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ABSTRACT 

Mild hydrothermal conditions used for the treatment of titanate scrolled nanosheets (SNSs) 

suspensions (140°C, 72h) resulted in a large variety of anatase TiO2 anisotropic nanoobjects 

depending on the studied parameters: influence of the medium pH, the presence or not of 

structuring agents. The present work shows that such a hydrothermal treatment of the SNSs, 

whatever the pH, resulted in the formation of single-crystalline anatase nanoneedles (NNs) with 

a specific crystal-elongation direction and a pH-dependent morphological anisotropy with 

aspect ratios from 1 to 8. The SNSs suspensions were prepared by the conventional ultra-basic 

treatment of TiO2 with NaOH, followed by washing with HNO3 to different pH values. The 

crystal size of the anatase TiO2 obtained from this hydrothermal treatment increased with the 

pH of the suspensions, from 15 nm nanoparticles (NPs) (aspect ratio AR = 1) at pH 2.2 to 500 

nm NNs (AR = 8) at a pH 10.8 with a long axis systematically along the anatase [001] direction. 

Triethanol amine (TEOA) and Oleic acid (OA) were used as structuring agents (SAs). Their 

respective influence when acting on their own, had little influence on the control of the size, 

shape or polydispersity of the NNs. However, their concomitant use provided a much better 

control of not only the size and polydispersity which was strongly reduced, but also on (i) the 

shape and morphology giving rise to a controlled access to well-defined nanorods as opposed 

to nanoneedles (ii) the crystal phase purity eliminating the few % brookite still visible in the 

XRD patterns of samples prepared in SA free conditions. This approach offers an on-demand 

control over the production of anatase morphologies with defined aspect ratios.  
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INTRODUCTION 

Nanosized titanium dioxide has attracted much attention, over the past decades, due to 

exceptional optical and electronic properties,1 high efficiency and high photo-stability, strong 

oxidizing power,2 chemical stability3-4 leading to many applications5 in catalysis, 

photocatalysis,6-7 solar cells,8-9 (bio)sensing10-11 and biomedicine.12 The photo-activity of 

TiO2,
13-14 is influenced not only by different properties such as the surface area, the crystallinity, 

the nanoparticle (NP) size or the crystal structure, 14-15 but also by the specific morphology of 

the particles, which determines which crystal facets are exposed, and then has a strong influence 

on the photocatalytic performance of the particles.16 Both theoretical and experimental studies 

have shown that the (001) surface of the TiO2 anatase truncated bipyramid which exhibits 100% 

of Ti five-fold coordinated (Ti5c) is much more reactive than the thermodynamically more 

stable (101) facet presenting 50% of Ti5c and 50% of Ti six-fold coordinated Ti6c.17-22 On the 

other hand, when NPs are expected to be very reactive, one cannot ignore their impact and their 

potential toxicity.23-32 The latter depends not only on the chemical nature of the nanomaterial, 

but also on its size, morphology and surface chemistry.12, 25, 30, 33-43 Therefore,  for toxicology 

and other purposes, the synthesis of well-crystallized and nanostructured TiO2 particles with 

tailored morphology is still the object of intense research and represents a current major 

challenge using either no capping agent, inorganic (F-) or organic capping agents (amines, long 

chain organic acids).5, 21, 44-49 These agents that specifically adsorb on different facets can play 

a critical role in assisting the anisotropic growth of specific facets so that the NP develops in 

targeted directions and controlled morphology. Besides the numerous molecular titanium 

precursors41, 50 (alkoxides, halides, titanium bis(ammoniumlactato) hydroxide, sulfate and 

oxysulfate, atranes, carboxylates) to grow TiO2 NPs, the use of the so-called titania-based 

nanotubes was successfully tested by Nian et al. in 2006.51 The synthesis of these titania-based 

nanotubes (TNTs), also referred to as scrolled nanosheets (SNSs), is based on the hydrothermal 
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treatment of TiO2 powder, at high temperatures in a highly concentrated NaOH solution without 

sacrificial templates and was first reported by Kasuga et al. 52-53 in 1998. This simple and cost-

effective hydrothermal method provides a large scale quantity of pure titania-based nanotubes 

with small diameter (9-10 nm) and lengths as high as several hundred nms and has been the 

subject of many efforts.33, 37, 54 The different studies on the reactivity of these SNSs in various 

media19, 33, 55-64 show they can be effectively used as a cost-effective starting material as 

compared to titanium alkoxides for the controlled synthesis of targeted morphologies of TiO2. 

