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We conduct a Global Sensitivity Analysis (GSA) of urban-scale network performances to parameters representing a wide range
of realistic dynamic loadings, decomposed in a choice of OD matrix, routing alternatives, and paths flow distribution. A special
attention is given to the route alternatives generation, where overlapping metrics and selection methods are introduced to reproduce
awide variety of paths sets configuration. Paths flow distributions are calculated based on different equilibrium criteria. Several sets
of simulations are conducted and analyzed graphically and then with a variance-based GSA method so as to get insights on how
much and in which conditions each network loading parameter influences network performances by itself or by interaction. Results
notably reveal that the demand level is the most decisive parameter since low values simply lead to free-flow conditions with no
influence of the other parameters, whereas higher values lead to a wide diversity of network states going from close to capacity but
stable to gridlocked. While a nonnegligible amount of this disparity is explained by the demand pattern parameter, the number of
paths per OD, their overlapping, and the equilibrium criterion of the paths flow distribution are still influential enough to maintain
the network close to its optimal capacity or to prevent the network from fast collapse (gridlock). The highlighted connection between
spatial and temporal heterogeneities of the network states explains the gridlocking phenomena. These extracted insights are very

encouraging for operational implementations.

1. Introduction

Dynamic network loading (DNL) components play a crucial
role when estimating a network performance by simulation.
DNL is the combination of the OD matrix definition, the
path selection process, and the calculation of paths flow
distribution for each OD pair. The first component is clearly
related to the scenario. The third one has been extensively
studied in the dynamic traffic assignment (DTA) literature
in connection with the definition of different network equi-
libriums (user equilibrium (UE), bounded rationality UE,
stochastic UE, system optimum, etc.) [1-3]. However, the
selection method that reduces the vast number of possible
paths in a meshed network into a candidate set of paths
has received less attention. In particular, to the authors’ best
knowledge, no Global Sensitivity Analysis (GSA) has been
conducted to assess how such paths selection influences the
network performance over a simulation.

Several methods were established to generate paths sets.
The classical K-shortest path algorithm is widely imple-
mented. Link penalty [4] and link elimination methods are
popular heuristics proceeding iteratively on links manipula-
tion after identifying a shortest path. Ben-Akiva et al. [5] pro-
posed a labelling approach exploiting the multiple attributes
of each link to select paths based on different generalized cost
functions. Across experiences, the overlapping properties of
paths have been identified as essential for selecting routes
realistically. In our study, we choose to characterize paths
sets between ODs based on overlapping criteria and we then
introduce specific selection methods.

Sensitivity Analysis (SA) can be defined as the study of
how the variations in the model outputs can be attributed to
the variations in the model inputs [6]. All the SA conducted in
traffic endeavored to study the supply, focusing on parameters
of the car-following models or the network capacities, or
aimed to assess the performance of methodologies.
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A sensitivity analysis was conducted by Punzo and
Ciuffo [7] to characterize how calibration parameters of a
microscopic simulation model impact the induced traffic
dynamics. The study tackled the computational complexity of
calibration by drawing good practices in the task. It clarified
the role of parameters and allowed to simplify its resolu-
tion by breaking the calibration problem into subproblems.
Punzo and Ciuffo [8] used a variance-based technique for
parameter estimation and calibration of Intelligent Driver
Model and the Gipps model. In 2013, Ciuffo et al. explored
the methodology of using Gaussian Process Metamodels for
sensitivity analysis of traffic estimation models through a
case study on the Aimsun mesoscopic model. The proficiency
of the methodology was assessed. Ciuffo et al. [9] imple-
mented a GSA to simplify the calibration of the IDM car-
following model within the traffic simulation model. Punzo
et al. [10] presented an implementation of a variance-based
sensitivity analysis (Sobol indices estimated with Monte
Carlo method) to simplify microscopic traffic flow models
on the car-following model. Ge and Menendez [11] intro-
duced an improved approach for the sensitivity analysis of
computationally expensive microscopic traffic models and
conducted a case study of the Zurich network in VISSIM.
Ge et al. [12-15] presented a comprehensive approach for the
sensitivity analysis of high-dimensional and computationally
expensive traffic simulation models, combining screening
and metamodel-based methods.

Only few studies started to characterize the influence of
demand parameters on simulated traffic conditions through
a sensitivity analysis. Furthermore, the existing studies only
examined some particular components of the demand.

Parzani et al. (2016) proposed a methodology to inves-
tigate the impacts of demand distribution at link level on
aggregated network performances with NMFD. However,
only one parameter at the time was changed to study the
influence; the paths overlapping and network definitions
showed limitations that we tackle in this paper; the anal-
ysis did not study the influence of the number of paths
per OD or the equilibrium criterion applied with DTA.
For dynamic OD demand estimation, Djukic et al. [16]
performed a sensitivity analysis of traffic conditions to the
OD demand distributions over time. The first order Sobol
indices were estimated with RBD-FAST technique due to
the high number of variables. However, the route choice
set is precomputed in Aimsun and does not vary among
simulations. Chen et al. [17] implemented a Global Sensitivity
Analysis to assess the impact of traffic demand on road
emissions, derived from average traffic flow of each link every
15 min. First and total order Sobol indices were estimated
with Monte Carlo method after fitting a metamodel based
on the obtained observations, run with a dynamic traffic
assignment model and user equilibrium criterion. However,
traffic demand variability was modelled with a temporal
profile for each cluster of OD pairs, link capacities, and
vehicle float characteristics. Tobin and Friesz [18] intro-
duced an approach for the sensitivity analysis of equilibrium
traffic assignment problems. By introducing an equivalent
restricted problem to have the desired uniqueness properties,
the derivatives of the equilibrium arc flows are drawn in
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response to perturbations in the cost functions and the trip
table.

In this paper, we perform a systemic study of the network
loading parameters on the network performances. Each block
of the network loading decomposition is represented by
several parameters. Our goal is to explore the whole search
space created by these parameters with a Global Sensitivity
Analysis based on microscopic dynamic simulations. We
aim to conduct our analysis at the scale of a city with a
network that mimics an urban setting with a high number of
possible paths. Although some studies addressed the question
of some parameters’ influence on traffic conditions, no work
analyzed the demand in such a systemic way. Furthermore,
we aim to bring value in how to represent the variety of
possible network loadings. We introduce a methodology to
create and characterize a wide variety of possible paths sets
configurations. The final originality that this work wants to
achieve is the way to analyze simulation outputs. Indeed,
not only do we process classical indicators on final network
states, but also we conduct a deeper investigation on how the
network came to such a state by looking into some spatial and
temporal heterogeneity factors. Notably, this analysis helped
to differentiate the stable networks from the nonstable ones.
In the end, we were able to identify which parameters are
influent, how much, and in which cases, bringing insights on
how to make the network more efficient or resilient.

