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Abstract

Machine learning and game theory are known to exhibit a
very strong link as they mutually provide each other with so-
lutions and models allowing to study and analyze the optimal
behaviour of a set of agents. In this paper, we take a closer
look at a special class of games, known as fair cost sharing
games, from a machine learning perspective. We show that
this particular kind of games, where agents can choose be-
tween selfish behaviour and cooperation with shared costs,
has a natural link to several machine learning scenarios in-
cluding collaborative learning with homogeneous and het-
erogeneous sources of data. We further demonstrate how the
game-theoretical results bounding the ratio between the best
Nash equilibrium (or its approximate counterpart) and the op-
timal solution of a given game can be used to provide the up-
per bound of the gain achievable by the collaborative learn-
ing expressed as the expected risk and the sample complexity
for homogeneous and heterogeneous cases, respectively. We
believe that the established link can spur many possible fu-
ture implications for other learning scenarios as well, with
privacy-aware learning being among the most noticeable ex-
amples.

Introduction
In recent years, machine learning community witnessed an
increasing interest among the researchers towards the game
theory, a sub-field of mathematics that studies the problem
of decision-making in the presence of various types of con-
straints. This is no surprise as game theory proposes tools
and a large variety of theoretical results allowing to deter-
mine optimal strategies of a set of agents that may have
conflicting or collaborative objectives: a situation commonly
encountered in many machine learning multi-objective op-
timization problems. This kind of problems, for instance,
can be faced by game playing machine learning algorithms
that seek to find an optimal trade-off between success-
fully passing the game level, earning the highest number
of bonuses and doing all this in the fastest possible way.
To this end, game theory has become a topic of ongoing
interest in machine learning field that has already found
its application in contributions related to numerous learn-
ing scenarios such as reinforcement learning (Peshkin et al.
2000; Hu and Wellman 2003; Claus and Boutilier 1998;
Panait and Luke 2005), supervised learning (Freund and
Schapire 1999; Shalev-Shwartz and Singer 2007a; 2007b;

Schuurmans and Zinkevich 2016), and adversarial classifi-
cation (Liu and Chawla 2009; Brückner and Scheffer 2011;
Dritsoula, Loiseau, and Musacchio 2017) to name a few.

In this paper, we take a closer look at fair cost sharing
games, a special case of games that studies the optimal strat-
egy of a set of agents when they can choose between a co-
operative behaviour with a cost equally shared among them
and a non-cooperative (also called “selfish”) behaviour. As
an example of this game, one can consider a set of colleagues
that face a choice between driving their cars to work and in-
dividually paying for it or taking the bus together and shar-
ing the cost of the trip. We show that this particular game
can be naturally related to collaborative learning, a problem
often encountered in machine learning that consists in find-
ing the best hypothesis for a set of data samples drawn from
(possibly) different probability distributions and achieving a
nearly optimal individual performance with respect to some
task. In this setting, we associate each agent with a data sam-
ple that it can share with other agents in order to learn in a
collaborative way on a larger concatenated sample or stick
to what it has and learn on the sample available to it. We
analyze this problem in several settings where the agents’
sample may or may not be drawn from the same probabil-
ity distribution and where each agent may have a weight that
corresponds to to its potential benefit from collaboration and
its contribution to it. For both cases considered, we propose
a theoretical result that bounds the ratio between the overall
cost of non-collaborative learning with respect to the collab-
orative one where the cost can be defined based on empiri-
cal risk achieved by the optimal hypothesis or on the sample
complexity of the considered learning approach. To the best
of our knowledge, this is the first contribution that estab-
lishes a connection between this class of games and collab-
orative learning and shows its usefulness in providing new
theoretical guarantees for the latter.

The rest of this paper is organized as follows. We first
introduce the related works that exist in the literature pro-
viding the theoretical analysis of the considered learn-
ing settings both in traditional and game-theoretical con-
texts. Then, we present necessary background definitions, on
which we rely in the following sections, that introduce both
basic and weighted versions of the fair cost sharing games
and theoretical results established for them. We further pro-
ceed by first formally describing the considered setup and



then by presenting our main contributions based on it. The
last section of this paper is devoted to conclusions and to the
description of several future perspectives of this work.

Related Works
Despite a considerable amount of work situated at the inter-
section of game theory and machine learning mentioned in
the previous section, few of them are related to the main con-
tributions of this paper in terms of the quantities of interest
that they analyze and the class of games that they consider.
We present the related work structured with respect to these
criteria below.

