
HAL Id: hal-02051413
https://hal.science/hal-02051413v1

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reformulation-based query answering for RDF graphs
with RDFS ontologies

Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier

To cite this version:
Maxime Buron, François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier. Reformulation-based
query answering for RDF graphs with RDFS ontologies. ESWC 2019 - 16th European Semantic Web
Conference, Jun 2019, Portoroz, Slovenia. pp.19-35, �10.1007/978-3-030-21348-0_2�. �hal-02051413�

https://hal.science/hal-02051413v1
https://hal.archives-ouvertes.fr

Reformulation-based query answering for RDF
graphs with RDFS ontologies

Maxime Buron1,2, François Goasdoué3, Ioana Manolescu1,2, and Marie-Laure
Mugnier4

1 Inria Saclay, firstname.lastname@inria.fr
2 LIX (UMR 7161, CNRS and Ecole polytechnique, France)

3 Univ Rennes, CNRS, IRISA, fg@irisa.fr
4 Univ. Montpellier, LIRMM, Inria, mugnier@lirmm.fr

Abstract. Query answering in RDF knowledge bases has traditionally
been performed either through graph saturation, i.e., adding all implicit
triples to the graph, or through query reformulation, i.e., modifying the
query to look for the explicit triples entailing precisely what the orig-
inal query asks for. The most expressive fragment of RDF for which
Reformulation-based quey answering exists is the so-called database frag-
ment [12], in which implicit triples are restricted to those entailed using
an RDFS ontology. Within this fragment, query answering was so far
limited to the interrogation of data triples (non-RDFS ones); however, a
powerful feature specific to RDF is the ability to query data and schema
triples together. In this paper, we address the general query answering
problem by reducing it, through a pre-query reformulation step, to that
solved by the query reformulation technique of [12]. We also report on
experiments demonstrating the low cost of our reformulation algorithm.

Keywords: Query answering · Query reformulation · RDF · RDFS

1 Introduction

RDF is the standard model for sharing data and knowledge bases. The rapid
increase in number and size of RDF graphs makes efficient query answering on
RDF quite a challenging task. Reasoning raises a performance challenge: query
answering on an RDF graph no longer reduces to evaluating the query on the
graph (by finding all the homomorphisms, or embeddings, of the query in the
graph). Instead, it requires taking into account also the possible ontology (or
knowledge) rules, which specify how different classes and properties of an RDF
graph relate to each other, and may lead to query answers that evaluation alone
cannot compute. Moreover, SPARQL, the standard query language of RDF,
allows querying the data and the ontology together. This is a radical departure
both from relational databases, and from Description Logics (DL)-style models
for RDF data and queries.
For what concerns reasoning, two main methods have been explored: graph sat-
uration, which injects the ontology knowledge into the graph, and query refor-
mulation, which pushes it into the query. Saturation adds to the graph all the
triples it entails through the ontology. Evaluating a query on a saturated graph

2 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

RDF assertions Triple notation

Class assertion (s, τ, o)
Property assertion (s, p, o) with p 6∈ {τ,≺sc,≺sp,←↩d, ↪→r}
RDFS constraints Triple notation

Subclass (s,≺sc, o)
Subproperty (s,≺sp, o)
Domain typing (s,←↩d, o)
Range typing (s, ↪→r, o)

Table 1. RDF statements.

can be quite efficient; however, saturation takes time to compute, space to store,
and needs to be updated when the data and/or ontology rules change. Refor-
mulation leaves the graph unchanged and builds a reformulated query which,
evaluated on the original graph, computes all the answers, including those that
hold due to entailed triples. Each query reformulation method, thus, targets a
certain ontology language and a query dialect. The most expressive RDF frag-
ment for which sound and complete reformulation-based query answering exists
is the so-called database fragment [12], in which RDF Schema (RDFS, in short)
is used to describe the ontology, while queries only carry over the data triples.
In this work, we present a novel reformulation-based query answering under
RDFS ontologies for Basic Graph Pattern (BGP) queries over both the data and
the ontology. This goes beyond the closest algorithm previously known [12] which
is restricted to queries over the data only (not over the ontology). The algorithm
we present here also goes beyond those of RDF platforms such as Jena, Virtuoso
or Stardog, which we found experimentally to be incomplete when answering
through reformulation queries over the data and the ontology of an RDF graph.
Below, we recall some terminology (Section 2) and discuss the state of the art
(Section 3). Then, Section 4 introduces our novel query reformulation algorithm,
which we implemented in the platform used in [12, 9], leveraging an efficient re-
lational database (RDBMS) engine for query answering. Our experiments (Sec-
tion 5) demonstrate the practical interest of our reformulation approach.

2 Preliminaries

We present the basics of the RDF graph data model (Section 2.1), of RDF
entailment used to make explicit the implicit information RDF graphs encode
(Section 2.2), as well as how they can be queried using the widely-considered
SPARQL Basic Graph Pattern queries (Section 2.3).

2.1 RDF Graph

We consider three pairwise disjoint sets of values: I of IRIs (resource iden-
tifiers), L of literals (constants) and B of blank nodes modeling unknown
IRIs or literals, a.k.a. to labelled nulls [4]. A well-formed triple belongs to
(I ∪ B) × I × (L ∪ I ∪ B), and an RDF graph G is a set of well-formed
triples. A triple (s, p, o) states that its subject s has the property p with the
object value o [1]. We denote by Val(G) the set of all values (IRIs, blank nodes
and literals) occurring in an RDF graph G, and by Bl(G) its set of blank nodes.

Reformulation-based query answering for RDF graphs with RDFS ontologies 3

Within an RDF graph, triples model either factual assertions for unary rela-
tions called classes and binary relations called properties, or RDFS ontological
constraints between classes and properties. The RDFS constraints are of four
flavours: subclass constraints, subproperty constraints, typing of the domain
(first attribute) or of the range (second attribute) of a property. The triple no-
tations we adopt for RDF assertions and constraints are shown in Table 1. In
a triple, we use :b (possibly with indices) to denote blank nodes, and strings
between quotes to denote literals.
We consider RDF graphs with RDFS ontologies, i.e., constraints of the four
flavors above, excluding constraints which would alter the commonly-accepted
RDFS semantics. For instance, (←↩d,≺sp, ↪→r) is not allowed as it would make
domain typing a particular case of range typing. Let RDFS(G) denote the RDFS
constraints of a graph G. We define:

Definition 1 (RDF graph with an RDFS ontology). An RDFS ontology
(or ontology in short) is a set of RDFS constraints, whose subjects and objects
are either IRIs (other than ≺sc,≺sp,←↩d, ↪→r, τ) or blank nodes.
An RDF graph G with ontology O is such that: RDFS(G) = O.

Example 1 (Running example). Consider the following RDF graph:
Gex = {(:worksFor,←↩d, :Person), (:worksFor, ↪→r, :Org), (:PubAdmin,≺sc, :Org)

(:Comp,≺sc, :Org), (:bC ,≺sc, :Comp), (:hiredBy,≺sp, :worksFor)
(:ceoOf,≺sp, :worksFor), (:ceoOf, ↪→r, :Comp),
(:p1, :ceoOf, :c), (:c, τ, :bC), (:p2, :hiredBy, :a), (:a, τ, :PubAdmin)}

The ontology ofGex, i.e., the first eight triples, states that persons are working for
organizations, some of which are public administrations or companies. Further,
there exists a special kind of company (modeled by :bC). Being hired by or
being CEO of an organization are two ways of working for it; in the latter case,
this organization is a company. The assertions of Gex, i.e., the four remaining
triples, states that :p1 is CEO of :c, which is a company of the special kind :bC ,
and :p2 is hired by the public administration :a.