The paper is organized as follows. Section 2 presents an
overview of the materials and methods of the study, introduc-
ing the simulation settings with the definition of the network
and the network loading parameters. A brief overview of
the chosen output indicators and their analysis method is
presented. Section 3 presents the results, primarily through a
graphical analysis and then through a quantification process
with the analysis of Sobol indices. Section 4 presents the
conclusions and recommendations for future research.

2. Materials and Methods

2.1. Simulation Settings

2.1.1. Definition of the Network. In this study, we are consid-
ering a regular network that mimics a Manhattan town with a
ring road; see Figure 1. This network corresponds to 14 x 14 2-
way regular roads with speed limit 50 km/h and intersections
controlled by traffic lights, functioning on a simple 2-phase
signal-timing scheme. These roads delimit blocks that are
grouped 9 by 9 to form 5 x 5 zones. The 2-way ring road
with speed limit 90 km/h separates the central zones from
the peripheral ones with which it has 12 interchanges. Each
link flow follows a triangular fundamental diagram. Details
on regular roads intersection or interchange can be found in
Figures 17 and 18.

2.1.2. Definition of the Network Loading Parameters. Given
the high computational time of input design and simulation,
we restricted the possible values of each input variable to a
small set corresponding to the most representative cases and
only simulated a subset of their possible combination. In this
chapter, we go over the choice and design of values for each
input, representing a component of the network loading.
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FIGURE I: Support network: Manhattan town with ring road.

(1) OD Matrix

(i) Distribution Demand Pattern. As opposed to classical OD
pair descriptions based on punctual network entries and
exits, the OD matrix size is reduced to 25 x 25 by considering
zone to zone demand patterns; see Figure 1. No flows are
considered within zones; the diagonal of the OD matrix is
null. For interzones flows, three demand distribution patterns
were considered:

(i) Uniform

(ii) Exocentric (from periphery to center): could mimic
urban rush hour in the morning

(iii) Endocentric (from center to periphery): could mimic
pick hour in the evening

These patterns were generated by two methods, leading to
6 possible values for the pattern variable. The first method
starts from a uniform OD matrix where all cells are equal and
simply increases the flows going from a peripheral zone to a
centric one or vice versa so that the main moves represent
60% of the total flow.

The second method is based on a gravity model [19]. This
distance-related distribution aims to produce more realistic
OD flow distributions. For a uniform pattern, all zones
have equal attraction and emission. The attractiveness of
the central or peripheral zones was doubled for the other
patterns, such that, in the end, any flow going to a central
(resp. peripheral) zone is intensified.

(ii) Total Demand Level. The total demand is constant and
uniformly distributed over the simulation time. Demand
levels chosen for the study were calibrated on our network so
as to reproduce a range of traffic conditions from free flow to
saturated. Six levels of demand were considered in the study:
level k x 25 zones with k in vehicle per second unit and in the
following set: {0.05,0.10,0.15, 0.20,0.25, 0.30}.

(2) Dynamic Traffic Assignment
(i) Path Selection Method

Paths Definition. To overcome the high dimensionality of
the problem, routes selection was defined between zone
borders. We introduce the notion of junction points as the
list of all network entry or exit points for each zone. The
set of all possible paths from an origin to a destination
zone gathers all possible paths between the related junction
points. Upon simulation, vehicles are assigned a random
position departure (resp. arrival) point within their origin
(resp. destination) zone and are then automatically connected
to the junction points related to their assigned path by the
local shortest paths. For each OD, the selection method aims
to narrow the set containing all possible paths to a candidate
one, on which the demand OD flow is distributed. Figure 2
gives some illustrations of the paths definition process.

The paths selection method aims to select p shortest paths
passing by regular roads, plus alternatives passing by the
ring road for each OD. However, for some particular relative
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FIGURE 2: Schematic description of the paths definition.

positions of the origin and destination zones, less than p
regular paths or no ring road paths were selected.

Selection on Ring Road. For OD zones far enough apart and
close from interchanges, 2 paths taking the ring road (one in
each direction) are selected such that they are the shortest
alternative of their kind.

Selection on Regular Network. In a Manhattan network, paths
only taking links in the direction of the destination are the
shortest. As the combinatorial number of these shortest paths
can be huge, we select, for each pair of junction points,
an initial path set that homogeneously uses the available
links in the right direction (the number of paths selected
is proportional to the distance between the origin and
destination). For an OD, the union of all these initial sets
constitutes a candidate path set from which we will select
the final paths with some overlapping criteria. Note that,
for a given OD pair, not all junction points are necessarily
connected after the selection process.

Selection Based on Local Overlapping. The chosen local
overlapping indicator was inspired by the common factor CF;
defined by Cassetta et al. [20] and takes the following form:

L..
L0y = —= 0
L.L

1

-

where LO;; is the local overlapping score between paths i and
J» L;j is the shared length of paths i and j, and L; (resp. L;) is
the length of i (resp. j). This pairwise overlapping measure is
areal number between 0 and 1 and penalizes the difference of
paths size.

For each OD, we calculated all pairwise overlapping
scores generated by the candidate paths set. Then we pro-
ceeded 5 selections of p paths such that pairwise overlapping
scores were either 0 (independent paths) or maximum or

within a range (one of the 3 intervals defined by q1/3 and
q2/3 quantiles of the overlapping scores distribution). For
the last method, paths were selected by a heuristic method
with tolerance 2/3 (or 1/2 in some exceptional cases) due
to the combinatorial difficulty of the thousands of possible
selections.

Selection Based on Global Overlapping. Interactions between
paths sets of distinct ODs are not taken into account in the
above selection strategy based on local overlapping. Thus, this
strategy aims to focus the path selection on the degree of
overlapping at network level. Now, paths between OD pairs
are selected all at once in function of the resulting global
overlapping score.

We introduce a global overlapping indicator based on the
idea to compare the paths distribution over the links to an
ideal even distribution:

GO= ) (x -x")

link i

2)

where GO is the global overlapping score, equal to the sum
over all the network links of the squares of the gaps between
x;, the number of paths passing by the links i and x”, an
average number of paths by link. In practice, x* is scaled for
each p by performing 10000 random drawings of p paths per
OD and calculating the average ratio of length between the
25 x 24p drawn paths and the network links. For each p,
the 4 levels of global overlapping were defined from the q1/4,
q1/2, and g3/4 quantiles of the random drawings GO scores
distribution.