Mechanism design via machine learning Arguably, one
of the first papers that analyzed a certain class of games
using the concepts from statistical learning theory and
sample complexity in particular was presented in (Bal-
can et al. 2005)1. Their contribution considered a revenue-
maximizing game where the goal is to find an optimal pric-
ing function for a set of auction bidders, and consisted in
showing that the optimal solution of this problem can be
characterized using the techniques from statistical learning
theory. We, however, consider a different class of games
and, more importantly, undertake the opposite direction that
consists in providing new results for collaborative machine
learning problems using game-theoretical concepts. As this
research direction is in general quite unrelated to ours, we
refer the interested reader to (Liu, Chen, and Qin 2015, Re-
lated work) for a more complete up-to-date survey on the
subject.

Statistical cost sharing Several recent papers (Balcan,
Procaccia, and Zick 2015; Balkanski, Syed, and Vassilvitskii
2017) considered the class of cost sharing games that present
the main subject of investigation of this paper. The main goal
of (Balcan, Procaccia, and Zick 2015) was to define an al-
gorithmic approach with strong theoretical guarantees that
allows to calculate the cost-sharing function and define the
optimal costs of agents based on it. The authors of (Balka-
nski, Syed, and Vassilvitskii 2017) improved the analysis
provided in (Balcan, Procaccia, and Zick 2015) and also ad-
dressed the estimation of the Shapley value (Shapley 1953),
a unique vector of cost shares that satisfies a set of natural
axioms (Herzog, Shenker, and Estrin 1995). These papers
are similar to ours as they relate the probably approximately
correct (PAC) analysis (Valiant 1984) to cost sharing games.
However, our work differs from these latter in two principal
ways: (1) while cited papers aim to find an algorithmically
optimal way to calculate the costs of collaboration for each
agent satisfying several natural axioms, we consider a spe-
cial case of cost sharing games with a fair division scheme;
(2) similar with mechanism design contributions mentioned

1This paper is a follow-up work of (Blum et al. 2003; Blum
and Hartline 2005) where the same problem was considered in the
context of online learning but without relying on the sample com-
plexity results.

above, our paper aims at applying results from game the-
ory to provide new insights for PAC analysis of collabo-
rative learning, while (Balcan, Procaccia, and Zick 2015;
Balkanski, Syed, and Vassilvitskii 2017) tailor traditional
PAC analysis to study cost sharing games.

Strategyproof classification Strategy-proof classification
problem studied in (Dekel, Fischer, and Procaccia 2010;
Meir, Procaccia, and Rosenschein 2012) deals with a collab-
orative learning setup where a group of agents have a choice
between reporting their true labels or falsifying them in or-
der to achieve a better individual classifier. For this prob-
lem, the above-mentioned papers showed that, under some
assumptions, the popular empirical risk minimizing (ERM)
mechanism is truthful and optimal, i.e., it encourages all
agents to report their true labels and provides an approxi-
mately optimal solution for all of them. Our work is close to
this line of research as it also considers empirical risk as a
cost of collaboration for each agent and studies the general
collaborative learning scenario in the PAC setting. Despite
this similarity, the purpose of our work is different as we
aim to study the gain possibly achievable by a collaborative
learning algorithm: a question that was not addressed by ei-
ther of these works.

Collaborative learning Finally, we briefly cover the con-
tributions that establish theoretical guarantees for collabo-
rative learning setting considered in this paper, where a set
of agents aim at learning an accurate model simultaneously.
The notion of collaborative learning is very vast and cov-
ers such areas as multi-task learning (Baxter 1997; Caruana
1997; Kumar and III 2012), multi-source domain adaptation
(Ben-David et al. 2010; Mansour, Mohri, and Rostamizadeh
2009a; 2009b) and distributed learning (Balcan et al. 2012;
Wang, Kolar, and Srerbo 2016). To this end, we note that our
work is similar to that presented in (Blum et al. 2017) where
the authors seek to establish the approximate value of the
ratio between the sample complexity of non-collaborative
learning and collaborative learning settings: a quantity de-
noted by them as overhead. The authors further propose an
algorithm and a PAC analysis showing that its overhead is
logarithmic. Our contribution completes this analysis with
an upper-bound of the overhead and provides this result in
a different, and arguably simpler, way. We elaborate more
on the link between the two results in the section where the
main contributions of our paper are presented.

Preliminary Knowledge
In this section, we present the preliminary knowledge related
to the game-theoretic concepts that we use later in this paper.
We start with a general description of a game and proceed
by introducing a fair cost sharing game and some results ob-
tained for it.