A homomorphism between RDF graphs allows characterizing whether an RDF
graph simply entails another, based on their explicit triples only:

Definition 2 (RDF graph homomorphism). Let G and G′ be two RDF
graphs. A homomorphism from G to G′ is a function ϕ from Val(G) to Val(G′),
which is the identity on IRIs and literals, such that for any triple (s, p, o) in G,
the triple (ϕ(s), ϕ(p), ϕ(o)) is in G′.

Note that, according to the previous definition, a G blank node can be mapped
to any G′ value. A graph G′ simply entails a graph G if there is a homomorphism
ϕ from G to G′, which we denote by G′ |=ϕ G.

2.2 RDF Entailment Rules
The semantics of an RDF graph consists of the explicit triples it contains, and
of the implicit triples that can be derived from it using RDF entailment rules.

Definition 3 (RDF entailment rule). An RDF entailment rule r has the
form body(r)→ head(r), where body(r) and head(r) are RDF graphs, respectively
called body and head of the rule r.

4 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

Rule [2] Entailment rule

rdfs2 (p,←↩d, o), (s1, p, o1)→ (s1, τ, o)

rdfs3 (p, ↪→r, o), (s1, p, o1)→ (o1, τ, o)

rdfs5 (p1,≺sp, p2), (p2,≺sp, p3)→ (p1,≺sp, p3)

rdfs7 (p1,≺sp, p2), (s, p1, o)→ (s, p2, o)

rdfs9 (s,≺sc, o), (s1, τ, s)→ (s1, τ, o)

rdfs11 (s,≺sc, o), (o,≺sc, o1)→ (s,≺sc, o1)

ext1 (p,←↩d, o), (o,≺sc, o1)→ (p,←↩d, o1)

ext2 (p, ↪→r, o), (o,≺sc, o1)→ (p, ↪→r, o1)

ext3 (p,≺sp, p1), (p1,←↩d, o)→ (p,←↩d, o)

ext4 (p,≺sp, p1), (p1, ↪→r, o)→ (p, ↪→r, o)

Table 2. RDFS entailment rules.
The standard RDF entailment rules are defined in [2]. In this work, we consider
the rules shown in Table 2, which we call RDFS entailment rules; all values
except the τ,≺sc,≺sp,←↩d, ↪→r properties are blank nodes. These rules are the
most frequently used for RDFS entailment; they produce implicit triples by
exploiting the RDFS ontological constraints of an RDF graph. For example,
the rule rdfs9, which propagates values from subclasses to their superclasses, is
defined by body(rdfs9) = {(s,≺sc, o), (s1, τ, s)} and head(rdfs9) = {(s1, τ, o)}.
The direct entailment of an RDF graph G with a set of RDF entailment rules
R, denoted by CG,R, characterizes the set of implicit triples resulting from rule
applications that use solely the explicit triples of G. It is defined as:

CG,R = {ϕ(head(r)) | r ∈ R, G |=ϕ body(r)}
For instance, the rule rdfs9 applies to the graph Gex: Gex |=ϕ body(rdfs9)
through the homomorphism ϕ defined as {s 7→ :bC , o 7→ :Comp, s1 7→ :c},
hence allows deriving the implicit triple (:c, τ, :Comp).
The saturation of an RDF graph allows materializing its semantics, by iteratively
augmenting it with the triples it entails using a set R of RDF entailment rules,
until reaching a fixpoint; this process is finite [2]. Formally:

Definition 4 (RDF graph saturation). Let G be an RDF graph and R a set
of entailment rules. We recursively define a sequence (GRi)i∈N of RDF graphs as
follows:
– GR0 = G, and
– GRi+1 = GRi ∪ CGR

i ,R for 0 ≤ i.
The saturation of G w.r.t. R, denoted by GR, is GRn for n the smallest integer
such that GRn = GRn+1.

Example 2. The saturation of Gex w.r.t. the set R of RDFS entailment rules
shown in Table 2 is attained after the following two saturation steps:

(Gex)R1 =Gex ∪ {(:bC ,≺sc, :Org), (:hiredBy,←↩d, :Person), (:hiredBy, ↪→r, :Org),
(:ceoOf,←↩d, :Person), (:ceoOf, ↪→r, :Org),
(:p1, :worksFor, :c), (:c, τ, :Comp), (:p2, :worksFor, :a), (:a, τ, :Org)}

(Gex)R2 =(Gex)R1 ∪ {(:p1, τ, :Person), (:p2, τ, :Person), (:c, τ, :Org)}

Simple entailment between RDF graphs, which is based on their explicit triples
only, generalizes to entailment between RDF graphs w.r.t. a set of RDF entail-
ment rules, to also take into account their implicit triples.
A graph G entails a graph G′ w.r.t. a set of rules R, noted G |=ϕ

R G′, whenever

Reformulation-based query answering for RDF graphs with RDFS ontologies 5

there is a homomorphism ϕ from G′ to GR. Of course, simple entailment and
entailment between RDF graphs coincide when R = ∅. For simplicity, we will
just write G |=R G′ whenever ϕ is not needed for the discussion.
In this work, unless otherwise specified, R denotes the rules from Table 2.

2.3 Basic Graph Pattern Queries

A popular fragment of the SPARQL query language consists of conjunctive
queries, also known as basic graph pattern queries. Let V be a set of variable
symbols, disjoint from I ∪B∪L . A basic graph pattern (BGP) is a set of triple
patterns (triples in short) belonging to (I ∪B∪V)×(I ∪V)×(I ∪B∪L ∪V).
For a BGP P , we denote by Var(P) the set of variables occurring in P , by Bl(P)
its set of blank nodes, and by Val(P) its set of values (IRIs, blank nodes, literals
and variables).

Definition 5 (BGP query). A BGP query (BGPQ) q is of the form q(x̄)←
P , where P is a BGP also denoted by body(q) and x̄ ⊆ Var(P) is the set of q’s
answer variables. The arity of q is that of x̄, i.e., |x̄|.
Partially instantiated BGPQs generalize BGPQs and have been used for
reformulation-based query answering [12]. Starting from a BGPQ q, partial in-
stantiation replaces some variables and/or blank nodes with values from I ∪
L ∪B, as specified by a substitution σ; the partially instantiated query is de-
noted qσ. Observe that when σ = ∅, qσ coincides with q. Further, due to σ, and
in contrast with standard BGPQs, some answer variables of qσ can be bound:

Example 3. Consider the BGPQ asking for who is working for which kind of
company: q(x, y) ← (x, :worksFor, z), (z, τ, y), (y,≺sc, :Comp), and the substi-
tution σ = {x 7→ :p1}. The partially instantiated BGPQ qσ corresponds to
q(:p1, y)← (:p1, :worksFor, z), (z, τ, y), (y,≺sc, :Comp).

The semantics of a (partially instantiated) BGPQ on an RDF graph is defined
through homomorphisms from the query body to the saturation of the queried
graph. The homomorphisms needed here are a straightforward extension of RDF
graph homomorphisms (Definition 2) to also take variables into account.

Definition 6 ((Non-standard) BGP to RDF graph homomorphism).
A homomorphism from a BGP q to an RDF graph G is a function ϕ from
Val(body(q)) to Val(G) such that for any triple (s, p, o) ∈ body(q), the triple
(ϕ(s), ϕ(p), ϕ(o)) is in G. For a standard homomorphism, as per the SPARQL
recommendation, ϕ is the identity on IRIs and literals; for a non non-standard
one, ϕ is the identity on IRIs, literals and on blank nodes.

We distinguish query evaluation, whose result is just based on the explicit triples
of the graph, i.e., on BGP to RDF graph homomorphisms, from query answering
that also accounts for the implicit graph triples, i.e., based on both BGP to RDF
graph homomorphisms and RDF entailment. In this paper, we use two flavors
of query evaluation and of query answering, which differ in relying either on
standard or on non-standard BGP to RDF graph homomorphisms.