(ii) Paths Flow Distribution. In this study, we apply classical
dynamic traffic assignment principles. We mainly focus on
the deterministic user equilibrium (UE) where travel times
on all chosen paths for a given OD are equal. The UE is
based on the Wardrop first principle [21]. We also consider
the ideas of users’ bounded rationality [22-25] that relax the
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assumptions of the UE. In this framework, users look for
“satisficing” paths instead of the ones that minimize their
own travel time. The term “satisficing” was introduced by the
original works of Simon and stands for the concatenation
of the words “suffice” and “satisfy”. These ideas of bounded
rationality were firstly introduced to the route choice context
by Mahmassani et al. [26]. The authors introduced the
concept of indifference bound (e%), where users are satisfied
if their route’s travel time is not superior to the minimal
travel times of the OD pair by £%. The network equilibrium
then corresponds to the bounded rationality user equilibrium
(BRUE) [27, 28]. A review paper about bounded rationality
behavior applied to route choice is provided by Di [29]. In
this paper, we consider the following values for &: 10%, 20%,
and 30%.

The network equilibria are solved considering the Method
of Successive Averages (MSA) [30, 31]. More precisely, we are
using the Smart MSA approach proposed in Sbayti et al. [32].
In each simulation, the set of possible paths is predefined for
each OD pair and the same set is kept over the simulation
time. Note that we are not using path discovery technics
that may exist in some DTA algorithms because, in our
study, we are monitoring the path overlapping that should
then remain constant over a simulation. The final paths
flow distribution corresponds to the final step of the Smart
MSA algorithm, that is, after convergence. At each iteration
step, this method considers the experimented travel time of
the previous iteration step to determine the new candidate
paths flow distribution. When convergence is reached, that
is, when equilibrium conditions are met, the final paths flow
distribution guaranties that, for all OD pairs, experimented
travel times on the paths connecting the same OD pair are
similar for UE or in the range of €% for BRUE. More precisely,
we are using the relative gap function G, for DUE [32]:

Yo Xa X,y (T = Tok,)
Zo Zd n;dergn

where T""lmin is the minimal experimented travel times for an
OD pair od considering all paths, T"dp is the current travel

G, (3)

time on path p for OD pair od, and #*?  is the number of
users that are taking path p for OD pair od. G, corresponds
to the average difference in time per user between the current
path travel time and the minimal travel time for each OD. So,
a perfect user equilibrium for all OD pairs means G,=0. In
practice, we have set G, equal to 5 s. All simulations that were
not meeting these values were run again with more iterations.
Only very few simulations were not able to converge after this
second stage and were then disregarded.

We have extended this definition for BRUE considering
that the reference travel time for each OD pair is no longer the
minimum experimented travel time T°? . but (1+&)T*
So, the gap function G, for BRUE is defined as

- Yo2d2p n;d max (T;d— (1+eg) T%n, 0)
Zo Zd n;dTr(:ﬁn

Convergence was considered achieved when G, =5 s. Again,
we sometimes needed to increase the number of iterations to

min*

(4)

G,

reach convergence but all simulations converged in that latter
case.

In this paper, we are going to consider two types of
assignment period. The first one, called “static assignment,”
is when a unique assignment period covers the whole
simulation period. This means that paths flow distributions
are calculated once for all during the simulation considering
mean travel times over the full period. The second, called
“dynamic assignment,” is when the paths flow distribution is
updated every 20 minutes considering traffic conditions over
such a time period. This permits to refresh the assignment
discipline for all ODs when travel times are evolving during
the simulation.

2.1.3. Simulator. Traffic dynamics are calculated by the Symu-
via simulation tool developed by the LICIT laboratory. This
dynamic and microscopic platform is founded on Newell’s
car-following rule [33], which is the Lagrangian resolution of
the LWR model [34] and includes most features (multiclass,
lane-changing, intersections, etc.) required to simulate urban
traffic.

In our study, each simulation lasted roughly between 30
minutes and 3 hours.

2.1.4. Outputs: Indicators of Network Performances. We simu-
lated the demand conditions in the chosen network over 1h30
starting from an empty network state. Performance outputs
were calculated on the 1-hour observation period, starting
after a warm-up period of 20 minutes, ending 10 minutes
before the end of the simulation time.

(i) Global Indicators of Network State. To characterize the
network state, we looked at classical global indicators: Total
Travel Time (TTT), Total Travel Distance (TTD), and Mean
Speed = TTD/TTT, which really reflects the network’s quality
of service.

(ii) Network Heterogeneity. To appreciate the heterogeneities
in network performances, we looked at the following:

(a) A spatial heterogeneity factor: the standard deviation
of link mean speed (only nonempty links are taken
into account) normalized by the network mean speed,
over the last 20 minutes of the observation period to
characterize final network states.

(b) A temporal heterogeneity factor: the gridlock drop
rate (GDR) was introduced during the analysis of
simulation results. Details on its definition will be
provided in the Graphical Analysis section.

2.1.5. Variance-Based Sensitivity Analysis: Estimation of Sobol
Indices. The variance-based Sobol indices were chosen to
perform our Global Sensitivity Analysis [35].

Each of the performance scalar outputs y (alternatively
TTD, GDR, or SH) can be expressed as a function of the input
parameters x; (i between 1 and 5) of our problem. x, is the
demand level, x, is the demand pattern, x; is the equilibrium
criterion, x, is the overlapping level, and x5 is the number of
paths per OD. A Global Sensitivity Analysis based on Sobol



indices requires that input parameters be independent. In
practice, it is always difficult to provide a formal proof of that
but, in our case, we can consider that this assumption holds
as there is no clear relationship between the 5 input variables
we defined.

Let us note x as the vector of our input parameters x;.
In the following formulas explaining the construction of the
Sobol indices, we are taking the example of TTD as the y
output and note by f the function that relates TTD to the x;.

The constitution of the Sobol indices relies on the Sobol-
Hoeftding unique decomposition [36-38] of f:

TTD = f (x) = Z i (xp)

I<{1,...5)
©)
=for XS+ Y fii(xx) o
1<i<s 1<i<j<5
x; and x; are subvectors of x.
As the f; satisty
E(f;(x) 1 %) =0 (6)

That is, they are orthogonal because of the independence
between input parameters; the variance of f can be decom-
posed as

var (f (x)) = Z var (f; (x;)) (7)

1<qT,...5}

The Sobol indices represent the fraction of variance explained
by the variables in I:

_var (f1(x1))
s, = i) ®)
var (Y)
The total Sobol indices [39, 40] represent the fraction of
variance explained by each variable by itself or interaction
effect with other variables:

s = var (Zlai fr (1))

I var (Y) ©)

In practice, calculating Sobol indices can be quite compu-
tationally expensive. Thus, we chose to perform simulations
following a design of experiment containing 20% of the
search space, selected by Latin Hypercube Sampling (LHS).
For this operation, we used built-in functions in the R library
DiceDesign to create a LHS in a 5-dimension unit cube and
optimize the spread of the points with a Maximin algorithm
and then transposed the created hypercube into our discrete
domain (we only allowed a predefined set of values for each
input parameter) by projecting the drawn coordinates on the
lower bound of the unit subintervals of equal size. Then, we
ran the simulations on these selected combinations of input
parameters. Finally, for each output parameter, we fitted a
Kriging metamodel [41] on our simulations’ observations to
estimate the above function expressing y in terms of the x;.
This metamodel allowed us to estimate Sobol indices with
the Monte Carlo method [42, 43]. With this process, we
estimated first order, second order, and total Sobol indices
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FIGURE 3: Final network states of 50 min simulations, colored by
demand level.

for each performance indicator that we wanted to study.
For these operations, we used the R library DiceKriging
and Sensitivity. The Kriging metamodel parameters were
estimated by Maximum Likelihood; the covariance structure
used was Matérn 5/2; predictions were made with Universal
Kriging. The coordinates of the calls to the metamodel
followed a uniform distribution on each dimension.