We propose in this paper to use these SNSs in hydrothermal conditions under mild conditions 

(140°C, 3 days) and scan the influence of parameters such the pH and the nature of the capping 

agents suggested by Sugimoto to direct NPs growth starting from molecular precursors.65 We 

show that over a wide pH range (2.2-11) it is possible to control the morphology of the anatase 

TiO2 from nanocuboids to high aspect ratio nanoneedles (NNs) as illustrated in Scheme 1.  

 

Scheme 1. Illustration of the reaction procedure to control the NNs aspect ratios: in red the 

parameters are varied in this study. 

 

These nanoobjects with controlled morphology can then provide a panel for further use in 

biological studies to find correlations in between cells discrepancy and the aspect ratio of the 

NNs. 
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EXPERIMENTAL SECTION 

Synthesis of SNSs: The scrolled nanosheets were synthesized by a traditional hydrothermal route 

based on the initial work by Kasuga and co-workers. 52-53 The synthetic procedure for TiO2 

based scrolled nanosheets was as follows: P25 from Evonik (2 g, 25 mmol) a generous gift from 

Evonik was introduced into a Teflon vessel with an inner volume of 50 mL and added with a 

freshly prepared under Argon 10 N NaOH aqueous solution (30 mL (prepared in a Teflon 

Erlenmeyer), 0.3 mol.) (caution should be taken to avoid carbonation of sodium hydroxide 

solution). The Teflon vessel was sealed and placed on a roller mixer for 1 hour; it was then 

introduced inside a stainless steel autoclave and subjected to a hydrothermal treatment at 130°C 

for 23 hours. The autogenous pressure is not an issue because the saturation pressure of 10 N 

NaOH is ca. 1.2 bar at this temperature, thus it varies very little between 100 and 150°C, and 

can be easily controlled by strictly controlling the filling fraction of the PTFE container.66 The 

mixture was then naturally cooled down, the transparent supernatant removed. The white solid 

was collected, and washed with 150 mL of 0.1 N HNO3 solution for 15 minutes and submitted 

to centrifugation steps of 5,000 rpm for 10 minutes. This process was repeated until pH became 

acidic (an overall volume of 600 mL was necessary). Finally, the colloidal solution was 

neutralized with deionized water to get a stable pH of 7. The same procedure was used for the 

treatment with 1 N HNO3 and 0.1 N and 1 N HCl. 

Synthesis of Nanoneedles: The synthesis of nanoneedles using the previously prepared scrolled 

nanosheets is adapted from Nian’s.51 A 1 N NaOH solution was added dropwise to one-third of 

the freshly prepared scrolled nanosheet suspension corresponding to 0.7 g of powder, in order 

to reach the required pH (measured with a pH-meter), and to adjust the volume to 28 mL. It 

was then added to a 50 mL Teflon vessel in a stainless steel autoclave which was placed in an 

oven at 140 °C for 72 hours after which the mixture was naturally cooled down and washed 

with deionized water until pH 7 (centrifugation steps: 9,000 rpm, 10 minutes). The addition of 
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the structuring agents, (triethanolamine (TEOA), oleic acid (OA)), to freshly synthesized 

scrolled nanosheets was performed before adjusting the pH. 

Then, the pH was adjusted to the desired value and the volume to 28 mL with NaOH or HNO3 

solutions and distilled water. Finally, the mixture was introduced to a Teflon-lined stainless 

steel autoclave and subjected to hydrothermal treatment at 140°C for 72 hours. The two other 

thirds were also used as starting materials, as soon as prepared. The overall yield of such a 

process starting from 2g of TiO2 based on the two reactions in Scheme 1 and taking into account 

the many washing steps per batch was in the range 85-87%. 

The samples were heated in a programmable Memmert oven. The phase identification of the 

samples was performed with X-Ray Diffraction (XRD) using a powder diffractometer 

(PANalytical X’Pert Pro) equipped with CuKα1 radiation,  = 1.540598 Å. Transmission 

Electron Microscopy (TEM) images were obtained with either a TEM 1400 JEOL using 120 

kV voltage or on an Hitachi H7650 operating at 120 kV. HRTEM images were obtained with a 

TEM-FEG HR (JEOL 2200FS) at 200 kV.  