Definition 7 ((Non-standard) evaluation and answering). Let qσ be a
partially instantiated BGPQ qσ obtained from a BGPQ q and a substitution σ.

6 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

The standard answer set to qσ on an RDF graph G w.r.t. a set R of RDF
entailment rules is:

qσ(G,R) = {ϕ(x̄σ) | G |=ϕ
R body(q)σ}

where x̄σ and body(q)σ denote the result of replacing the variables and blank
nodes in x̄ and body(q), respectively, according to σ.
If x̄ = ∅, qσ is a Boolean query, in which case qσ is false when qσ(G,R) = ∅
and true when qσ(G,R) = {〈〉}, i.e., the answer to qσ is an empty tuple.
We call qσ(G, ∅) the standard evaluation of qσ on G, written qσ(G) for short,
which solely amounts to standard BGP to RDF graph homomorphism finding.

The non-standard answer set, denoted
︷ ︸︸ ︷
qσ(G,R), and non-standard evaluation︷ ︸︸ ︷

qσ(G) of qσ on G w.r.t. R only differ from the standard ones by using non-
standard BGP to RDF graph homomorphisms.

These notions and notations naturally extend to unions of BGPQs.

Example 4. Consider again the BGPQs from the preceding example. Their stan-
dard evaluations on Gex are empty because Gex has no explicit :worksFor asser-
tion, while their standard answer sets on Gex w.r.t. R are {〈:p1, :bC〉} because
:p1 being CEO of :c, :p1 implicitly works for it, and :c is explicitly a company
of the particular unknown type :bC .
Consider now the BGPQ q(x) ← (x, :worksFor, y), (y, τ, :bC). Under standard
query answering, it asks for who is working for some kind of organization and its
answer set is {〈:p1〉, 〈:p2〉}; by contrast, under non-standard query answering, it
asks for who is working for an organization of the particular unknown type :bC
in Gex and its answer set is just {〈:p1〉}.

3 Prior related work

Two main techniques for answering BGPQs on RDF graphs have been investi-
gated in the literature.
Saturation-based query answering. This technique directly follows from the def-
inition of query answers in the W3C’s SPARQL recommendations [3], recalled
in Section 2.3 for BGPQs. Indeed, it trivially follows from Definition 7 that

q(G,R) = q(GR) (resp.
︷ ︸︸ ︷
q(G,R) =

︷ ︸︸ ︷
q(GR)), i.e., query answering reduces to

query evaluation on the saturated RDF graph.
Saturation-based query answering is typically fast, because it only requires query
evaluation, which can be efficiently performed by a data management engine.
However, saturation takes time to be computed, requires extra space to be stored,
and must be recomputed or maintained (e.g., [8, 7, 12]) upon updates. Many RDF
data management systems use saturation-based query answering. They either
allow computing graph saturation, e.g., Jena and RDFox, or simply assume that
RDF graphs have been saturated before being stored, e.g., DB2RDF.
Reformulation-based query answering. This technique also reduces query an-
swering to query evaluation, however, the reasoning needed to ensure complete
answers is performed on the query and not on the RDF graph. A given query

Reformulation-based query answering for RDF graphs with RDFS ontologies 7

q, asked on an RDF graph G w.r.t. R is reformulated into a query q′ such that

q(G,R) = q′(G) or q(G,R) =
︷ ︸︸ ︷
q′(G) holds. Standard or non-standard query eval-

uation is needed on the reformulated query, depending on the considered RDF
fragment: when blank nodes are allowed in RDFS constraints, non-standard
evaluation is used [12], while standard evaluation is sufficient otherwise [5, 11].
Different SPARQL dialects have been adopted for BGPQ reformulation in more
limited settings than the one considered in this paper, i.e., the database frag-
ment of RDF and unrestricted BGPQs. Unions of BGPQs (UBGPQs in short)
have been used in [5, 11, 12]. However, these works are restricted to input BG-
PQs that must be matched on RDF assertions only. BGPQs aiming at inter-
rogating solely the RDFS ontology, or the ontology and the assertions are not
considered, even though such joint querying is a major novelty of RDF and
SPARQL. The techniques adopt unions of BGPQs [5] or of partially instanti-
ated BGPQs [11, 12], depending on whether variables can be used in class and
property positions in queries, e.g., whether a query triple (x, τ, z) or (x, y, z)
is allowed. Reformulation-based query answering in the DL fragment of RDF,
which is strictly contained in the database fragment of RDF, has been investi-
gated for relational conjunctive queries [5, 10], while the slight extension thereof
considered in [6, 11, 13, 17] has been investigated for one-triple BGPQs [13, 17],
BGPQs [11], and SPARQL queries [6]. In [6], SPARQL queries are reformulated
into nested SPARQL, allowing nested regular expressions in property position in
query triples. These reformulations allow sound and complete query answering
on restricted RDF graphs with RDFS ontologies: these graph must not contain
blank nodes. While such nested reformulations are more compact, the queries
we produce are more practical, since their evaluation can be delegated to any
off-the-shelf RDBMS, or to an RDF engine such as RDF-3X [16] even if it is
unaware of reasoning; further, we do not impose restrictions on RDF graphs.
In Section 4, we devise a reformulation-based query answering technique for the
entire database fragment of RDF and unrestricted BGPQs.
Reformulation-based query answering is well-suited to frequently updated RDF
graphs, because it uses the queried RDF graph at query time (and not its satura-
tion). However, reformulated queries tend to be more complex than the original
ones, thus costly to evaluate. To mitigate this, [9] provides an optimized refor-
mulation framework whereas an incoming BGPQ is reformulated into a join of
unions of BGPQs (JUBGPQ in short). This approach being based on a database-
style cost model, JUBGPQ reformulations are very efficiently evaluated.
Some available RDF data management systems use reformulation-based query
answering but return incomplete answer sets in the RDF setting we consider5,
e.g., AllegroGraph6 and Stardog7 miss answers because they cannot evaluate

5See discussion at
https://team.inria.fr/cedar/rdfs-reasoning-experiments/.

6https://franz.com/agraph/support/documentation/current/

reasoner-tutorial.html
7https://www.stardog.com/docs/#_owl_rule_reasoning

8 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

triples with a variable property on the schema, while Virtuoso8 only exploits
subclass and subproperty constraints, but not domain and range ones.
Finally, Hybrid approaches have also been studied, e.g., in [18], where some one-
triple queries are chosen for materialization and reused during reformulation-
based answering.

4 Extending query reformulation to queries over the
ontology

We now present the main contribution of this paper: a reformulation-based query
answering (QA) technique able to compute all answers to a BGPQ against all
the explicit and implicit triples of an RDF graph, i.e., its RDF assertions and
RDFS constraints, as per the SPARQL and RDF recommendations [3, 2].
The central idea is to reduce this full QA problem to an assertion-level QA, i.e.,
where the query is confined to just the explicit and implicit RDF assertions.
To this aim, we divide query reformulation in two steps: the first reformulation
step implements the reduction, while the second step relies on the reformulation
technique of [12], which considers assertion-level QA.

4.1 Overview of our query reformulation technique

Let us first notice that the body of any BGPQ q can be divided into three
disjoint subsets of triples (s, p, o), according to the nature of term p: the set bc
of RDFS triples where p is a built-in RDFS property (≺sc, ≺sp, ←↩d, ↪→r); the
set ba of assertion triples where p is τ or a user-defined property; and the set
bv where p is a variable. We denote by qc, qa and qv the subqueries respectively
associated with these bodies. If bv is not empty, q can be reformulated as a
union of BGPQs, say Q, composed of all BGPQs that can be obtained from q
by substituting some (possibly none) variables occurring in qv with one of the
four built-in RDFS properties. We assume this preprocessing step to simplify
the explanations, even if in practice it may not be performed. Then, the answers
to any BGPQ q′ ∈ Q can be computed in two steps:
1. compute the answers to the subquery q′c, i.e., with body restricted to the

RDFS triples; if q′c has no answer, neither has q′. Otherwise, each answer to
q′c defines a (partial) instantiation σ of the variables in q′.