3. Results

Two complementary phases of analysis were performed: first,
the graphical analysis allows to identify which value(s) of the
network loading parameters are associated with great or weak
performances; then a quantitative analysis based on Sobol
indices allows to quantify the proportions of performance
variances due to each network loading parameter.

3.1. Graphical Analysis

3.1.1. Graphical Analysis of Results with Average Assignment
Period. Figure 3 presents the final network states from a first
set of 50-minute-length simulations in terms of TTD and
TTT, colored by the level of demand applied. We immediately
note the separation of performance scores by the demand
level primer effect.

Each of the three lowest levels of demand (from level 1 to
level 3) led its simulations to similar network performances
after 50 minutes of simulation even though each single
dot corresponds to an experience with different settings.
We conclude that these simulations maintained free-flow
conditions and experienced no influence of the network



Journal of Advanced Transportation

loading variables on their TTD or TTT performance, apart
from the demand level. This means that the demand pattern,
the paths overlapping level, the number of paths per OD, and
the flow equilibrium criterion do not change the final network
state in free flow.

On the other hand, each of the three highest levels of
demand presents networks experiencing a wide range of
traffic states from saturation to heavy congestion: in addition
to discrimination by level of demand, the simulations end
with a variety of TTD and TTT performances. How do
network loading parameters other than demand level play
a role in the simulated network performance? Furthermore,
congestion is known not to be a stable state at the network
level. So, how would these network states evolve over time?

To answer these questions, we will first look into the
progression of the network performances over time to high-
light the associated dynamics. Precisely, for each of the three
highest levels of demand, all simulations were run on a longer
time interval of 90 minutes.

In Figure 4, each marker stands for a simulation state
in terms of TTD and TTT. The graphs (a)&(b), (c)&(d),
and (e)&(f), respectively, present the temporal evolution
of simulations with demand levels 4, 5, and 6. On graphs
(a)&(c)&(e), the state of each simulation is represented as
every slot of 20 minutes, after a warm-up period of 20
minutes: the states evolve from blue, to orange, to green.
On graphs (b)&(d)&(f), only a few selected simulations are
plotted so as to highlight the time evolution of the related
network states for each demand level.

We observe that some simulations keep a constant high
value of TTD over the simulated time, while others have a
TTD score decreasing at a simulation-specific rate towards
zero. While the first case indicates maintained good network
conditions and thus calls for a network stable state, the
latter case indicates a network state worsening at a certain
speed over time towards a state of gridlock. For longer
simulated times, we suspect persistence of the stable states
and convergence to gridlock for all other simulations.

While a high demand level of 5 or 6 systematically leads
to low TTD over time, demand level 4 also allows slow tran-
sitions to gridlock and stable high network performances to
happen: the demand level seems to be the primer responsible
of possible network states evolutions.

The large spread of TTD scores with reasonable level 4
of demand indicates that a simulation’s performance is highly
influenced by the other loading metrics. Which parameters
influence the rate of state deterioration or are even able
to keep the network in a stable state? Let us focus on the
simulation results with demand level 4 so as to clearly identify
these effects.

We will sequentially study the influence of the remaining
loading variables: demand pattern, equilibrium criterion,
number of paths per OD, and local or global overlapping level.

Identification of Direct Effects of Loading Variables on TTD.
In Figure 5(a) the simulations final states are plotted (cor-
responding to the green markers for demand level 4 in
the previous graphs) colored by demand pattern value. The
table (Figure 5(b)) gives for each demand pattern the total

distance to travel implied in increasing order, as well as
the corresponding TTD standard deviation. The “distance to
travel” is the theoretical value of the total distance that would
be travelled if every vehicle finished its trip by the end of
the simulation. The TTD is the observed value of distance
travelled during the simulation. Note that here the distance
to travel is significantly higher than the TTD because we are
analyzing congested scenarios where lots of vehicles are still
queuing outside the network without having entered yet at
the end of the simulation.

The demand pattern clearly segregates the simulations by
performance level, showing an obvious direct effect. Further-
more, clusters made by the demand pattern parameter display
various sprawl geometries. Classifying them by their TTD
standard deviation score permits to distinguish 3 types of
network states distributions:

Convex but spread, with a score ranging between 10°
and 4 x 10°, groups “To Center,” “Gravity to Center,”
and “To Edges” patterns

Bi-polar, with a score ranging above 4 x 10°, groups
“Uniform” and “Gravity Uniform” patterns

Gathered and close, with a score ranging below 108,
groups the “Gravity to Edges” pattern.

Additionally, we shall note that this pattern classification
is 98% correlated with the total distance to travel implied
by each pattern. The distance to travel increases 7,5% from
convex but spread to bi-polar to gathered and very close
patterns. A higher distance to travel implies more vehicles
simultaneously present on the network and thus worse traffic
conditions. This may explain the observed difference of
average performance between the patterns.

As shown in Figure 6, coloring the same TTD perfor-
mances by the remaining assignment parameters does not
reveal such a clear direct effect: points are not globally well
separated by any color. However, if we focus on what separates
TTD scores of a simulation set with the same demand
pattern, that is, separations independent of this variable, we
observe a dissociation of network states by other colorings,
showing indirect effects. For example, focusing on circled “To
Edges” simulations (Figure 5(a)), observe in Figure 6(d) how
simulations with a minimum local overlapping level between
possible paths have better performances than those with a
higher local overlapping.

Note that simulations colored by overlapping criteria are
split between two graphs (with local or global criteria) for
clarity.

Identification of Indirect Effects of Assignment Parameters
on TTD. To study in more detail the indirect effects, we
split the simulations by demand pattern and plotted their
final state colored by overlapping level, equilibrium criterion,
or number of paths per OD. We observed the following
correlations with TTD performance:

(a) Systematic positive correlation with a min local
overlapping between paths:

For any pattern, simulations with this value of
local overlapping are among the highest performers.



