma 

\biggr] 
\forall \delta > 0.

As (w0, w1) \in \scrD (W ), we have \| \nabla wt\| \leq \| W (w0, w1)\| X \forall t \geq 0. Hence wt \in 
H1

\Gamma 0
(\Omega ). By the boundary trace imbedding theorem [1, Theorem 5.36, p. 164] we

have continuous imbedding H1
\Gamma 0
(\Omega ) \rightarrow L

2 - s
1 - s (\Gamma +), i.e., there exists some constant \alpha 2

such that\biggl( \int 
\Gamma 2

(| wt| 
2 - s
1 - s d\Gamma 

\biggr) 1 - s
2 - s

\leq \alpha 2\| \nabla wt\| \forall p > 1 if n = 2 and \forall p \geq 2 if n = 3, respectively.

For all \epsilon satisfying

(A.18) \epsilon \leq \epsilon 5 =
Fmin

4s

\biggl( 
1

3(1 - s)R

\biggr) 1 - s
s \bigl( 

\alpha 2\| W (w0, w1)\| X
\bigr)  - 2 - s

s ,

there exists some \delta > 0 such that

(A.19) \epsilon E
p - 1
2 (t)

\int 
\Gamma 2

m \cdot \nu | wt| 2d\Gamma \leq \epsilon 

3
E

p+1
2 (t) +

1

4

\int 
\Gamma 2

m \cdot \nu F (wt)wtd\Gamma .

Taking \epsilon = min1\leq i\leq 5 \epsilon i and substituting (A.19) into (A.15) and then (A.15) and
(A.12) into (A.9) allows us to prove the following:

(A.20) \.E\epsilon (t) \leq  - 2\epsilon 

3
E

p+1
2 (t) \forall t \geq 0.

The assertion (i) and (A.20) imply the assertion (ii):

(A.21) \.E\epsilon (t) \leq  - \epsilon 

\biggl( 
2

3

\biggr) p+3
2

E
p+1
2

\epsilon (t) \forall t \geq 0.

Hence the claim is proved and the proof of Theorem 3 is complete.

Acknowledgment. The authors would like to thank the reviewers and the edi-
tors for useful suggestions to improve the paper.
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