 

RESULTS AND DISCUSSION 

 

The alkaline-based hydrothermal synthesis developed by Kasuga et al. has rapidly turned out 

to be the dominant non-templated method for producing scrolled nanosheets52 and/or layered 

titanate nanomaterials.67 The main advantages of the procedure as mentioned in the introduction 

is that it relies on the use of cheap raw materials (TiO2 whatever its nature: anatase, commercial 

P25,52, 67-68 rutile,53, 68-69 or amorphous TiO2
70, NaOH or KOH67, water), exhibits high yields of 

single phase nanomaterial as well as the possibility to control the product morphology by tuning 

the composition of the reaction mixture. In a typical SNSs synthesis, anatase TiO2 is mixed into 

a 10 M NaOH aqueous solution until a white suspension is obtained, the suspension is then 
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aged in a closed Teflon-lined autoclave at a determined temperature for a given time without 

shaking or stirring except in one case.71 The product is then washed with either deionized water 

or acidic solutions at various concentrations, to reach a chosen pH at which point the slurry is 

filtered, and the titanate nanotubes are dried in air or kept in solution depending on their further 

use.  

The result of these different treatments is that the number of papers, which were published on 

the structure and formation of hydrothermally synthesized titanium oxide nanotubes/scrolled 

nanosheets, led to controversial reports especially concerning their crystalline structure.33, 72-73 

We therefore here were cautious to always use exactly the same experimental conditions, in 

terms of concentration of P25, use of freshly prepared sodium hydroxide solution (under argon), 

reaction time and temperature, as well as the washing procedure to ensure a constant 

reproducibility of the SNSs. The accurate control of this procedure was indeed mandatory to 

better understand the influence of the different studied parameters when these SNSs were used 

as starting materials for further syntheses. As shown in Figure 1, each SNS consists of a thin 

curved structure of several layers of a single nanosheet wrapped on itself, along with the c axis, 

leading to a nanotube with an average external diameter of about 8 nm with a multiwall 

thickness of about 2 nm and a length of several hundred nanometers.74 The interlayer spacing 

of these nanotubes is 0.7 nm, close to the values reported in the literature.55, 70, 75-77  

Figure 1. a) and b) TEM images of scrolled nanosheets at two magnifications after the acid 
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washing at 0.1N HNO3; c) HRTEM of the same SNSs showing the scrolled nature of the 

objects. 

The XRD patterns (Figure 2) of these scrolled nanosheets were analyzed at the different steps 

of the washing process: with doubly distilled water, HCl (0.1 N and 1 N) and HNO3 (0.1 N and 

1 N) solutions respectively and a subsequent drying at 40 °C for one night. 

  

 

Figure 2. XRD Patterns of scrolled nanosheets after various washing procedures showing the 

importance of the pH on the resulting structure. 

The first observation concerns the absence of an influence of the chemical nature of the acid, 

only the acid concentration plays a crucial role. Comparing the effects of neutral and acidic 

washings on the XRD patterns shows the major expected diffraction peaks at 2θ = 9.3°, 24.4°, 

28.5° and 48.3° characteristic of the tubular Ti3O7
2- layer  resulting from the NaOH treatment 

of TiO2 nanopowder, shifts to 2θ = 8.7, 25.2º, 27.9º and 48.6º for 0.1N HNO3 while a peak 

appears at 38° as well as an inversion of 2 peaks intensities in the 25-28° range with a complete 

disappearance of the latter after 1 N acid washing. This evolution of the diffraction patterns 

matches the structural modification with the acid treatment: while Na+ ions are replaced by the 

bigger H3O
+ between the sheets during the washing process (Na2Ti3O7  → NaxH2-xTi3O7).

52, 78-

80 Many explanations have been given in the literature for the same type of XRD patterns. 

Authors claimed that in the Ti3O7
2- layer they obtained, three edge-shared TiO6 octahedra joined 
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at the corner to form the stepped Ti3O7
2− layers; sodium ions and water molecules located 

between the layers were exchangeable and assumed a general formula of NaxH2-xTi3O7 

depending on the washing.61, 81 However, such XRD patterns were also attributed to 

H2Ti2O5·H2O
51, 69, 82-86 or orthorhombic protonic lepidocrocite (HxTi2-x/4□x/4O4  with x ~ 0.7 and 