Total Travel Distance (m

Total Travel Distance (m)

Total Travel Distance (m)

FIGURE 4: TTD performances: 1h30 simulations. Graphs (a), (c), and (e): evolution of all network states over time for demand levels 4, 5, and

o beginning

1 1.5
Total Travel Time (s)

2

2.5
x107

« middle
v end
(a)

16 x10°
14 +
12 +
10 +
8l
6l
41
2 |
0 . . . "

0 0.5 1 1.5 2 2.5

x107

o beginning
« middle
v end

6
16 x10

Total Travel Time (s)

14 +
12 +
10 |

o}

N

o beginning
« middle
v end

Total Travel Time (s)

(e)

Total Travel Distance (m)

Total Travel Distance (m)

Total Travel Distance (m)

Journal of Advanced Transportation

16 x10°
7
up 03
12t °
\X 5

10} . \

o}

~ (=)
T

v

0 I i i n
0 0.5 1 1.5 2 2.5
Total Travel Time (s) x107
o beginning
= middle
v end
(b)
6
16 x10 .
14 + \
12 +
10 | ’
8 | o
6L
4L v
2l a1
0 . 1
0 0.5 1 1.5 2 2.5
Total Travel Time (s) x107
o beginning
x middle
v end
(d)
6
16 x10 . . . .
14 +
12 +
10 +
8L
6l
1
4l
2L
0 L T
0 0.5 1 1.5 2 2.5
Total Travel Time (s) %107

o beginning
« middle
v end

)

6. Graphs (b), (d), and (f): some representative evolution cases for demand levels 4, 5, and 6.



Journal of Advanced Transportation

Total Travel Distance (m)

6
16 210 . . . .
[
14| e I 1
12 | g _
10 - AN _
I “m %\
LR
8L \ \ i
\ . \
Ve
6 \\ - _} -
\=a /
N
41 3 |
a®
b ™
0 1 1 1 1
0 0.5 1 1.5 2 2.5

Total Travel Time (s) %107
B Gravity Uniform
Gravity to center
= Gravity to edges
Uniform
= To center
= To edges

()

Demand pattern Distance TTD

to travel standard

(m) deviation
“To center’ 5.28 x 107 2.31x10°
“To edges’ 5.28 x 107 1.11x10°
‘Uniform’ 5.40 x 107 6.43x 10°
‘Gravity Uniform’ 5.49 x 10’ 4.66 x 10°
‘Gravity to edges’ 567 x 107 0.15x 10°

(b)
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Depending on the pattern, these simulations keep a
reasonable T'TD score or even stay in a stable state.
In Figure 7 an example of simulations with convex but
spread pattern is plotted (Figure 7(a)) and an example
with bi-polar pattern (Figure 7(b)).

(b) Sometimes positive correlation with UE criteria

With “To Edges,”, “Uniform,” and “Gravity to Edges”
patterns, simulations with a UE assignment criterion
are clearly within the best performers. If we confirm
the underlying effect of UE, it would mean that, in
these cases, individual optimization (UE vs. BRUE)
is beneficial for the system as well. Note that each
of these patterns belongs to a different classification
introduced above.

(c) Sometimes correlation with number of possible

paths per OD

With “Gravity to Center” pattern, the simulations
with the worst performances only have p=3 possi-
ble paths allowed per OD. With “Gravity Uniform”
pattern, all the simulations with p=3 are among
the worst performers and all the best performers
have either p=7 or 9. With “Uniform” pattern, most
of the simulations with p=3 are among the worst
performers.

(d) Sometimes positive correlation with a relatively

low global overlapping level

Although the best performances are usually related to
a relatively low global overlapping, too few points are
available to clarify the trend.

We shall note that the variability in the observed corre-
lations and sometimes inversion effects may be explained by
the following elements:

(i) Once separated by demand pattern, we only have
few observation points that may furthermore not well
explore the search space.

(ii) There may be joined effects between the studied
parameters, but we cannot observe them on these
chosen graphs.

(iii) There are sometimes some uncertainties in the
parameters’ design.

Deeper investigations will be provided later by the quan-
titative analysis of Sobol coefficients which permits us to
statistically highlight first and higher order effects.

Gridlock Drop Rate. Now we are going to focus on the
correlations between loading parameters and network states
temporal heterogeneities to confirm the observed trends. As
it was introduced in the Methodology section, we will study
the gridlock drop rate metric to represent the TTD evolution
over time.

The scattering of network states evolves over time. The
gridlock drop rate (GDR) metric aims to capture this dynamic.
As introduced in Figure 4, we calculated three values of TTD
over the simulation time (blue and then orange and then
green markers). For each simulation, we measure the TTD
drop rate, relatively to the initial TTD score (i.e., after the
20-minute warm-up), by the middle and by the end of the
simulation time. We keep the highest rate as the gridlock drop
rate. Note that the GDR can be positive. This method allows
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us to capture the speed at which the network’s initial TTD
mostly changed to roughly reach its final state. Formally, the
gridlock drop rate is calculated as follows:

TTD,,;a4. — TTD;

initial |
TTD;pitiq % 20
TTDend - TTDinitial )

TTD;, ;i % 40

initia

GDR = absmax(
(10)

where the function absmax returns the signed maximum
absolute value, TTD,, ;,;,; is the initial T'TD value, TTD,, ;141

is the TTD at the middle of the simulation, and TTD g, is
the final TTD value. The percentage of drop is normalized by
the time it took in minutes.

In Figure 8 the values of this GDR indicator against the
TTT references for the simulations with demand levels 4, 5,
or 6 are plotted. Simulations represented with a square expe-
rienced the highest drop of their TTD,,;,;,; within the first
40 minutes of observation, whereas the triangle simulations
experienced it in an hour.

Referring to Figure 8(a), we see that the distribu-
tion of gridlock drop rates is coherent with the network
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performances observed at the end of the 90-minute simu-
lation time (ref. Figure 5(a)): the stable simulations’ highest
change of TTD,,;,;,; was around 0% per minute (that is
to say none), while the other simulations’ highest change
of TTD,,;;; happened at a rate between -1%/min and -
3.5%/min. For nonstable states with demand level 4, most
of the gridlock drops happened in an hour. However, the
steepest drops to gridlock already happened in 40 minutes.
Most of the simulations in this latter case had a “Gravity to
Edges” pattern. Figure 8(a) reveals again the classification of
the simulations’ performance by the demand patterns in 3
types of clusters as seen in Figure 5(a). The same performance
ranking by pattern is observed, revealing again the pattern
direct effect.

When looking at further colorings, we also recognize
the same performance correlations with the assignment
parameters that we noted in the indirect effects on TTD
paragraph.