2. compute the assertion-level answers to each partially instantiated query
(q′a,v)σ, where q′a,v is the subquery with body b′a ∪ b′v, and return the union
of all the obtained answers.

To summarize, Step 1 computes answers to RDFS triples, which allows one to
produce a set of partially instantiated queries that no longer contain RDFS
triples. Hence, these queries can then be answered using RDF assertions only,
which is the purpose of Step 2. Our two-step query reformulation follows this
decomposition. It furthermore considers a partition of the set R of RDFS entail-
ment rules (recall Table 2) into two subsets: the set of rules Rc that produces
RDFS constraints and the set of rules Ra that produces RDF assertions:

8http://docs.openlinksw.com/virtuoso/rdfsparqlruleimpl

Reformulation-based query answering for RDF graphs with RDFS ontologies 9

– Rc = {rdfs5, rdfs11, ext1, ext2, ext3, ext4};
– Ra = {rdfs2, rdfs3, rdfs7, rdfs9}.

The reason of this decomposition is that query answering remains complete if,
on the one hand, only Rc is considered to answer queries made of RDFS triples
(Step 1: for any graph G, q′c(G,R) = q′c(G,Rc)), and, on the other hand, only
Ra is considered to answer queries on RDF assertions only, as shown in [12].
Query reformulation does not directly work on the entailment rules as classical
backward-chaining techniques would do. Instead, a set of so-called reformulation
rules is specifically associated with Rc (resp. Ra). We can now outline the two-
step query reformulation algorithm:

Step 1. Reformulation w.r.t. Rc: The input BGPQ q is first reformulated
into a union Qc of partially instantiated BGPQs, using the set of reformulation
rules associated with Rc (see Figure 1). This reformulation step is sound and

complete for query answering w.r.t. Rc, i.e., for any graph G, q(G,Rc) =
︷ ︸︸ ︷
Qc(G);

furthermore, it preserves the answers with respect to the set R, i.e., q(G,Rc ∪

Ra) =
︷ ︸︸ ︷
Qc(G,Rc ∪Ra) (see Theorem 1 in Section 4.3).

Step 2. Reformulation w.r.t. Ra: We recall that Qc consists of queries that
do not contain RDFS triples. It is given as input to the query reformulation
algorithm of [12], which relies on a set of reformulation rules associated with Ra
to output a union Qc,a of partially instantiated BGPQs. This reformulation step
being sound and complete for query answering on the RDF assertions of an RDF
graph, we obtain the soundness and completeness of the two-step reformulation,

i.e., q(G,Rc ∪Ra) =
︷ ︸︸ ︷
Qc(G,Ra) =

︷ ︸︸ ︷
Qc,a(G) (see Theorem 2 in Section 4.3).

4.2 Reformulation rules associated with Rc

We now detail reformulation rules associated with Rc, see Figure 1. Each re-
formulation rule is of the form input

output , where the input is composed of a triple
from a partially instantiated query qσ and a triple from O and the output is
a new query obtained from qσ by instantiating a variable, removing the input
triple, or replacing it by one or two triples. The notation old triple/new triple(s)
means that old triple is replaced by new triple(s). The specific case where old
triple is simply removed is denoted by old triple/−. The notations for the triples
themselves are the following:
– a bold character like c, p, s or o represents an IRI or a blank node
– a v character represents a variable of the query
– s and o characters represent either variables, IRIs or blank nodes, in subject

and object positions respectively.
The four rules (1) substitute a variable in a property position by one of the four
built-in RDFS properties. All the other rules take as input query triples of the
form (s, p, o), where p is a built-in RDFS property. Rule (2) simply removes from
qσ an (instantiated) input triple found in O.
Query triples with a domain (←↩d) or range property (↪→r) are processed by
Rules (3)-(11). Given a triple (p,←↩, c) in O (where ←↩ stands for ←↩d or ↪→r),

10 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

(s, v, o) ∈ qσ
qσ∪{v→≺sc}

,
(s, v, o) ∈ qσ
qσ∪{v→≺sp}

,
(s, v, o) ∈ qσ
qσ∪{v→←↩d}

,
(s, v, o) ∈ qσ
qσ∪{v→↪→r}

(1)

(s, p, o) ∈ qσ, (s, p, o) ∈ O
qσ[(s, p, o)/−]

(2)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ[(v1,←↩, v2)/(v1,≺sp, p), (c,≺sc, v2)]

(3)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v1→p}

(4)

(v1,←↩, v2) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v2→c}

(5)

(v,←↩, c) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v→p}

(6)

(p,←↩, v) ∈ qσ, (p,←↩, c) ∈ O
qσ∪{v→c}

(7)

(v,←↩, c) ∈ qσ, (p,←↩, c) ∈ O
qσ[(v,←↩, c)/(v,≺sp, p)]

(8)

(p,←↩, v) ∈ qσ, (p,←↩, c) ∈ O
qσ[(p,←↩, v)/(c,≺sc, v)]

(9)

(s,←↩, c1) ∈ qσ, (c,≺sc, c1) ∈ O, c 6= c1

qσ[(s,←↩, c1)/(s,←↩, c)]
(10)

(p,←↩, o) ∈ qσ, (p,≺sp, p1) ∈ O, p 6= p1

qσ[(p,←↩, o)/(p1,←↩, o)]
(11)

(v1,≺, v2) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v1→c1}

(12)

(v,≺, c2) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v→c1}

(13)

(c1,≺, v) ∈ qσ, (c1,≺, c2) ∈ O
qσ∪{v→c2}

(14)

(c1,≺, o) ∈ qσ, (c1,≺, c2) ∈ O, c1 6= c2

qσ[(c1,≺, o)/(c2,≺, o)]
(15)

(s,≺, c2) ∈ qσ, (c1,≺, c2) ∈ O, c1 6= c2

qσ[(s,≺, c2)/(s,≺, c1)]
(16)

Fig. 1. Reformulation rules for a partially instantiated query qσ w.r.t. an RDFS on-
tology O. For compactness, we factorize similar rules, using the symbol ←↩ to denote
either ←↩d or ↪→r, and ≺ to denote either ≺sc or ≺sp.

Reformulation-based query answering for RDF graphs with RDFS ontologies 11

Rule (3) replaces a query triple of the form (v1,←↩, v2) by two triples (v1,≺sp, p)
and (c,≺sc, v2). This rule relies on the fact that a triple (p′,←↩, c′) belongs to
the saturation of the RDF graph by Rc if and only if p′ is a subproperty of
p (including p = p′) and c is a subclass of c′ (including c = c′), see Lemma
1 in Section 4.3. However, we do not assume that the ontology ensures the
reflexivity of the subclass and subproperty relations, hence Rules (4)-(7), whose
sole purpose is to deal with the cases c = c′ and p = p′. Should the ontology
contain axiomatic triples ensuring the reflexivity of subclass and subproperty,
these four rules would be useless. Note that a natural candidate rule to deal with
the case where c 6= c′ and p 6= p′ would have been the following:

(p′,←↩, c′) ∈ qσ, (p,←↩, c) ∈ O
qσ[(p′,←↩,c′)/(p′,≺sp,p),(c,≺sc,c′)]

(17)

However, such a rule is flawed: it would blindly consider all triples (p,←↩, c) from
O, which causes a combinatorial explosion. Instead, we propose Rules (10) and
(11), which use p′ and c′ as guides to replace (p′,←↩, c′) by other domain / range
triples based on the subproperty-chains from p′ and the subclass-chains to c′.
Query triples with a subclass (≺sc) or subproperty (≺sp) property are processed
by Rules (12)-(16). Rules (12), (13), (14) instantiate a variable using an ontology
triple of the form (c1,≺, c2). In Rule (12), which considers a query triple with
two variables and instantiates one of these variables, we arbitrarily chose to
instantiate the first variable. The two last rules allow to go up or down in the
class and property hierarchies.