□: vacancy).20 This is why the obtained product is very often considered to be a protonated form 

of titanium oxide or hydrogeno titanate, formulated under pressure.33  

In the following, we took special care to use the same washing procedure, like equal volumes 

of 0.1 N HNO3 and the same periods of time, to be sure to obtain identical SNSs. The SNSs 

then underwent a hydrothermal treatment at 140°C with an identical autoclave filling fraction 

of 60% in all the experiments, during which we varied different parameters: the reaction time, 

the aging of the precursor SNSs, the pH of the reaction medium as well as the presence of 

structuring agents such as TEOA and/or OA. The SNSs were transformed into TiO2 NNs with 

various lengths and aspect ratios depending on the studied parameters. As an example, when a 

suspension of 0.7 g of scrolled nanosheets underwent reaction at 140 °C for 72 hours at pH 9.8 

treatment, nanoneedles as shown in Figure 3 a) are obtained. The XRD analysis (Figure 3b) 

shows the characteristic peaks of the well-crystallized anatase structure (JCPDS 21-1272) are 

dominant with a few % of brookite (JCPDS 029-1360) barely detectable.45  

The statistical distribution of their lengths and widths measured on at least 300 NPs (Figures 3 

c) and d)) provided an average length of 350 nm (± 130 nm), and width of 46 nm (± 10 nm) and 

aspect ratio (AR) of 7.5.  
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Figure 3. (a) TEM image and (b) XRD pattern of TiO2 nanoneedles (c) and (d) statistical 

distribution of nanoneedles length and width respectively. (140 °C for 72 hours at pH 9.8). 

Influence of the reaction time: In most of the papers, the required operating time used for the 

transformation of the SNSs into other TiO2 morphologies at 140°C is generally 3 days, we 

effectively confirmed that 24h and 48h reaction times respectively have a % conversion of only 

50% and 80% of the SNSs at 140°C.  

Influence of the SNS aging. The parameters of a pH of 9.8 and a hydrothermal treatment at 140 

°C for 3 days, were fixed to study the influence of the SNSs aging. Figure 4 compares the 

freshly-prepared SNSs (Figure 4a) and the morphology (Figure 4b) and size distribution (Figure 

4c) of the resulting TiO2 NNs and the same SNSs stored in water solution at pH 7 for 31 days 

at room temperature (Figure 4d) and their resulting TiO2 NNs (Figure 4e and Figure 4f). At 

such a pH, no phase transformation of the SNSs into more stable nanoobjects was detected55, 

they tend to shorten as well as un-scroll leading to smaller nanoobjects when submitted to 
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hydrothermal treatment. Their XRD pattern is also detrimentally influenced by a long storage 

in neutral water as shown in Figure 5a. 

 

Figure 4. (a and d) TEM images of fresh and 1-month old SNSs respectively; TEM images (b 

and, e) and length distribution (c and f) of NNs obtained from fresh and 1-month old SNSs 

respectively (pH 9.8, hydrothermal treatment at 140 °C for 3 days). 

Figures 4b and 4e are the TEM images of their corresponding NNs with the size distribution 

made on the length of more than 300 particles (Figures 4c and 4f). NNs obtained from freshly-

made SNSs exhibit an average length of 350 nm (±140 nm) whereas SNSs obtained from “old” 

SNSs are much smaller with an average length of 92 nm (± 30 nm). The same trend is observed 

with the NNs width. A more systematic study of the aging of the nanosheets from 0 to 31 days 

was performed to determine the impact on the nanoneedles length as shown in Figure 5b.  
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Figure 5. a) Variation of the XRD pattern of the SNSs with time; b) variation of NNs length as 

a function of the age of SNSs (pH 9.8, hydrothermal treatment at 140 °C for 3 days). 

These results are in agreement with some work also reported by Bavykin55-56 who showed that 

the stability of the SNSs in solution could not necessarily be assumed and that it also depended 

on the pH and on the counter-anions present in solution. Playing with SNS aging to decrease 

TiO2 nanoparticle size is then an option to control the nanoneedles size, but it is far too time-

consuming.  Indeed the exponential fit gives a characteristic time of dissolution of the SNSs of 

20 days.  

 

Influence of the medium initial pH. The initial pH of the reaction medium was then adjusted to 

different values from 2 to 11 at least 3 times for each value and up to 8 times in some cases. In 

each case, the statistics on the NNs length were performed on at least 300 NPs from the TEM 

images, and the variation of the NNs length with the pH is illustrated in Figure 6.  
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Figure 6. Variation of the sizes of nanoneedles with the pH. Each dot represents an average of 

3 to 8 experiments: black dots for NNs length, blue ones for NNs width (each experiment being 

representative of a statistic on at least 300 NPs), bars represent the statistic errors on these 

experiments; inset: variation of the NNs aspect ratio with the pH. In all cases, lines are guides 

for the eye. 