General Definitions
GivenN , a set ofK agents, Si, a finite action space of agent
i ∈ N and ci, a cost function of agent i, a game is defined



as a tuple
G = 〈N, (Si), (ci)〉 .

We define the joint action space of the agents as S = S1×
· · · × SK and let the cost function ci associated to an agent
i be a mapping of a joint action s ∈ S to a real non-negative
number, i.e., ci : S → R+. In this work, we assume that
the social cost c : S → R+ is defined as the overall sum
of agent’s costs

∑K
i=1 ci. The optimal social cost for this

scenario is given by the strategy minimizing the cost c:

OPT(G) = min
s∈S

c(s).

In this game, we say that a joint action s ∈ S (also called
strategy) is a pure Nash Equilibrium (Nash 1950; 1951) if
no agent i ∈ N can benefit from unilaterally deviating to
another action. Denoting by N(G) the set of Nash equilibria
of the game G, we further define two key quantities related
to games as follows.
Definition 1. The Price of Anarchy (PoA) is the ratio of the
worst Nash equilibrium to the social optimum. It measures
how the efficiency of a system deteriorates due to a selfish
behavior of the agents of the game, i.e.,

PoA(G) = max
s∈N(G)

c(s)/OPT(G).

Definition 2. The Price of Stability (PoS) is the ratio of the
best Nash equilibrium to the social optimum, i.e.,

PoS(G) = min
s∈N(G)

c(s)/OPT(G).

The motivation behind introducing PoS in addition to PoA
stems from the fact that this latter can be very large, making
it uninformative in practice. As we show it below, this is the
case for a particular class of games studied in this paper.

We also note that some classes of games do not admit a
pure Nash equilibrium (Anshelevich et al. 2003) so that an
approximate Nash equilibrium should be considered. This
latter can be defined as a strategy for which no agent can
decrease its cost by more than an α multiplicative factor
from unilaterally deviating to another action. In this case,
the quantities PoS and PoA are defined with respect to the
α-approximate Nash equilibrium in the same manner.

Fair Cost Sharing Game
In this paper, we focus on a specific class of games, referred
to as fair cost sharing games. Such a game take place in a
graph G = (V,E) with a set of K agents, where each edge
e ∈ E carries a non-negative cost γe, and each agent i has
source node si ∈ V and destination node ti ∈ V that it
tries to connect. We denote by Si the set of paths taken by
agent i in order to connect si to ti. Outcomes of the game
correspond to path vectors s = (P1, . . . , PK), with each
agents choosing a single path Pi ∈ Si. We further denote
by xe the number of agents whose strategy contains edge e.

One can think of γe as the fixed cost of building the edge
e, and this cost is independent of the number of agents that
use the edge. Therefore, if more than one agent use an edge e
in their chosen paths, i.e., xe > 1, then they share the edge’s
fixed cost γe. In a fair cost sharing game, we assume that

the cost is split equally among the agents meaning that the
cost to any agent i is

ci(s) =
∑
e∈Pi

γe
xe
.

Then, the objective is to minimize the total cost of the
formed network defined as

c(P1, . . . , PK) =
∑

e∈
⋃
i Pi

γe.

As an illustrative example, one can consider a special
instance of a fair cost sharing game, referred to as opting
out, presented in Figure 1. Here, the K agents have distinct
sources s1, . . . , sK , but a common destination t. In order to
reach t, they have two options: (1) meeting at a rendezvous
point v and continuing together to t, resulting in a joint cost
of 1 + ε, for some small ε > 0 or (2) taking the direct si− ti
path individually. In this case, each agent i incurs a cost of
1
i for its opt-out strategy leading to a unique Nash equilib-
rium with cost HK =

∑K
i=1

1
i . However, one can clearly

observe that the optimal solution in this game would be for
all players to travel through the rendezvous point for an over-
all total cost of 1 + ε incurring an individual cost of 1+ε

K for
each agent. Furthermore, in the worst case, Nash equilibria
of this game can be very expensive, so that the PoA becomes
as large as K. To see this, we can consider a graph with
common source and destination nodes for all agents and two
parallel edges of cost 1 and K between them. In this case,
the worst equilibrium corresponds to all players choosing
the more expensive edge and paying K times the cost of the
optimal solution. In its turn, PoS can be bounded due to the
following theorem.
Theorem 1 ((Anshelevich et al. 2004)). The PoS for pure
Nash equilibria in fair cost sharing games is at mostHK =
Θ(logK), whereHK = 1 + 1

2 + . . .+ 1
K and this bound is

tight.
This theorem provides us with a trade-off that can exist

between the cost of selfish behaviour related to a pure Nash
equilibrium for a set of agents and that of an optimal social
cost. As shown in (Anshelevich et al. 2004), this bound is
not vacuous as one may always find an example of a game
where the ratio between the two is exactly Θ(logK).