4.3 Reformulation algorithm associated with Rc

The reformulation algorithm itself, denoted by Reformulatec, is presented in Al-
gorithm 1. The set of queries to be explored (named toExplore) initially contains
q. Exploring a query consists of generating all new queries that can be obtained
from it by applying a reformulation rule (lines 7–9). Newly generated queries
are put in the set named produced. The algorithm proceeds in a breadth-first
manner, exploring at each step the queries that have been generated at the pre-
vious step. When no new query can be generated at a step, the algorithm stops,
otherwise the next step will explore the newly generated queries (line 11). Note
the use of a set named explored, which contains all explored queries; the purpose
of this set is to avoid infinite generation of the same queries when the subclass or
subproperty hierarchy contains cycles (other than loops), otherwise it is useless.
Importantly, not all explored queries are returned in the resulting set, but only
those that no longer contain RDFS triples (lines 5–6). Indeed, on the one hand
RDFS triples that contain variables are instantiated by the rules in all possible
ways using the ontology, and, on the other hand, instantiated triples that belong
to the ontology are removed (by Rule (2)). Finally, note that a variable v in a
triple of the form (s, v, o) is replaced by a built-in RDFS property in some queries
(by Rule (1)) and left unchanged in others as it may also be later mapped to a
user-defined property in the RDF graph G.
A simple analysis of the reformulation rule behavior shows that the worst-case
time complexity of algorithm Reformulatec is polynomial in the size of O and

12 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

Algorithm 1: Reformulatec
Input : BGPQ q and ontology O
Output: the reformulation of q with the rules from Fig. 1

1 result ← ∅; toExplore ← {q}; explored ← ∅
2 while toExplore 6= ∅ do
3 produced ← ∅
4 for each qσ ∈ toExplore do
5 if qσ does not contain any RDFS triple then
6 result ← result ∪ {qσ}
7 for each RDFS triple t in qσ do
8 for each q′σ obtained by applying a reformulation rule to t do
9 produced ← produced ∪ {q′σ}

10 explored ← explored ∪ {qσ}
11 toExplore ← produced \ explored
12 return result

simply exponential in the size of q. More precisely:

Proposition 1. The algorithm Reformulatec runs in time O(|V al(O)|6|q|), where
|q| is the number of triples in the body of q.

The correctness of the algorithm relies on the following lemma, which charac-
terizes the saturated graph GRc from the triples of G. We call ≺sc-chain (resp.
≺sp-chain) from s to o a possibly empty sequence of triples (si,≺sc, oi) (resp.
(si,≺sp, oi)) with 1 ≤ i ≤ n, such that s1 = s, on = o and, for i > 1, si = oi−1.
Since we do not enforce the reflexivity of the subclass relation, a triple (c,≺sc, c)
belongs to GR if and only if there is a non-empty ≺sc-chain from c to c (which
includes the case (c,≺sc, c) ∈ G). The same holds for the subproperty relation.

Lemma 1. Let G be an RDF graph. It holds that:
– (c,≺sc, c′) ∈ GRc iff G contains a non-empty ≺sc-chain from c to c′;
– (p,≺sp, p′) ∈ GRc iff G contains a non-empty empty ≺sp-chain from p to p′;
– (p′,←↩d, c′) ∈ GRc iff G contains a triple (p,←↩d, c), a (possibly empty) ≺sp-

chain from p′ to p and a (possibly empty) ≺sc-chain from c to c′. The case
for (p′, ↪→r, c

′) ∈ GRc is similar (replace←↩d by ↪→r in the statement above).

Below, we assume without loss of generality that the input query does not con-
tain blank nodes; if needed, these have been equivalently replaced by variables.
Therefore, all blank nodes that occur in the output reformulation have been
introduced by the reformulation rules, and specifically refer to unknown classes
and properties they identify within the ontology at hand. This justifies the subse-
quent use of non-standard query evaluation and answering in the next theorems.

Theorem 1. Let G be an RDF graph with ontology O and q be a BGP query
without blank nodes. Let Qc be the output of Reformulatec(q,O). Then:

q(G,Rc) =
︷ ︸︸ ︷
q(G,Rc) =

︷ ︸︸ ︷
Qc(G) (18)

Reformulation-based query answering for RDF graphs with RDFS ontologies 13

q(G,Rc ∪Ra) =
︷ ︸︸ ︷
q(G,Rc ∪Ra) =

︷ ︸︸ ︷
Qc(G,Rc ∪Ra) (19)

Example 5. Consider the BGPQ asking for how someone is related to some par-
ticular kind of company: q(x, y) ← (x, y, z), (z, τ, t), (y,≺sp, :worksFor), (t,≺sc
, :Comp). Its answer set on Gex w.r.t. R, which can be easily checked using
(Gex)R provided in Section 2, is: q(Gex,R) = {〈:p1, :ceoOf〉}.
The output of Reformulatec(q,RDFS(Gex)) is:

Qc = {q′(x, :ceoOf)← (x, :ceoOf, z), (z, τ, :bC),
q′′(x, :hiredBy)← (x, :hiredBy, z), (z, τ, :bC)}

where q′ and q′′ are obtained by binding, using Rule (13), y to either :ceoOf
or :hiredBy, and t to :bC . Further, these bindings have also produced the fully
instantiated RDFS constraints (:ceoOf,≺sp, :worksFor) and (:bC ,≺sc, :Comp)
in q′, as well as (:hiredBy,≺sp, :worksFor) and (:bC ,≺sc, :Comp) in q′′, which
have then been eliminated by Rule (2).

The non-standard answering of Qc on Gex w.r.t. R, i.e.,
︷ ︸︸ ︷
q′(Gex,R)∪

︷ ︸︸ ︷
q′′(Gex,R)

provides the correct answer set {〈:p1, :ceoOf〉}, whose only tuple results from q′.
Note that, using standard answering, the incorrect answer 〈:p2, :hiredBy〉 would
have also been obtained from q′′, since under this semantics q′′ asks for who is
hired by an organization of some type (this is the case of :p2 who is hired by a
public administration) and not who is hired by an organization of the particular
unknown type of company designated by :bC in Gex.

We now rely on the query reformulation algorithm, from [12], say Reformulatea,
which takes as input a partially instantiated BGPQ q without RDFS triples, and
a graph G and, using a set of reformulation rules associated with Ra, outputs a

reformulation Qa such that: q(G,Rc∪Ra) = q(G,Ra) =
︷ ︸︸ ︷
Qa(G). The adapation

of Reformulatea to an input UBGPQ instead of a BGPQ is straightforward.
Furthermore, we notice that the algorithm would consider potential blank nodes
in the input query as if they were IRIs. Hence, denoting by Qc,a the output of
Reformulatea(Qc, O), we obtain:︷ ︸︸ ︷

Qc(G,Rc ∪Ra) =
︷ ︸︸ ︷
Qc(G,Ra) =

︷ ︸︸ ︷
Qc,a(G) (20)

Putting together (20) and statement (19) in Theorem 1, we can prove the cor-
rectness of the global reformulation algorithm:

Theorem 2. Let G be an RDF graph and q be a BGPQ without blank nodes.
Let Qc,a be the reformulation of q by the 2-step algorithm described in Section
4.1. Then:

q(G,Rc ∪Ra) =
︷ ︸︸ ︷
Qc,a(G)

14 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

Fig. 2. Query answering times through reformulation and saturation.