The variation of the pH can effectively adjust the length/width of the resulting NNs and control 

the NNs aspect ratio over a wide range from 1 at pH 2, to 3 at pH 6 and 8 at pH as high as 10.8. 

In fact at 140°C, the SNSs revealed to be very stable in concentrated basic media, and it was 

only when pHs were below 11 that it became possible to corrode them and generate long anatase 

NNs. As illustrated in Figure S1, the XRD patterns of these anatase nanoobjects only differ in 

the fact that there is a tendency at pH 9 to form the brookite phase, with increasing brookite 

content with increasing pH values. 

It has been proposed56 that the pH-dependent transformation of the SNSs to TiO2 nanostructures 

could occur by the dissolution of the initial nanotubes at the edges accompanied by the 

simultaneous crystallization of TiO2 nanostructures, with a rate of the transformation at room 

temperature proportional to the steady-state concentration of dissolved TiIV, which is itself a 

function of the pH. When performed in hydrothermal conditions, the crystal nucleation-growth 
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is controlled by kinetics, rather than thermodynamics, leading to the formation of metastable 

anatase.51 These NNs exhibit a preferential direction along the [001] axis of anatase during the 

crystal growth, which can be easily explained by the selectivity of the constraint induced by the 

configuration and crystalline structure of the scrolled nanosheets used as precursors. Thus, the 

correlation between the crystalline structures of the SNSs and the resulting nanoobjects is 

crucial for the morphology of the later. Upon the hydrothermal treatment of the SNSs, the 

reaction proceeds with their partial dissolution followed by the rearrangement of the resulting 

bilayered fragments to form anatase nanoobjects; the size of these fragments being strongly pH- 

and temperature-dependent and controlling the final aspect ratio of the NNs. The preferential 

elongation [001] in the anatase is strongly dependent on the specific feature of the nanotubes. 

Both SNSs titanate and anatase have common structural characteristics87: their lattices consist 

of octahedra sharing four edges and forming zigzag ribbons. Additionally, the titanate SNSs 

framework exhibits a majority of under-coordinated titanium sites located on the interior wall 

of the tube,88 and because of the pH the interplay between the ions in solution and the 

subsequently related possibility of generating Ti-O-Ti bonds, this framework shrinks locally by 

reducing the interlayer distances and rearranges, leading to the anatase TiO2 structure.   

Even if adjusting the pH effectively allows a control of the NNs length through changing 

fragment size, the final NNs size distribution may still be a problem depending on the required 

applications, particularly for biological ones. The use of structuring agents (SAs) is a way to 

overcome this drawback and control the morphology of nanoobjects as well as their 

polydispersity, and many of these SAs have already been used in the literature: using basic15, 17, 

44, 64-65, 89-99 and acidic15, 17, 100-101 agents, on their own or in varied proportions; in hydrothermal1, 

5, 7, 18, 33, 37, 41, 46, 50-51, 54, 72-73, 83, 91, 102-108 and non-hydrolytic5, 16-17, 41, 50, 54, 106, 109-111 processes.  
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Influence of structuring agents: Among all those which were used, we focused our attention on 

triethanolamine (TEOA) and oleic acid (OA) which have been up to now used by Sugimoto et 

al. in the gel-sol process.65, 95, 98, 112-115 These authors showed the influence and the role of TEOA 

as a trap in the release of the reactive Ti4+ species from the gel formed from titanium alkoxides 

before the formation of the TiO2 nanoparticles, at a temperature above 100 °C. Our goal here 

was to apply this approach to a top-down approach, using the progressive destruction of the 

scrolled nanosheets as the source of “Ti4+” and these two SAs separately or in combination 

under various pH conditions. Figure 7 illustrates the result of the synthesis of nanoneedles 

performed in the presence of TEOA and OA separately, at pH 9.8. The same batch of starting 

scrolled nanosheets was used to make sure results were comparable. TEOA or OA was added 

to the scrolled nanosheets (0.7 g) and the pH adjusted to 9.8 with an aqueous solution of 0.1 N 

NaOH. They were reacted in a Teflon-lined stainless steel autoclave, for 72 hours at 140 °C 

with 0, 500 and 1000 µL of the respective structuring agent (3.76 and 7.52 mmol for TEOA 

(molar ratios between TEOA and Ti are 0.45 and 0.9) and 1.59 and 3.18 mmol for OA (molar 

ratios between OA and Ti are 0.2 and 0.4). For the sake of clarity, results are presented as a 

function of the SA varying volumes. The TEM images on Figure 7a and 7c show that the 

morphology of the resulting objects does not change, whatever the chemical nature of the SA 

(TEOA or OA) at the chosen pH. A slight decrease of the average length seems to take place 

while keeping the standard deviation relatively high (~100 nm) (Figure 7b and 7d). 
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Figure 7. TEM images of NNs prepared with 500 µL of a) triethanolamine (TEOA) and c) oleic 

acid (OA); b) and d) NNs length distribution for an initial pH of 9.8. 