Note that the fair cost sharing game presented above ad-
mits that every agent pays the same cost for using the shared
edge, even though in many real-world applications one may
expect the cost to be shared among agents depending on their
weights {wi}Ki=1. This weight, for instance, can be related to
the contribution of a given agent in the collaboration. This
scenario leads to a weighted fair cost sharing game, where
the cost of each agent i is proportional to its weight wi and
can be calculated as follows:

ci(s) =
∑
e∈Pi

γe
wi
We

with We denoting the total weight of the players that select
a path containing e.

For this particular case, the pure Nash equilibrium ex-
ists only in games with 2-players (Anshelevich et al. 2004)
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Figure 1: Example of cost-sharing network known as opting
out. Here the cost of Nash equilibrium is HK =

∑K
i=1

1
i

while the optimal cost is 1 + ε.

and thus α-approximate Nash equilibria are usually consid-
ered. Before presenting the theorem that bounds the PoS of
weighted fair cost sharing games, we first assume that for all
i, wi ≥ 1 and denote by wmax = max

i∈[1,...,K]
wi the maximum

weight across all agents. We further let W =
∑K
i=1 wi be

the overall sum of weights of all agents. The desired result
can be now stated as follows.

Theorem 2 ((Chen and Roughgarden 2009)). For α =
Ω(logwmax), every weighted fair cost sharing game admits
a O(α)-approximate Nash equilibrium for which the PoS is

at most O
(

log(W )
α

)
.

With these two theorems, we are now ready to present our
main contributions.

Main Contributions
In this section, we present our main contribution that con-
sists in showing how different learning paradigms can be
seen as instances of fair cost sharing games. Our goal here
is two-fold and consists in showing that: (1) representing
different learning scenarios as instances of fair cost sharing
games establishes a connection between the statistical learn-
ing theory and the game theory; (2) this connection can be
used to inherit some important guarantees established in the
rich literature on game theory. With this in mind, we now
proceed to a formal description of the considered setup.

Problem Setup
Let us consider a set of K agents {ai}Ki=1, where each agent
has access to a learning sample Si = {(x(i)

j , y
(i)
j )}mij=1 of

size mi, for all i ∈ [1, . . . ,K]. For each i, we assume that
Si is drawn i.i.d. from a probability distribution Di defined
over a product space X × Y , where X ⊆ Rd and Y is an
output space that can be equal to {0, 1} in case of binary
classification. In practice, Si can be given by a collection
of images, while classes {0, 1} may define the presence or
absence of a certain object on an image. For a convex loss

function ` : R × R → R+ and a sample Si, we define the
true and empirical risks for each i ∈ [1, . . . ,K] as follows:

RDi(h(x), y) = E
(x,y)∼Di

[`(h(x), y],

RD̂i(h(x), y) = E
(x,y)∼D̂i

[`(h(x), y)]

=
1

mi

mi∑
j=1

`(h(x
(i)
j ), y

(i)
j ),

where D̂i = 1
mi

∑mi
i=1 δx(i)

j
is an empirical distribution as-

sociated with Di and h ∈ H is a hypothesis from some
hypothesis space H such that h : X → Y . As an ex-
ample, one may consider H as a space of linear functions
so that h would be a hyperplane that separates the two
classes. We now define the risk-minimizing hypothesis as
follows: let us denote by h∗Si = argmin

h∈H
RD̂i(h(x), y)

and h∗Di = argmin
h∈H

RDi(h(x), y) for all i ∈ [1, . . . ,K]

the empirical and true risk-minimizing hypotheses, respec-
tively. We further denote by R̂∗Si(H) = RD̂i(h

∗
Si(x), y) and

R∗Di(H) = RDi(h∗Di(x), y) the ideal empirical and true
risks, respectively.