In Figures 8(b) and 8(c) the simulations with the same
loading parameters but a higher demand level are plotted:
either 5 or 6. In both of these cases, simulations endure a
high gridlock drop rate, with decreases of TTD,,,;,;,; above
2%/min. As opposed to demand level 4, most of the drops
already happened in 40 minutes. For demand level 5, the only
late drops had demand patterns “Gravity to Center” or “To
Center.” For demand level 6, only few exceptions had a late
drop.

Spatial Heterogeneity. We suspect that temporal hetero-
geneities, quantified by the gridlock drop rate (GDR) indi-
cator, are closely related to final spatial heterogeneities (SH)
among links’ average speed. Indeed, we can imagine that a
transition to gridlock could be the result of one of these two

phenomena: either a local (possibly at multiple locations)
and quick breakdown associated with high SH or a global
and progressive breakdown associated with low SH. The
value of SH was calculated at the end of each simulation
for demand levels 4, 5, and 6. We found a 95% correlation
between the final SH score and GDR for simulations with
demand level 4, 85% correlation with demand level 5, and
60% correlation with demand level 6. These results confirm
the above hypothesis of close relationship between SH and
GDR.

Let us look closer at SH scores’ distribution on our
simulation set with demand level 4, colored by variable value
in Figure 9. Although GDR values were pretty linearly dis-
tributed, SH values present a clear breaking point delimiting
a set of simulations with quite low (below 10) SH from a set
of highly heterogeneous states.

An analysis of Figure 9 confirms that the level of demand,
demand pattern, and minimum local overlapping are really
the dominant factors on the possible network performances.
Furthermore, a UE criterion or the number of possible paths
per OD seems to influence traffic conditions by combined
effects. The same correlations as the ones noted with TTD are
observed and confirm the relation assumed between SH and
TTD: alow TTD score is correlated with a high SH score and
vice versa.

3.1.2. Analysis of Simulations with Dynamic Assignment.
More frequent assignment periods allow the adjustment
of the path flow distribution to the dynamic evolution of
traffic conditions. We called this “dynamic assignment” in
Section 2.1.2(2), as opposed to the “static assignment” we
performed and analyzed in Section 3.1.1,, where we had a
single assignment period for the whole 90-minute simulation.
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This method corresponded to an average choice with average
travel times, simulating a day-to-day traffic assignment rou-
tine.

Just as in Figure 4, Figure 10 displays the evolution of
the simulations’ TTD score over time for the same 3 higher
levels of demand (4, 5, and 6), but this time with a traffic
assignment revised every 20 minutes. A dash line was plotted
to remember the TTD higher boundary reached with static
assignment in Figure 4. While the TTD scale was extended,
the TTT scale was maintained.

We shall first note that dynamic assignment improves
the average network performances. While some networks
now keep stable traffic conditions with demand levels 4
or 5 (examples of maintained TTD score in Figures 10(a)
and 10(b)), others still did not reach such gridlocked final
states as they did with static assignment. However, with
demand level 6, most of the final network states have a TTD
below 2 x 10° m, wherever the assignment was dynamic
(Figure 4(e)) or static (Figure 10(c)). This shows that, even
with dynamic assignment, the demand level remains the
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main factor influencing traffic conditions. However, how did
the effect of the loading parameters on network performances
change with dynamic assignment?

Figure 11 displays the simulations’ gridlock drop rate.
Note that a zoom on the network states was made in
Figure 11(a) for readability; thus the scale is different from all
the other graphs presenting gridlock drop rates.

Comparing Figure 8 to Figurell, we note that, while
there is a clear effect of dynamic assignment on slowing or
inhibiting the gridlock drop rate for demand levels 4 and
5 (scores distributed in tighter intervals closer to 0), the
distribution of this performance score remains very similar
with demand level 6. Furthermore, looking at the triangle

vs. square markers in Figure 8 vs. Figure 11, observe how,
with dynamic assignment, the simulations’ highest change
of TTD,,,;;;.,; now happens later, at least after 40 minutes of
simulation. With demand levels 4 or 5, there is almost no
earlier drop, while with demand level 6, this proportion is
now reduced to two thirds.

To better understand these various journeys to gridlock
phenomena, let us study the final spatial heterogeneities
and their link to the gridlock drop rate. In Figure 12 the
spatial heterogeneities of networks’ final states corresponding
to the simulations with dynamic assignment are plotted.
Compared to the case of static assignment, note that the
distributions of this score now live in smaller intervals
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closer to 0, especially for demand levels 4 and 5, like
GDR.

We found a 86% correlation between the final SH score
and GDR for simulations with demand level 4, 80% correla-
tion with demand level 5, and 90% correlation with demand
level 6. This shows a close relationship between SH and GDR
also in the case of dynamic assignment.

Reassignment permits a more reactive and resilient sys-
tem: it leads to lower heterogeneities and stabilizes situations
that would have converged to gridlock when the demand level

stays reasonable. But which role did the loading parameters
play in the case of dynamic assignment?

The gridlock drop rates and spatial heterogeneities were
colored by demand pattern parameter in Figures 11 and 12.
We immediately identify that this variable induces a much
less clear clustering of simulations’ performances than with
static assignment, calling for lower effect of this parameter.
Moreover, it looks like the relative performance between
simulations changed. To observe the effects of the assignment
parameters in more detail, we will focus on final TTD states
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with demand level 5, since this simulation set experiences
the most influence of the studied variables. The TTD per-
formances plotted in Figure 13 are colored by assignment
parameter.

Although the equilibrium criterion and global overlap-
ping score parameters do not seem to have direct effects, it
looks like the number of paths per OD and local overlapping
score parameters now show a direct effect: the min local
overlapping level is associated with better TTD performances

(Figure 13(d)), while simulations with a high number of paths
per OD are, as opposed to the ones with only p=3 paths
allowed, associated with better performances (Figure 13(b)).
These direct correlations can clearly be seen on the temporal
and spatial heterogeneities in Figures 14 and 15 as well.
Nevertheless, each of these direct effects appears to be
weaker than the one of demand pattern parameter on simu-
lations with static assignment, calling for a higher proportion
of indirect effects in the case of dynamic assignment. In fact,
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we can observe the example of the stable states, circled by
a dash line in Figure13. All these simulations underwent
the same demand pattern “To Edges,” which extrapolates
a wide variety of network states. But what actually keeps
these cases in stable state is a combination of parameters that
have shown to be associated with best performances: a high
number of possible paths, rather strict equilibrium criteria,
and minimum local overlapping.

3.2. Quantitative Analysis. In this part, we conduct a
variance-based sensitivity analysis of the performance

indicators produced by our simulations. We present results
from Sobol indices calculation and complete conclusions
highlighted in our graphical analysis.