Experiments performed at different pH values confirmed the role of the SAs when used 

separately (Figure 8). TEOA containing both amino and OH groups is susceptible to interact 

with the SNSs in two potential ways: on the one hand, it can limit the growth rate of the planes 

parallel to the c-axis of TiO2 tetragonal crystal system because of its specific affinity for these 

planes in this pH range,98 its adsorption on the surface of TiO2 being negligible or extremely 

weak in neutral and acidic media112; on the other hand, it also contributes to the fragmentation 

of the titanate layer since for a given pH value of 9, for example, the NNs length is divided by 

2 in the presence of TEOA. Oleate anions provide both smaller NNs and reduced polydispersity. 
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Figure 8. Average NNs length without (as in Figure 6) and with structuring agents (TEOA or 

OA). The error bars are obtained by means of at least 3 experiments. 

High pH values (> 11.5) did inhibit the formation of NNs in the presence of TEOA, probably 

because the SNSs were too stable in these conditions and the rate of dissolution of the SNSs 

and formation in solution of the titanium hydroxide aquo complexes postulated to induce the 

nucleation of TiO2 by this pathway is too low.113 Indeed, instead of starting from an amorphous 

gel of Ti(OH)x as in Sugimoto’s case65, 98 where the OH group can be easily replaced by TEOA 

or OA, the process here starts from scrolled nanosheets which are first partially dissolved, and 

then restacked in the right configuration. It should be added that TEOA has also been observed 

to act as a capping agent.116-117 

In the low pH range (pH < 6), the NPs exhibit the identical size and shape as in the absence of 

structuring agent (Supporting Information Figure S2).  

 

Influence of the combination of the structuring agents: We then combined these two SAs fixing 

the quantities of TEOA at 500 µL (3.76 mmol) and OA at 500 µL (1.59 mmol) and varied the 

initial pH of the reaction mixture (Figure 9).  
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Figure 9. Variation of the NNs length, with the pH of the reaction medium in the absence (black 

dots) and in the presence of 500 µL of both SAs (red dots). Results represent the averages of 

statistics of at least 300 NPs for each of the 3 sets of experiments per data point. Inset variation 

of the width and aspect ratio of the same objects obtained in the presence of the two SAs. Lines 

are guides for the eye. 

Figure 9 compares the size and aspect ratio of the resulting objects as a function of pH in the 

presence and absence of the SAs. This figure effectively illustrates the influence of the 

combination of these two SAs on the size and morphology of the resulting objects. The major 

impact of this concomitant use is visible under basic conditions (9-10.5) where a higher control 

over the length as well as over the size distribution of the objects can be performed (compare 

with Figure 8). Furthermore the NNs shape was a rod-like one with flatter extremities in the 

low pH range, as illustrated in Figure 10, confirming the affinity of the carboxylate ions for the 

(001) face and their blocking effect on the crystal growth. Nanorods with various sizes and 

aspect ratios could be obtained by playing with the ratio between the SNSs and the capping 

agents, while the absence of these shape controllers led to a mixture of less-specific nanoobjects 

(Figure 10a).  
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Figure 10. Example of TEM images of TiO2 nanorods obtained at pH 4.4: a) in the absence of 

any capping agent; and b) in the presence of 500 µL (3.76 mmol) of TEOA and 500µL (1.59 

mmol) OA starting with 2 g of SNSs (NRs length 34 (±10), width: 15 (±5) aspect ratio: 2 and 

c) starting with 0.7 g of SNSs (NRs length 73 (±15), width: 21 (±8) aspect ratio: 3). 