Collaborative Learning with Homogeneous Sources
In order to present our first result, we start by considering a
traditional collaborative learning setting where agents have
access to learning samples Si drawn from the same under-
lying probability distribution D = Di,∀i ∈ [1, . . . ,K]. For
instance, this scenario can occur in practice when several
hospitals build predictive models based on their collected
data consisting of annotated MRI scans: if the scanners used
to produce images are the same, we can suppose that the
statistical distribution of images related to the same organ is
also highly similar. Bearing in mind the high cost of manual
labeling of MRI scans required to increase the sample size
so that a low-error hypothesis can be learned, the hospitals
may think of joining their forces and pooling their labeled
samples together. In this case, the goal of our analysis would
be to derive a bound on the ratio between the overall perfor-
mance achieved by individual agents that learn on a limited
sample available and the performance of a hypothesis ob-
tained using a larger sample S =

⋃K
i=1 S

i.
In order to make the considered problem more realistic,

we attribute weights to each agent reflecting the number of
labeled instances that it provides to the collaborative learn-
ing algorithm. Intuitively, the cost of collaboration for agents
that have large data samples should be smaller as they bene-
fit less from collaboration due to their capacity of being able
to learn a good classifier on their own. To this end, we de-
fine the weights wi of agents for all i ∈ [1, . . . ,K] as a ratio
mmax
mi

, where mmax = max
i∈[1,...,K]

mi. This definition ensures

that the weight of the agent having access to the largest sam-
ple is equal to 1, while for all the others it is greater or equal
than 1. We can now state the following theorem.
Theorem 3. Assume that for all i ∈ [1, . . . ,K], D = Di.
Let h∗S = argmin

h∈H
RD̂(h(x), y), where D̂ is an empirical



distribution associated with the sample S =
⋃K
i=1 S

i, such
that |S| =

∑K
i=1mi = m for a hypothesis space H. Let

R̂∗DiS (H) = E
(x,y)∼D̂i

[`(h∗S(x), y] and assume further that∑K
i=1 R̂∗Si(H) ≥

∑K
i=1 R̂∗DiS (H) ≥ 1

α max
i∈[1,...,K]

R̂∗Si(H) for

some α ≥ 0 with R̂∗Si(H) > 0 for all i ∈ [1, . . . ,K]. Then,
the following holds:∑K

i=1 R̂∗Si(H)∑K
i=1 R̂∗DiS (H)

≤ O

 log
(∑K

i=1
mmax
mi

)
α

 .

Proof. The main idea of our proof is to show that this par-
ticular learning setting can be represented as an instance of
a weighted fair cost sharing game. Once this is done, we can
simply apply Theorem 2 to obtain the desired result.

To this end, we start by considering the construction rep-
resented in Figure 2 and proceed by defining the nodes and
edges with their associated costs as follows. First, we let
the nodes ai correspond to source nodes of agents {ai}Ki=1
with their respective learning samples Si. The node L cor-
responds to the destination node where a risk-minimizing
classifier is learned, while the node P corresponds to pool-
ing the data from the incoming edges. In this game, each
agent ai has a choice between learning a classifier using its
own available sample Si by taking the edge ai − L or pool-
ing it with other agents by choosing the path ai − P − L.
This latter choice stands for learning a classifier that mini-
mizes the overall error on the union of their samples with an
individual cost of c∗ wi∑K

i=1 wi
. In this case, we can define the

costs of edges as follows: we assume that the cost of taking
the edge from node ai to L has a cost of the optimal risk
achievable by minimizing it over the observable sample Si.
Thus, we write for all i ∈ [1, . . . ,K], ci = R̂∗Si(H).

As we consider a scenario where all the data distributions
Di are the same, it is reasonable to further assume that the
price of pooling the data is equal to 0 for each agent as it does
not require reducing the discrepancy between the different
agents’ distributions. In this case, the price of taking the edge
between each node ai and P is set to 0.

The price of learning in a collaborative way can be
characterized by the sum of optimal risks achieved for
each agent with respect to the hypothesis minimizing the
risk on sample S. Consequently, we define it by letting
c∗ =

∑K
i=1 R̂∗DiS (H). As in the classical fair cost sharing

game, each agent has a preference for choosing a “self-
ish” non-collaborative strategy that consists in learning us-
ing its own sample when the inequality

∑K
i=1 R̂∗DiS (H) ≥

1
α max
i∈[1,...,K]

R̂∗Si(H) holds. This latter condition corresponds

to a α-approximate Nash equilibrium of this game that has
a cost of

∑K
i=1 R̂∗Di(H). From the assumption of the the-

orem, the optimal solution, however, is to learn on a big-
ger sample by following the path ai − P − L with a cost of∑K
i=1 R̂∗DiS (H) that is shared by all agents. Applying The-

orem 2, we can bound the ratio between the overall cost

L

c1 c2 cK−1 cK

a1 a2 aK−1 aK
S1 S2

SK−1 SK
. . .