The chosen quantitative sensitivity analysis method aims
to explain the variance of an output by the variance of
inputs. We shall note that the produced Sobol indices are
relative to the performance indicator’s variance, calculating
the proportions in which our network loading parameters are
responsible for this variability. Thus, it is important to first
recall the disparities among the variances of the performance
indicators.
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For each of the 6 case studies, Table 1 presents the vari-
ance of the simulations’ network performance scores. Note
that, since TTD, TTT, and Mean Network Speed indicators
are closely related, only TTD was kept as a reference.

To support our quantitative analysis, we represented in
Figure 16 the significant Sobol indices of only 3 over 6 case
studies, underlined in Table 1, chosen because of two reasons:

(i) Their significant performances’ variance

(ii) From one case to another, only the demand level
or the assignment frequency (static vs. dynamic)
changes; this will allow us to distinguish the effect of
these two variables

The standard error of the Sobol indices oscillates between
0.001 and 0.02.

In Figure 16, the pie chart shows the proportion in
which each order of effect explains the variance of the given
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TaBLE 1: Distribution indicators for the main network performance scores.

Variance Final TTD (10” m) Gridlock Drop Rate (%/min) Final Spatial Heterogeneity
Static & Demand level 4 34.224 1.4302 441.75

Static & Demand level 5 1.6695 0.5070 1066.70

Static & Demand level 6 0.1251 0.2797 1342.60

Dynamic & Demand level 4 1.9648 0.0381 0.15

Dynamic & Demand level 5 15.236 0.2824 29.08

Dynamic & Demand level 6 1.6493 0.4076 964.42

performance indicator. Each column of the bar chart presents
the Total Sobol indices (i.e., the total effect) of the given
network loading parameter, as the sum of its first order effect
(in yellow), the involved 3 second order effects (in orange),
and the 3 third order effects together with the forth order
effect (in grey). Second order effects shared between columns
contain the same markers for easy visual pairing.

From Figure 16(a) to Figure 16(b), A Rise in Demand Level.
Concerning TTD performances, the total effects of the
pattern and equilibrium criteria lower for the benefit of the
overlapping and number of paths total effects. While the
decreases are due to the drop of the pattern 1** order effect
(75% down to 50%) and its pairwise interaction with the
equilibrium criterion (6% down to 0%), the 50% increases in
total effects for the overlapping and number of paths are due
to a raise of their 1° order effect, their 2" order effect with
the pattern, and their pairwise effect. These results indicate
that the rise of demand level doubled the influence of the
overlapping level and number of paths on the simulations
final TTD states.

The trends observed in Figure 16(a) confirm what we
observed in the graphical analysis, within the paragraphs
“Identification of direct effects of loading variables on TTD”
and “Identification of indirect effects of assignment parame-
ters on TTD” in Section 3.1.L

Looking at the graph presenting the final states in terms
of TTD and TTT for demand level 5, we note that the rise of
demand level led to a high proportion of final network states
at gridlock. Most of the simulations then explaining the TTD
variance have one of two pattern values without distinction
on performances. The other scores are clustered for the other
pattern values. On the other hand, the spread simulations
have a performance well distinguished by their overlapping
and number of paths values. This may explain the variation
in measured effects.

Concerning GDR performances, although the variance is
in both cases 80% due to 1% order pattern effect, the 8% due
to 2" order effects, coming from the pattern interaction with
the overlapping or the equilibrium criterion, disappear to the
benefit of 3™ or 4™ order effects. With static assignment,
the pattern value alone can explain most of the GDR perfor-
mance. Although with demand level 4 half of the remaining
influence was still due to a combination of two parameters
only, with demand level 5 any additional influence requires
the combination of at least 3 network loading values.

Concerning SH performances, while the proportion of 31
and 4™ order effects stays still, the proportion of variance that
was explained by the 2" order pattern-overlapping effect is
now mostly due to a higher 1** order effect of the pattern.
Thus, while the total effect of the pattern, number of paths,
or eq. criteria stays still, the total effect of the overlapping
decreases by two thirds.

From Figure 16(b) to Figure 16(c), from Static to Dynamic
Assignment. Concerning TTD performances, although the
variance is in both cases 70% due to 1°' order effects, there
is a proportion inversion between 2™ and 3™ order effects.
For the 2™ order effects, while the pattern-overlapping and
overlapping-nbP effects disappear, the interaction pattern
overlapping is divided by two. These drops are compensated
by a rise of 3" and 4™ effects. As for 1% order effects, we
observe a 12% decrease of the overlapping to the benefit of
an increase for the pattern and number of paths.

Concerning GDR performances, 1% order effects pro-
portion goes down to explaining 60% of GDR variance: the
pattern contribution goes from 80% to 40% while the other
20% are spread between overlapping (for half), number of
paths, and equilibrium criterion (a forth each). A 2™ order
pattern-overlapping effect now accounts for 10% of GDR
variance. The last 30% of GDR variance is explained mostly
by interactions between the pattern, number of paths, and
equilibrium criterion.

The overlapping influence increases mostly because of 1%
order and 2™ order effect with the pattern while number of
paths and eq. criterion ‘s influences increase mostly because
of 3" and 4™ order effects with the pattern.

Concerning SH performances, 1* order effects go from
explaining 90% of SH’s variance to explaining only 40%: the
influence of the pattern went from 80% to now only 30%1°*
order, while its 2" order effects with the overlapping and with
the equilibrium criterion now account for 10% each. The last
44% of SH’s variance are explained by 3™ and 4™ order effects.

Overviewing all the performance indicators for these
three case studies, the demand pattern parameter is always
the major contributor in the 1** order effects and 2" order

effects. The most significant 2" order effect emerges from its
association with the overlapping parameter and then with the
equilibrium criterion and then with the number of paths. The
4™ most significant 2™ order effect comes from the joined
action of the overlapping and number of paths settings. The
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FIGURE 16: Presentation of Sobol indices for three representative case studies.
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FIGURE 17: Details of an intersection of regular roads between 4
zones.

pattern is so dominant that it will not really let the other
loading parameters live by themselves.

With static assignment (Figures 16(a) and 16(b)), the pie
charts show that more than 70% of the effects of network
loading parameters on performance levels are due to 1* order
effects. At least 50% of these 1% order effects are due to the
pattern parameter.

Compared to the static cases, with dynamic assignment
(Figure 16(c)) the global influence of the pattern parameter
is only slightly lower, but its effect becomes more indirect:
higher order effects increased from 1/4 to about 1/2 of
the total effects. This increase comes with an escalation
of the total indices of the overlapping, number of paths,
and equilibrium criteria, mostly related to an augmentation
of indirect effects. Indeed, a dynamic assignment process
refreshes path flow distribution more often and thus allows
us to better optimize the network capacities which are highly
dependent on the overlapping level, number of possible paths,
and equilibrium criterion. These observations strengthen the
visual analysis of Figures 11, 12, and 13.