5 Experimental evaluation

We have implemented our reformulation algorithm on top of OntoSQL (https:
//ontosql.inria.fr), a Java platform providing efficient RDF storage, satura-
tion, and query evaluation on top of an RDBMS [9, 12]; we used Postgres v9.6.
To save space, OntoSQL encodes IRIs and literals into integers, and a dictionary
table which allows going from one to the other. It stores all resources of a certain
type in a one-attribute table, all subject, object pairs for each data property in a
table, and all schema triples in another table; the tables are indexed. Our server
has a 2,7 GHz Intel Core i7 and 160 GB of RAM; it runs CentOs Linux 7.5.
We generated LUBM∃ data graphs [15] of 10M triples and restricted the ontology
to RDFS, leading to 175 triples (123 ≺sc, 5 ≺sp, 25←↩d and 22 ↪→r). We devised
14 queries having from 3 to 7 triples; one has no result, while the others have
a few dozen to three hundred thousand results. Each has 1 or 2 triples which
match the ontology (and must be evaluated on it for correctness), including
(but not limited to) the generic triple (x, y, z), which appears 7 times overall
in our workload. Some of our queries are not handled through reformulation by
AllegroGraph and Stardog, nor by Virtuoso (recall Section 3).
Figure 2 shows for each query: the size of the UBGPQ reformulation (in paren-
thesis after the query name on the x axis), i.e., the number of BGPQs it con-
tains; the reformulation time (with both Rc and Ra); the time to translate the
reformulation into SQL; the time to evaluate this SQL query; the total query
answering time through reformulation, and (for comparison) through saturation.
Note the logarithmic y axis. Details of our experiments are available online5.The
reformulation time is very short (0.2 ms to 55 ms). Unsurprisingly, the time to
convert the reformulation into SQL is closely correlated with the reformulation
size. The overhead of our approach is quite negligible, given that the answering
time through reformulation is very close to the SQL evaluation time.
As expected, saturation-based query answering is faster; however, saturating
this graph took more than 1289 seconds, while the slowest query (Q9) took 46
seconds. As in [12], we compute for each query Q a threshold nQ which is the
smallest number of times we need to run Q, so that saturating G and running Q
nQ times on GR is faster than nQ runs of Q through reformulation; intuitively,
after nQ runs of Q, the saturation cost amortizes. For our queries, nQ ranged
from 29 (Q9) to 9648 (Q5), which shows that saturation costs take a while to

Reformulation-based query answering for RDF graphs with RDFS ontologies 15

amortize. If the graph or the ontology change, requiring maintenance of the
saturated graph, reformulation may be even more competitive.

6 Conclusion

We have presented a novel reformulation-based query answering technique for
RDF graphs with RDFS ontologies. Its novelty lies in its capacity to handle
query triples over both the assertions and the ontology; such queries are not
always handled correctly by existing RDF engines. In the future, we plan to
integrate our reformulation technique in the cost-based optimized reformulation
framework we introduced in [9] to improve its performance, and to an OBDA
setting along the lines of [14].
Acknowledgements: This work is supported by the Inria Project Lab grant
iCoda, a collaborative project between Inria and several major French media.

7 Appendix

This appendix provides the figure of the running example graph and proofs of
the results claimed in the paper.

Fig. 3. Illustration of Example 1, where black edges represent assertion triples and
blue edges represent RDFS triples. Plain edges are those contain in Gex and dotted
edges those added its saturation GRex.

Proof of Proposition 1

Proof. We provide an upper bound the number of reformulations explored during
the reformulation of a BGPQ by analyzing the producer-consumer dependencies
among rules w.r.t. the form of the query. Given a query form Q and an ontology
O, we denote by #explored(Q,O) the number of explored reformulations during
the execution of Reformulatec(q,O) for a BGPQ q of form Q.

16 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

First, we notice that for the most general query form Q(x̄)← t1, t2, . . . , tn (where
the ti are triples), it holds that:

#explored(Q,O) ≤
∏

1≤i≤n

#explored(Qi, O)

where Qi has the form Qi(xi) ← ti, with xi the list of variables in ti. We now
analyze the reformulations obtained for the different forms of queries composed
of a single triple.

Let us consider the query form Q0(x̄) ← (s, v, o), where s and o are values or
variables and v is a variable. The rules in (1) are the only rules that can consume
Q0. They produce queries of the form Q1(x̄1)← (s,←↩d, o) or Q2(x̄2)← (s,≺sc
, o) (and there are two similar cases with properties ↪→r and ≺sp). Since no rule
feeds rule (1), it holds that:

#explored(Q0, O) ≤ 2(#explored(Q1, O) + #explored(Q2, O))

Queries of the form Q2 only feed rules from (12) to (16). These rules always
produce queries of the form Q2(x̄2)← (s,≺sc, o), where s and o are either values
from Val(O) or variables. Moreover, there are at most 2 variables in Var(Q2),
which can only be instantiated by values from Val(O) or variables.
In the end,

#explored(Q2, O) ≤ (#Val(O) + 1)2(#Val(O) + 1)2 = (#Val(O) + 1)4.

Concerning a query of the form Q1, either rule (3) can be applied, then produced
queries have the form Q3(x̄3) ← (v1,≺sp, p), (c,≺sc, v2), or a rule from (4) to
(11) can be applied. In the later case, we observe that all further produced
queries will have the form Q4(x̄4) ← (s, p, o) with p ∈ {←↩d,≺sc,≺sp}, s and o
belonging to Val(O) ∪ Var(Q4), and there is at most one variable among s and
o.
So, we obtain by counting the number of possible values by position that

#explored(Q3, O) ≤ ((#Val(O) + 1)2#Val(O))2

and
#explored(Q4, O) ≤ 3(#Val(O) + 1)4.

In the end,

#explored(Q1, O) ≤ (#Val(O) + 1)4#Val(O)2 + 3(#Val(O) + 1)4

≤ (#Val(O) + 1)6 + 3(#Val(O) + 1)4

It follows that the maximal number of explored reformulations for an input query
with a single triple isO(#Val(O)6), hence in O(#Val(O)6|q|) for a BGPQ q. Note
that |q| is a rough upper bound, since one should only consider the number of
triples in q with an RDFS property or a variable in property position.

Reformulation-based query answering for RDF graphs with RDFS ontologies 17

Proof of Lemma 1 The only entailment rule in Rc that allows one to infer a
new triple with property ≺sc (respectively ≺sp) is the rule rdfs11 (resp. rdfs5).
Since this rule states the transitivity of the property ≺sc (resp. ≺sp), it holds
that (c,≺sc, c′) ∈ GRc iff G contains a non-empty ≺sc-chain from c to c′ (resp.
(p,≺sp, p′) ∈ GRc iff G contains a non-empty empty ≺sp-chain from p to p′).
Assume now that (p′,←↩d, c′) ∈ GRc . The only entailment rules in Rc that entail
a triple with property ←↩d are ext1 and ext3. The body of these rules contain
a triple with property ←↩d, so there exists an entailment chain (of triples with
←↩d property) of length l ≥ 0 starting from G and using only rules ext1 and
ext3. We prove by induction on l that G contains a triple (p,←↩d, c), a (possibly
empty) ≺sp-chain from p′ to p and a (possibly empty) ≺sc-chain from c to c′.
– If l = 0, then (p′,←↩d, c′) ∈ G and there are an empty ≺sp-chain from p′ to

p′ and an empty ≺sc-chain from from c′ to c′.
– Otherwise (l > 0), the last rule applied in the chain is:
• either ext1, so GRc contains a triple (p′,←↩d, c1), which results from an

entailment chain of length l−1 starting from G and using only rules ext1
and ext3, and a triple (c1,≺sc, c′). By induction hypothesis, we know
that G contains a triple (p,←↩d, c), a (possibly empty) ≺sp-chain from p′

to p and a (possibly empty) ≺sc-chain from c to c1. Moreover, by using
the first point of the lemma (proved above), (c1,≺sc, c′) ∈ GRc implies
that G contains a non-empty ≺sc-chain from c1 to c′. So, concatenating
the two ≺sc-chains, we obtain a ≺sc-chain from c to c′. Hence, G contains
a triple (p,←↩d, c), a (possibly empty) ≺sp-chain from p′ to p and a ≺sc-
chain from c to c′.