A pH value of 10.7 which is a usual value given in the literature for the action of amines as 

structuring agents,98 revealed to be detrimental in the presence of oleate since the conversion 

of SNSs was not complete (see Figure S3 in supporting information), and  the efficiency became 

even worse with increasing amounts of oleate. It could be proposed that using a pH above a 

given value prevails on any other parameter for the shape control of NPs.65 

We then focused on pH 9.5, which revealed to be the autogenous pH of the resulting mixture 

after stabilization with 500 µL of TEOA and varied the ratio between TEOA and OA increasing 

the volume of OA from 0 to 1600 µL. Figure 11 shows characteristic TEM images of particles 

obtained with different amounts of OA. It illustrates the synergetic effect of the combined use 

of these two structuring agents and shows the influence of the OA amount on not only the length 

of NNs but also on their shape since they turn into nanorods and finally give nanocuboid-like 

particles (Figures 11a,b,c). This is commonly explained by the selective binding of the OA to 

the anatase (001) face111, 118 which controls its growth. 
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Figure 11. TEM images of the different shapes of particles synthesized using 500 µL of TEOA 

at pH 9.5 and respectively: a) 0 µL of OA, b) 500 µL of OA, c) 800 µL of OA; d) Variation of 

the NNs length with the amount of oleic acid at a fixed concentration of TEOA (500 µL) at pH 

9.5 on a set of a total of 3 experiments per point. 

In this top-down process, the nanosheets can react as follows: (i) depending on the pH, their 

dimensions are reduced and they are partially dissolved leading to the Ti(IV) complex soluble 

in the reaction mixture in equilibrium with small fragments, which can then rearrange. The 

structuring agents participate in the control of these fragments size. They also tune the growth 

rate of the specific crystal planes by their specific adsorption under different pH conditions 

(parallel (for TEOA) or perpendicular (for OA) to the c-axis,65, 99). (ii) In the presence of the 

SAs the dissolved titanium based octahedra complexes can also agglomerate and exhibit 
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controlled growth as do SAs, as described by Sugimoto. (iii) Or both processes can take place 

in a ratio difficult to estimate. Different sets of 3 tests per experiment were performed at pH 9.5 

(Figure 11d) to determine repeatability, reproducibility, and statistical parameters. The decrease 

of the size of the nanoneedles with increase of the oleic acid quantity was confirmed and clearly 

indicated the crucial role played by this capping agent in the presence of TEOA. 

The concomitant use of these two SAs allows the control of not only the morphology but also 

the purity of the anatase crystal phase by preventing the formation of the brookite-type TiO2, 

which is often produced (even if only a few %) in the presence of Na+ under hydrothermal 

conditions (Figure 12).51  

 

Figure 12. XRD pattern of NNs synthesized at initial pH 9.5 with (−) no structuring agent; (−) 

500 µL of TEOA and 0 µL of OA, (−) 500 µL of TEOA and 500 µL of OA. 

HRTEM was performed on both NNs and NRs morphologies, and Figure 13 shows an example 

of a nearly perfect NN obtained at pH 9.5 in the presence of the two SAs. The nature of the 

clearly visible atomic planes is deduced from the indexation of the Fast Fourier Transform 

(FFT) of the image. In addition, based on the orientation deduced from the FFT, a simulated 

image has been calculated taking into account the characteristics of the microscope. This 
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calculated image is inserted into the experimental one and the good agreement between both 

images confirms the structure and the orientation of the studied material (white arrow). The 

particle is elongated along the [001] direction which is consistent with the prediction15, 119 and 

with the already published finding.15 

Indeed, all the observed particles are elongated along the same direction. In this nano-crystal, 

the facets are parallel to the {101} planes. However, this is not the case for most of the particles. 

  

 

Figure 13. HRTEM image and Fast Fourier Transform of a perfect NN. The inserted image in 

the particle is a simulated image along the [010] zone axis at Scherer defocus for a 5 nm 

thickness. 

A typical example is shown in Figure 14. The outer faces of the crystal are composed of nano-

facets belonging to the {101} planes. Their length is variable making it possible to 

accommodate different geometries from one crystal to another. 
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Figure 14. TEM image of a typical crystal in a NN form; inset: selected area electron diffraction 

pattern b) HRTEM image of the same NN showing a saw-tooth-like organization of the (101) 

planes of the external facet of the crystal. 

 

High resolution images of nanorods have also been obtained (Figure 15). As previously for the 

NNs, the nanorods are elongated along the [001] direction, but the main external facets are this 

time parallel to the (100) planes. The curved end of the nanorods is composed of sequences of 

(101) and (-101) planes as illustrated in the figure. 