0 0 0 0

P

c∗

Figure 2: (Theorem 3) Collaborative learning as a fair cost
sharing game with multiple agents corresponding to differ-
ent data sources generated from the same probability distri-
butions. Here, for all i ∈ [1, . . . ,K], ci = R̂∗Si(H) while
c∗ =

∑K
i=1 R̂∗DiS (H); (Theorem 4) Collaborative learning

with data sources generated from different probability dis-
tribution. Here, for all i ∈ [1, . . . ,K], ci = mi

ε,δ = mε,δ

while c∗ = m∗ε,δ .

achieved at α-approximate Nash equilibrium and the opti-
mal solution as follows:∑K

i=1 R̂∗Di(H)∑K
i=1 R̂∗DiS (H)

≤ O

 log
(∑K

i=1
mmax
mi

)
α

 .

The result established in this theorem states that for a
considered learning scenario where additional data coming
from K different sources can help to learn a better classifier,
the gap between the sum of individual performances of all
agents and that achieved by the collaborative learning ap-
proach increases when there exist important differences be-
tween the sample sizes of different agents. This implication
is not trivial but rather intuitive as we may expect to obtain
an improved performance at least for those agents who pos-
sess little data due to the data provided by other agents with
bigger data samples. Note also that the statement of the the-
orem can be further simplified if α = 1, i.e. α-approximate
Nash equilibrium coincides with the pure one, but this latter
exists only when K = 2.

Before proceeding to the analysis of a more general col-
laborative learning scenario, we first briefly comment on the
main assumption of the theorem given by the inequality

K∑
i=1

R̂∗Si(H) ≥
K∑
i=1

R̂∗DiS (H) ≥ 1

α
max

i∈[1,...,K]
R̂∗Si(H). (1)

First, we note that the left-hand side of (1) implies that
a hypothesis learned on a bigger sample performs better
on each individual sample of all agents ai. Even though it



can be violated in some real-world scenarios, this assump-
tion is rather intuitive in the framework of supervised learn-
ing where the generalization capacity tends to increase with
the increasing sample size for a fixed hypothesis space. As
for the right-hand side, the inequality

∑K
i=1 R̂∗DiS (H) ≥

1
α max
i∈[1,...,K]

R̂∗Si(H) means that the overall risk related to col-

laborative learning is higher than the worst performance over
all agents multiplied by a factor of 1

α . It further implies that
for all i ∈ [1, . . . ,K], ci ≤ αc∗ meaning that the dominant
strategy for all agents corresponding to the α-approximate
Nash equilibrium is to learn using their own sample. This
assumption restricts agents from deviating from their non-
collaborative strategy but, as it was seen from the example
presented in Figure 1, does not imply that the individual
costs of all agents ci are lower than the cost of a sharing
edge c∗/K. In order to see this, one can consider an arbi-
trary vector [c1, . . . , cK ] with ∀i ∈ [1, . . . ,K], ci > 0 and
denote by cmax its maximum element. Given the condition
1
αcmax ≤

∑K
i=1 c

∗
i , one can always find c∗ = (c∗1, . . . , c

∗
K)

such that ∀i ∈ (1, . . . ,K), ci > c∗i . Indeed, we can set c∗1 =
1
α (cmax−ε1) for some ε1 > 0 and let c∗i = 1

α

(
ε1+ε2
K−1

)
,∀i ∈

[2, . . . ,K], where the value of ε2 > 0 can be made infinitely
small. In this case, the condition 1

αcmax ≤
∑K
i=1 c

∗
i is ver-

ified and the values ε1 and ε2 can be chosen to ensure that
∀i ∈ [1, . . . ,K], ci > c∗i giving the desired result.

Finally, we note that the inequality established in this the-
orem holds even if agents are assumed to be self-interested
and may lie about their true labels. This follows from the
results established in (Dekel, Fischer, and Procaccia 2010)
where the authors prove that costs defined as an empirical
risk of the best hypothesis consistent with the learning sam-
ple encourage the agents to tell the truth about their labels.
This, however, is only the case whenH is a space of constant
or homogeneous linear functions over Rd.