• or ext3, and the proof is similar to that for ext1, replacing ≺sc-chains
by ≺sp-chains.

We have proven that (p′,←↩d, c′) ∈ GRc implies that G contains a triple (p,←↩d
, c), a (possibly empty) ≺sp-chain from p′ to p and a (possibly empty) ≺sc-chain
from c to c′. The converse implication is straightforward: from the two first points
of the lemma, we obtain (c,≺sc, c′) ∈ GRc and (p′,≺sp, p) ∈ GRc , then by one
application of each entailment rule ext1 and ext3, we obtain (p′,←↩d, c′) ∈ GRc .

Proof of Theorem 1 For the sake of readability, we assume in the following
that G does not contain blank nodes. So, we do not need non-standard query
evaluation. This assumption can be done without loss of generality. Indeed, we
may define a one-to-one mapping f from the blank nodes of G to fresh IRIs,
apply f to G before any processing, and apply the inverse mapping f−1 to the
answer tuples obtained considering f(G) to get answers considering G.

With the above assumption, to prove statement 18, it remains to prove that
q(G,Rc) = Qc(G) holds. We first prove Qc(G) ⊆ q(G,Rc) (soundness) then
q(G,Rc) ⊆ Qc(G) (completeness).

(soundness) We want to prove that for all q′σ′ reformulation of q in Qc, for all
tuple t answer to q′σ′ in G, there is G′ obtained from G by application of some
entailment rules to G such that t is an answer to q in G′. In other words, we want

18 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

to prove that q′σ′(G, ∅) ⊆ q(G,Rc) . Since q′σ′(G, ∅) ⊆ q′σ′(G,Rc), it is sufficient
to prove that q′σ′(G,Rc) ⊆ q(G,Rc).

The proof is done by induction on the length l of a sequence of reformulation
rules leading to q′σ′ , starting from O and q.
Base step For l = 0, we have q′σ′ = q, so q′σ′(G,Rc) ⊆ q(G,Rc).
Inductive step For l < α, suppose that q′σ′(G,Rc) ⊆ q(G,Rc) holds. Now at
l = α, q′σ′ has been produced from q′′σ′′ by the application of a reformulation rule
(i) and q′′σ′′ is a reformulation of q. So that sequence being of length < α, we
get q′′σ′′(G) ⊆ q(G,Rc) by induction hypothesis. We will show that q′σ′(G,Rc) ⊆
q′′σ′′(G,Rc).
There are basically two cases:
– the reformulation rule (i) instantiates a variable of q′′σ′′ to generate q′σ′

i.e., rule (i) is one of the following (1), (4)-(7), (12)-(14). In this case, q′σ′ is
contained in q′′σ′′ , so q′σ′(G,Rc) ⊆ q′′σ′′(G,Rc).

– the reformulation rule (i) has the form t1∈qσ,t2∈O
qσ [t1/t3]

that replaces a triple in

q′′σ′′ by another one (or two for the rule (3)). Observe here that σ′ = σ′′ holds.
If ϕ(x̄σ′) ∈ q′σ′(G,Rc), then ϕ(t3σ′) ∈ GRc . Furthermore, the reformulation
rules ensure that ϕ(t3σ′), t2 |=Rc ϕ(t1σ′′). As a result, ϕ(t1σ′′) ∈ GRc , and
ϕ is a total assignment of the variables of q′′σ′′ such that ϕ(x̄σ′) = ϕ(x̄σ′′) ∈
q′′σ′′(G,Rc).

In each case, we get q′σ′(G,Rc) ⊆ q′′σ′′(G,Rc) which concludes the proof of
q′σ′(G, ∅) ⊆ q(G,Rc), so Qc(G) ⊆ q(G,Rc).

(completeness) We now show that q(G,Rc) ⊆ Qc(G) with
Qc(G) =

⋃
q′
σ′∈Reformulatec(q,O) q

′
σ′(G, ∅), i.e., for each answer tuple a ∈ q(G,Rc),

there exists q′σ′ ∈ Qc a reformulation of q using O such that a ∈ q′σ′(G, ∅).
In the following, we will consider that Qc contains queries in which all the in-
stantiated RDFS triples that belong to the ontology are kept; in other words, the
triples removed by applications of rule (2) are restored in the resulting queries.
This has no impact on the completeness of the algorithm, since the reformula-
tions output in both versions have the same answers in G.
Let the query q be defined by q(x̄)← t1, t2, . . . , tn with ti being the body triples
of q. An answer from q(G,Rc) has the form ϕ(x̄), where ϕ is a homomorphism
from body(q) to GRc . If for all triples ti from the body of q, ϕ(ti) is not an RDFS
triple, then ϕ(body(q)) ∈ G (because data triples are not entailed by Rc), so
a valid reformulation of q is q itself, since q(G,Rc) = q(G, ∅). Otherwise, there
exists a triple ti from the body of q such that ϕ(ti) ∈ ORc and we will show that
there exists q′σ′ a reformulation of q where only ti has been replaced by a BGP
P such that P ⊆ O and ϕ(x̄) = ϕ(x̄σ′).
First case, ϕ(ti) = (c,≺sc, c′) ∈ GRc ; according to Lemma 1, there is C =
((ci,≺sc, ci+1))1≤i<c a ≺sc-chain in G such that c = c1 and c′ = cc. The triple
ti can have one of the following forms:
– (c,≺sc, c′), then we consider q′σ′ obtained from q by applying rule (15) for

each triple of C; finally (c,≺sc, c′) is replaced by (cc−1,≺sc, c′) ∈ O. Since
σ′ = ∅, ϕ(x̄) = ϕ(x̄σ′).

Reformulation-based query answering for RDF graphs with RDFS ontologies 19

– (c,≺sc, v′), then we consider q′σ′ obtained from q by applying rule (15) for
each triple of C then (14); finally (c,≺sc, v′) is replaced by (cc−1,≺sc, c′) ∈
O. Since σ′ = {v′ 7→ c′}, ϕ(x̄) = ϕ(x̄σ′).

– (c, vp, v), then we consider q′σ′ obtained from q by applying rule (1) then
(15) for each triple of C then (14); finally (c, vp, v) is replaced by (cc−1,≺sc
, c′) ∈ O. Since σ′ = {vp 7→≺sc, v 7→ c′}, ϕ(x̄) = ϕ(x̄σ′).