 

Figure 15.  HRTEM image of a typical crystal in a nanorod shape. 
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CONCLUSION: 

 

To conclude, in this paper we were able to generate a large family of anatase phase nanoobjects 

with typical sizes from 15 to 700 nm and aspect ratios from 1 to 8, through a wet chemistry 

process starting from titanate scrolled nanosheets. Morphology was tailored by playing with 

different parameters such as (i) the age of the SNSs, (ii) mild hydrothermal temperature 140°C, 

(iii) a wide pH range 2-11. The concomitant use of structuring agents such as triethanol amine 

and oleic acid during the hydrothermal process proved to be an additional convenient way to 

master the phase transformation and control the size and shape as well as the polydispersity of 

the targeted nanoobjects in basic media.  
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Caption to Scheme 

 

Scheme 1. Illustration of the reaction procedure to control the NNs aspect ratios: in red the 

parameters are varied in this study. 

 

Caption to figures 

 

Figure 1. a) and b) TEM images of scrolled nanosheets at two magnifications after the acid 

washing at 0.1N HNO3; c) HRTEM of the same SNSs showing the scrolled nature of the 

objects. 

Figure 2. XRD Patterns of scrolled nanosheets after various washing procedures showing the 

importance of the pH on the resulting structure. 

Figure 3. (a) TEM image and (b) XRD pattern of TiO2 nanoneedles (c) and (d) statistical 

distribution of nanoneedles length and width respectively. (140 °C for 72 hours at pH 9.8). 

Figure 4. (a and d) TEM images of fresh and 1-month old SNSs respectively; TEM images (b 

and e) and length distribution (c and f) of NNs obtained from fresh and 1-month old SNSs 

respectively (pH 9.8, hydrothermal treatment at 140 °C for 3 days). 

Figure 5. a) Variation of the XRD pattern of the SNSs with time; b) variation of NNs length as 

a function of the age of SNSs (pH 9.8, hydrothermal treatment at 140 °C for 3 days). 

Figure 6. Variation of the sizes of nanoneedles with the pH. Each dot represents an average of 

3 to 8 experiments: black dots for NNs length, blue ones for NNs width (each experiment being 

representative of a statistic on at least 300 NPs), bars represent the statistic errors on these 

experiments; inset: variation of the NNs aspect ratio with the pH. In all cases, lines are guides 

for the eye. 
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Figure 7. TEM images of NNs prepared with 500 µL of a) triethanolamine (TEOA) and c) oleic 

acid (OA); b) and d) NNs length distribution for an initial pH of 9.8. 

Figure 8. Average NNs length without (as in Figure 6) and with structuring agents (TEOA or 

OA). The error bars are obtained by means of at least 3 experiments. 

Figure 9. Variation of the NNs length, with the pH of the reaction medium in the absence (black 

dots) and in the presence of 500 µL of both SAs (red dots). Results represent the averages of 

statistics of at least 300 NPs for each of the 3 sets of experiments per data point. Inset variation 

of the width and aspect ratio of the same objects obtained in the presence of the two SAs. Lines 

are guides for the eye. 

Figure 10. Example of TEM images of TiO2 nanorods obtained at pH 4.4: a) in the absence of 

any capping agent; and b) in the presence of 500 µL (3.76 mmol) of TEOA and 500µL (1.59 

mmol) OA starting with 2 g of SNSs (NRs length 34 (10), width: 15 (5) aspect ratio: 2 and c) 

starting with 0.7 g of SNSs (NRs length 73 (15), width: 21 (8) aspect ratio: 3). 

Figure 11. TEM images of the different shapes of particles synthesized using 500 µL of TEOA 

at pH 9.5 and respectively: a) 0 µL of OA, b) 500 µL of OA, c) 800 µL of OA; d) Variation of 

the NNs length with the amount of oleic acid at a fixed concentration of TEOA (500 µL) at pH 

9.5 on a set of a total of 3 experiments per point. 

Figure 12. XRD pattern of NNs synthesized at initial pH 9.5 with (−) no structuring agent; (−) 

500 µL of TEOA and 0 µL of OA, (−) 500 µL of TEOA and 500 µL of OA. 

Figure 13. HRTEM image and Fast Fourier Transform of a perfect NN. The inserted image in 

the particle is a simulated image along the [010] zone axis at Scherer defocus for a 5 nm 

thickness. 

Figure 14. TEM image of a typical crystal in a NN form; inset: selected area electron diffraction 

pattern b) HRTEM image of the same NN showing a saw-tooth-like organization of the (101) 

planes on the external facet of the crystal. 
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Figure 15. HRTEM image of a typical crystal in a nanorod shape. 
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