A tentative calculation of Sobol indices with fixed
demand pattern was performed for two demand patterns
showing variability in their final states for the 3 case studies
chosen in our Sobol analysis: “To Center” and “To Edges”
patterns. Due to the lower number of observation points,
the accuracy of the Sobol indices is a little lower, with a
standard error ranging between 0.06 and 0.1. Only the TTD
performance parameter is analyzed below, since noticeable
trends are very similar for the GRD and SH indicators.
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With “To Center” Pattern. In the case study with demand level
4 and static assignment, there are no relevant 1°* or 2™ order
effects. The total contribution of each of the 3 variables (only
due to the 3* order indices) is thus the same and is close to 1.

In the case study with demand level 5 and static assign-
ment, the number of paths accounts by itself for 18% of
the TTD variance, while the overlapping explains 14%. The
interaction of these two parameters accounts for 60% of the
performance’s variance.

In the case study with demand level 5 and dynamic
assignment, the overlapping explains by itself 55% of the TTD
variance and interacts with the number of paths to explain
20% more.

Even if the 3 remaining parameters had the same pro-
portion of influence in the case with demand level 4 and
static assignment, with a higher demand level but still a static
assignment, the number of paths and overlapping parameters
took the lead, especially by interaction effect. In the case with
demand level 5 and dynamic assignment, the overlapping
parameter imposes itself as the main influencer.

With “To Edges” Pattern. In the case study with demand level 4
and static assignment, 60% of the TTD variance is explained
by the equilibrium parameter by itself while another 26% is
explained by its interaction with the overlapping criterion.

In the case study with demand level 5 and static assign-
ment, 30% of the TTD variance is explained by the overlap-
ping criteria by itself. Most of the performance variance is
explained by 2™ order effects: 58% of overlapping-number
of paths interaction, 10% of number of paths-equilibrium
criterion interaction, and 15% of overlapping-equilibrium
criterion interaction.

In the case study with demand level 5 and dynamic
assignment, most of the TTD variance is explained by 1%
order indices: 30% contribution of the overlapping, 20%
contribution of the number of paths, and 15% contribution
of the equilibrium criterion. An additional 30% are explained
by the number of paths-overlapping second order effect.

Even if the equilibrium criterion stood up as the main
influencer in the case with demand level 4 and static
assignment, a rise of demand came with a higher impact
of the overlapping and its interaction with the number of
paths. A dynamic assignment came with a more balanced
distribution of effects but mostly explained by the values of
the overlapping and number of paths.

For a given case study, depending on the demand pattern,
the effects of the number of paths, overlapping, and equi-
librium varies. Although we can draw systemic conclusions,
attention should be given to the case study.

4. Conclusions

In this paper, we conducted a Global Sensitivity Analysis of
network performances to all network loading parameters.
These parameters aimed to represent a wide range of the
possible OD matrix, path selected sets, and flow distribu-
tions, so as to explore all situations of demand that an
urban network could realistically undergo. The implemented
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parameter design and performance analysis methods allowed
us to identify how, that is, in which cases and how much, the
network loading components influence the network state.

The first major conclusion is that the demand level is
decisive:

(i) For a low level, the network maintains free-flow
conditions and the demand pattern, the paths over-
lapping level, the number of paths per OD, and the
flow equilibrium criterion do not affect the network
final state.

(ii) For a high level, the final state of the network can be
very different, ranging from a stable free-flow state to
a completely gridlocked network one.

The diversity of the final network states for a high level
of demand exhibits the significant influence of the other
network loading parameters. A nonnegligible proportion of
this variability is explained by the demand pattern parameter.
This is not surprising in the sense that this parameter
implies a distinctive total distance to travel, directly negatively

connected with the network achievable performances. The
OD matrix is a parameter difficult to play on in reality since
it is mostly inherent to the established city configuration. The
conductible actions are rather targeting a long-term change,
through transport policies for example.

The second major conclusion of this study is that, for a
given demand level and a given demand pattern, we still have
major differences between final network states, still ranging
from free flow to oversaturated. Moreover, by examining
the introduced gridlock drop rate, we distinguished network
loading settings that induced an evolution of prompt and
sharp drop of TTD performance from later and smoother
evolutions to gridlock. These conclusions are very interest-
ing because, in an operational context, paths overlapping,
number of path alternatives, or flow distribution criteria
can be dynamically tuned at the scale of the hour to adapt
to the OD matrix and improve traffic conditions. As an
example, one could help nearing a user equilibrium by giving
accurate information on traffic to drivers or tweaking the
local overlapping of paths by tuning the alternatives suggested
by routing software.
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More precisely, for a given demand level and demand
pattern setting, we observed that paths sets with no over-
lapping at the OD level were systematically correlated with
the highest network performances, in some settings a UE
assignment criterion or a high number of alternative paths
was clearly associated with best performances while in others
a restricted number of alternative paths was correlated with
the worst network performances. Our analysis did not show a
progressive impact among the variety of values taken by each
loading parameter but rather the positive or negative impact
of some specific values only.

This study also revealed a strong relation between the
gridlock drop rate (GDR) and the spatial heterogeneity (SH)
among network states, explained as follows. A transition
to gridlock could be the result of one of these two phe-
nomena: either a local (possibly at multiple locations) and
quick breakdown associated with high SH, or a global and
progressive breakdown associated with low SH. From an
operational point of view, slower transitions to gridlock offer
more possibilities to handle traffic, favorable for a resilient
city.

Finally, we studied the impact of a dynamic assignment
process where the equilibrium is updated every 20 minutes
instead of calculating for the whole simulation time. As
expected, dynamic assignment improves the average network
performances; it stabilizes some networks state and it delays
and smoothers the speed to gridlock. The relation between
the GRD and the SH stays as strong. Dynamic assignment
limits the direct effect of the demand pattern parameter
while increasing the direct overlapping and number of paths
parameters. The effects of the network loading parameters on
the observed performances rather result from their specific
combinations.

This paper brings insights on how much the perfor-
mances of a network can depend on loading parameters.
The methods implemented in this study could easily be used
for additional Global Sensitivity Analysis. Further work may
be conducted on more specific networks to account for the
diversity of topology. It may also be interesting to study more
flexible OD matrix in the space and time dimensions.

Data Availability

This study is not based on real data. However, for repro-
ducibility, the complete description of the simulation input
settings is described in Section 2 of the paper. The simulations
were performed by the Symuvia software tool, developed
internally in the LICIT laboratory. The process of open
sourcing the tool is in progress.
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