Collaborative Learning with Heterogeneous
Sources
For our first result, we considered a setting where data dis-
tributions that generated individual samples of all agents are
the same. This assumption, however, is often violated in
practice as different data sources may provide data samples
with important statistical differences. Consider the previous
example with hospitals and assume now that the MRI scans
are acquired on scanners with varying resolutions and sizes
of the resulting images, thus leading to a shift in the sta-
tistical distribution between the different acquired samples.
In this case, we fall into the category of the so-called trans-
fer learning algorithms that may take the form of multi-task
learning, domain adaptation or distributed learning prob-
lems. In what follows, we refer to any instance of a learn-
ing problem with heterogeneous samples following different
probability distributions as to a general collaborative learn-
ing problem. In this scenario, a quantity of interest that one
may want to quantify is the ratio between the number of
samples that are needed to learn a good hypothesis for each
agent and that required by a given collaborative algorithm to

produce a hypothesis (or a set of hypotheses) that performs
well on all of them. In the context of PAC learnability, this
can be formalized as follows.
Definition 3. Let H be a hypothesis class of VC dimension
d. We say that a hypothesis h ∈ H allows to (ε, δ)-solve a
learning problem (H,D) if for any ε, δ > 0 with probability
1− δ the following holds:

Pr
x∼D

[RDi(h(x), y) ≤ ε] ≥ 1− δ.

Let us now define a general collaborative learning prob-
lem as a 2-tuple (H, {Di}Ki=1). We say that a hypothesis h ∈
H allows to (ε, δ)-solve a learning problem (H, {Di}Ki=1)
if with probability 1 − δ, RDi(h(x), y) ≤ ε for all i ∈
[1, . . . ,K]. We further define the sample complexity mi

ε,δ

as the size of sample Si drawn from Di required by h to
(ε, δ)-solve a problem (H,Di). We assume that H is fixed
for all individual agents so that, as shown in (Anthony and
Bartlett 2009), the sample complexity becomes equal to
mi
ε,δ = mε,δ = O( 1

ε (d log
(
1
ε + 1

δ

)
), ∀i ∈ [1, . . . ,K]. As

an example of a collaborative learning algorithm, we con-
sider (Blum et al. 2017, Algorithm 2)2 and denote it by L in
what follows.

In this setting, we can now state the following theorem.
Theorem 4. Let H by a hypothesis space of VC dimension
d. Let m∗ε,δ be a sample complexity required to (ε, δ)-solve
the collaborative learning problem (H, {Di}Ki=1) by a hy-
pothesis h ∈ H outputted by L. Then, the following holds:

mε,δ

m∗ε,δ
≤ Θ(log(K))

K
.

Proof. Similar to the previous theorem, the idea behind
our proof is to represent a collaborative learning problem
(H, {Di}Ki=1) as a fair cost sharing game given in Fig-
ure 2. To this end, we let the nodes ai correspond to the
source nodes of agents {ai}Ki=1 with their respective dis-
tributions Di and let the pooling node be the same as be-
fore. The destination node L is the state where every prob-
lem (H, {Di}) is (ε, δ)-solved. The edge between node P
and L corresponds to applying L on the received samples
from node P. Each agent has a choice between generat-
ing a sample of size mε,δ to (ε, δ)-solve their problem or
generating a sample for a collaborative learner L. In the
proposed setting, we can set the costs of individual edges
ci = mi

ε,δ = mε,δ , ∀i ∈ [1, . . . ,K]. The shared edge thus
has a cost of c∗ = m∗ε,δ , where the m∗ε,δ examples are drawn
from a uniform mixture distribution 1

K

∑K
i=1Di. In order

to learn a hypothesis in a collaborative setting, we consider
the algorithm presented in (Blum et al. 2017, Algorithm 2)
that has a property of (ε, δ)-solving a collaborative problem
(H, {Di}Ki=1) with

m∗
ε,δ

mε,δ
= O(log2(K)) when K = O(d).

In this case, agents {ai}Ki=1 tend to prefer paying a cost of

2For the sake of completeness, we provide the description of
this algorithm and the theoretical result related to it in the Supple-
mentary material.



mε,δ ≤ m∗ε,δ for (ε, δ)-solving (H, {Di}), ∀i ∈ [1, . . . ,K]
thus leading to the Nash equilibrium with a cost equal to
Kmε,δ . However, the optimal solution is to learn in a col-
laborative way with a cost m∗ε,δ < Kmε,δ . As before, we
can now bound the ratio between the Nash equilibrium and
the optimal cost using Theorem 1 yielding the final result:

mε,δ

m∗ε,δ
≤ Θ(log(K))

K
.