– (v,≺sc, c′), then we consider q′σ′ obtained from q by applying rule (16) for
each triple of C in inverse order then (13); finally (v,≺sc, c′) is replaced by
(c,≺sc, c2) ∈ O. Since σ′ = {v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

– (v, vp, c
′), then we consider q′σ′ obtained from q by applying rule (1) then (16)

for each triple of C in inverse order then (13); finally (v, vp, c
′) is replaced

by (c,≺sc, c2) ∈ O. Since σ′ = {vp 7→≺sc, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).
– (v,≺sc, v′), then we consider q′σ′ obtained from q by applying rule (12) then

(15) for each triple of C then (14); finally (v,≺sc, v′) is replaced by (cc−1,≺sc
, c′) ∈ O. Since σ′ = {v′ 7→ c′, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

– (v, vp, v
′), then we consider q′σ′ obtained from q by applying rule (1) then

(12) then (15) for each triple of C then (14) ; finally (v, vp, v
′) is replaced by

(cc−1,≺sc, c′) ∈ O. Since σ′ = {vp 7→≺sc, v′ 7→ c′, v 7→ c}, ϕ(x̄) = ϕ(x̄σ′).
Second case, ϕ(ti) = (p,←↩d, c) ∈ GRc ; according to Lemma 1, there are three
cases, depending on whether a chain is empty or not. We describe the case where
none of the chains is empty, hence assuming that there exists P = ((pi,≺sp
, pi+1))1≤i≤p a ≺sp-chain in G from p to p′ and (p′,←↩d, c′) ∈ G and there exists
C = ((ci,≺sc, ci+1))1≤i≤c a ≺sc-chain in G from c′ to c. The other cases are
handled similarly using also rules (4) and (5). The triple ti can have the following
forms:
– (p,←↩d, c), then we consider q′σ′ obtained from q by applying rule (10) for

each triple in C in inverse order then (11) for each triple in P ; finally
(p,←↩d, c) is replaced by (p′,←↩d, c′) ∈ O. Since σ′ = ∅, ϕ(x̄) = ϕ(x̄σ′).

– (p,←↩d, v′), then we consider q′σ′ obtained from q by applying rule (11) for
each triple in P then (9) then (15) for each triple in C then (14) ; finally
(p,←↩d, c) is replaced by (cc−1,≺sc, c) ∈ O. Since σ′ = {v′ 7→ c}, ϕ(x̄) =
ϕ(x̄σ′).

– (p, vp, v
′), then we consider q′σ′ obtained from q by applying rule (1) then (11)

for each triple in P then (9) then (15) for each triple in C then (14) ; finally
(p, vp, v

′) is replaced by (cc−1,≺sc, c) ∈ O. Since σ′ = {vp 7→←↩d, v′ 7→ c},
ϕ(x̄) = ϕ(x̄σ′).

– (v,←↩d, c), then we consider q′σ′ obtained from q by applying rule (10) for
each triple in C in inverse order then (8) then (16) for each triple in P in
inverse order then (13) ; finally (v,←↩d, c) is replaced by (p,≺sp, p2) ∈ O.
Since σ′ = {v 7→ p}, ϕ(x̄) = ϕ(x̄σ′).

– (v, vp, c), then we consider q′σ′ obtained from q by applying rule (1) then
(10) for each triple in C in inverse order then (8) then (16) for each triple in
P in inverse order then (13) ; finally (v, vp, c) is replaced by (p,≺sp, p2) ∈ O.
Since σ′ = {vp 7→←↩d, v 7→ p}, ϕ(x̄) = ϕ(x̄σ′).

– (v,←↩d, v′), then we consider q′σ′ is obtained from q by applying rule (3)

20 M. Buron, F. Goasdoué, I. Manolescu and M.-L. Mugnier

then (16) for each triple in P inverse order then (13) then on the other
triple, (15) for each triple in C then (14) ; finally (v,←↩d, v′) is replaced by
(p,≺sp, p2), (cc−1,≺sp, c) ∈ O. Since σ′ = {v 7→ p, v′ 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

– (v, vp, v
′), then we consider q′σ′ obtained from q by applying rule (1) then (3)

then (16) for each triple in P in inverse order then (13) then on the other
triple, (15) for each triple in C then (14) ; finally (v, vp, v

′) is replaced by
(p,≺sp, p2), (cc−1,≺sp, c) ∈ O. Since σ′ = {v 7→ p, v′ 7→ c}, ϕ(x̄) = ϕ(x̄σ′).

Hence, for each triple ti in q such that ϕ(ti) ∈ ORc , there is q′σ′ , a reformulation
of q, where only ti has been replaced by a BGP P such that P ⊆ O and ϕ(x̄) =
ϕ(x̄σ′). It follows that there is q′′σ′′ , a reformulation of q, in which all body triples
of q mapped by ϕ to ORc have been replaced by triples that belong to O, such
that ϕ(x̄) = ϕ(x̄σ′′). Since the other triples of q are necessarily mapped by ϕ to
G (actually, G \ O), we conclude that ϕ(x̄) = ϕ(x̄σ′′) is an answer to q′′σ′′ in G.
This concludes the proof of statement (18), which is the only part of Theorem
1 needed in the proof of Theorem 2. Statement (19) actually follows from the
next lemma (Lemma 2).

Proof of Theorem 2

Lemma 2. For all RDF graph G, it holds that:

GRa∪Rc =
(
GRa

)Rc
Proof. For one direction:

(
GRa

)Rc ⊆ GRa∪Rc . The proof is trivial.

For the converse direction GRa∪Rc ⊆
(
GRa

)Rc
. We take a triple t ∈ GRa∪Rc ,

and differentiate two cases:
– either t is not an RDFS triple, then by applying Theorem 1 of [12], t ∈ GRa .

In other words, assertion rules suffice to entail all RDF assertions.
– or t is an RDFS triple. Since the RDFS ontology O of G does not contain

an RDFS property as subject or object, the entailment rule rdfs7 does not
entail RDFS triples. So, t ∈ O or t has been produced by a rule in Rc.
Moreover, all rules in Rc have a body that contains only RDFS triples, so
t ∈ O or t has been entailed from O using rules in Rc, i.e., t ∈ ORc . We also

know that ORc ⊆
(
GRa

)Rc
, so t ∈

(
GRa

)Rc
.

In both cases, we have proven that t ∈
(
GRa

)Rc
.

Proof (of the theorem).

Reformulation-based query answering for RDF graphs with RDFS ontologies 21

q(G,Ra ∪Rc) = q(GRa∪Rc)

= q(
(
GRa

)Rc
) by Lemma 2

= q(GRa ,Rc) by definition of query answering

=
︷ ︸︸ ︷
Qc(GRa) by Theorem 1, statement (18)

=
︷ ︸︸ ︷
Qc(G,Ra) by definition of query answering

=
︷ ︸︸ ︷
Qc,a(G) by Theorem 6 of [12] since Qc is without RDFS triples

References

1. RDF 1.1 Concepts and Abstract Syntax, https://www.w3.org/TR/

rdf11-concepts/
2. RDF 1.1 Semantics, https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
3. SPARQL 1.1 Query Language, https://www.w3.org/TR/sparql11-query/
4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley

(1995)
5. Adjiman, P., Goasdoué, F., Rousset, M.C.: SomeRDFS in the semantic web. JODS

8 (2007)
6. Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Reasoning

Web (2009)
7. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:

OWLIM: A family of scalable semantic repositories. Semantic Web 2(1) (2011)
8. Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF schema.

In: PSSS1 Workshop (2003), http://ceur-ws.org/Vol-89/broekstra-et-al.pdf
9. Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query

answering in RDF. In: EDBT (2015)
10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable

reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning (JAR) 39(3) (2007)

11. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic
web databases. PVLDB 5(2) (2011), https://hal.inria.fr/inria-00625090v1

12. Goasdoué, F., Manolescu, I., Roatis, A.: Efficient query answering against dynamic
RDF databases. In: EDBT (2013), https://hal.inria.fr/hal-00804503v2

13. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS reasoning and query answering
on DHTs. In: ISWC (2008)

14. Lanti, D., Xiao, G., Calvanese, D.: Cost-driven ontology-based data access. In:
ISWC (2017), https://doi.org/10.1007/978-3-319-68288-4_27

15. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: ISWC (2013)

16. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. (2010)

17. Urbani, J., van Harmelen, F., Schlobach, S., Bal, H.: QueryPIE: Backward reason-
ing for OWL Horst over very large knowledge bases. In: ISWC (2011)

18. Urbani, J., Piro, R., van Harmelen, F., Bal, H.E.: Hybrid reasoning on OWL RL.
Semantic Web 5(6) (2014)