Remark 1. Note that the established result can be proved
in a more general setting without specifying the collabora-
tive algorithm used to output a hypothesis. In this case, one
would need to make an assumption similar to (1) that would
restrict agents from choosing the shared path and ensure
that the overall sample complexity of collaborative learning
is smaller than the sum of sample complexities of each agent.
This assumption, however, is almost always verified in prac-
tice as one can barely hope to find a collaborative algorithm
that can (ε, δ)-solve K problems with a sample complexity
smaller than that of each individual problem. The optimality
condition, Kmε,δ > m∗ε,δ , is also far from being restrictive
as it means that the chosen collaborative algorithm should
perform at least a little bit better than a naive algorithm that
takes a number of samples from each agent large enough to
(ε, δ)-solve each problem (H, {Di}).
Remark 2. Contrary to the first result obtained for homo-
geneous data sources, here we consider a simple fair cost
sharing game with equal weights of all agents. As sample
complexity remains the same for a fixed hypothesis space,
it is reasonable to assume that agents participate equally in
sharing the cost of the common edge. In the previous case,
however, the sum of empirical errors defining the cost c∗
consisted of terms that were not necessarily equal and thus
the individual cost of each agent taking the shared path was
allowed to be unequal too.

It is import to underline that this result establishes a lower
bound for the ratio between the collaborative and individual
sample complexities (referred to as overhead) considered in
(Blum et al. 2017). As mentioned in the proof, (Blum et al.
2017, Theorem 3.1) states that an algorithm for collabora-
tive learning proposed in their paper has a sample complex-
ity that is onlyO(log2(K)) larger than the individual sample
complexity of solving each problem (H, {Di}). Obviously,
in this case it achieves an exponential improvement over a
naive algorithm that takes a number of samples from each
agent large enough to (ε, δ)-solve each problem (H, {Di}).
The two results can be further combined in a unified state-
ment that takes the following form:

K

Θ(log(K))
≤ O

(
log2(K)

)
=
m∗ε,δ
mε,δ

.

Both this unification and the previous theorem highlight the
practical interest in expressing various learning problems as
instances of fair cost sharing game as it allows to provide an
analysis of learning settings in a completely different, and
arguably simpler, way.

Conclusions and Future Perspectives
In this paper, we considered collaborative learning problem
widely presented in machine learning as an instance of fair
cost sharing games. In order to relate the two, we showed
how a collaborative learning scenario can be represented as
a graph of a fair cost sharing game. The established link al-
lowed us to analyze collaborative learning problem in two
settings where the learning samples available to agents were
assumed to be drawn from the same or different probabil-
ity distributions. For these two cases, we proved two distinct
theoretical results where the first one bounds the ratio be-
tween the optimal empirical risk of non-collaborative and
collaborative learning approaches, while the second estab-
lishes the same kind of bound for their respective sample
complexities. The proposed analysis naturally completes a
previous work on the subject and brings a new point of view
for the general collaborative learning scenario. To the best
of our knowledge, there were no other attempts in analyzing
this particular learning setting using the results established
for fair cost sharing games in game theory.

Due to the rich body of literature on fair cost sharing
games that exist in algorithmic game theory, the possible fu-
ture perspectives of this work are many. Among them, one
of the most important ones is to consider a fair cost sharing
game where pooling the data has a certain cost for all agents
that is different from 0. Indeed, in many real-world situa-
tions, agents represented by industrial actors may want to
protect their data from its disclosure either to the learner or
to the other agents. This conflict of interests is often mod-
eled as a privacy-aware learning paradigm where the op-
timized objective function considers two terms represent-
ing the trade-off between the privacy of the data used for
learning and the optimal learning itself. Fair cost sharing
games offer a very intuitive way of modeling the above-
mentioned situation by the means of imposing a non-zero
cost on the edges that allow the agents to pool data to-
gether. In this case, the analysis proposed in this paper
may be extended to study the possible gain of collabo-
rative learning with privacy constraints and can be done,
for instance, by using a traditional framework of differen-
tial privacy (Dwork 2006) and PAC learnability results re-
lated to it (Shiva Prasad Kasiviswanathan and Smith 2011;
Dwork and Roth 2014). On the other hand, this setup can be
also potentially applied to model the multi-source domain
adaptation problem where the source nodes correspond to
the available source domains, while the destination node is
given by the target domain. In this case, the direct link be-
tween source nodes and the target one may correspond to the
error achieved by a direct application of a source classifier
to the target data usually considered as a weak baseline in
domain adaptation. On the contrary, the shared edge would
correspond to minimizing the combined weighted error over
all sources in the spirit of (Blitzer et al. 2007) so that the cost
would be defined based on the generalization bounds estab-
lished by the authors of this paper. Both these research lines
merit a thorough future investigation as they aim to tackle
two important drawbacks of learning phenomenon such as
its lack of generalizing capacity across different domains
and the rising concerns regarding the privacy preservation.
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