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Abstract
In the sequel, we compare the Laplacian on the Sierpiński gasket and on the Sierpiński arrowhead

curve, which, in the limit, is the gasket.

1 Introduction

In [Kig89], [Kig93], Jun Kigami has laid the foundations of what is now known as differential calcu-
lus on fractals, by allowing the construction of an operator of the same nature of the Laplacian, defined
locally, on graphs having a fractal character. The Sierpiński gasket stands out of the best known ex-
ample. It has, since then, been taken up, developed and popularized by Robert S. Strichartz [Str99],
[Str06].

The Laplacian is obtained through a weak formulation, by means of Dirichlet forms, built by in-
duction on a sequence of graphs that converges towards the considered domain. It is these Dirichlet
forms that enable one to obtain energy forms on this domain.

It is interesting to note that the existing results mainly deal with nested fractals, generated by
an iterated function system with at least two fixed points, connected, symmetric, nested (a classical
example is the Vicsek snowflake), or post-critically finite (p.c.f.) ones. Both categories have in common
to be self-similar.

A step forward has been made by Uta Freiberg and Maria Rosaria Lancia [FL04], where the authors
build an energy form on non-self similar closed fractal curves, by integrating the Lagrangian on these
curves, following the works of Umberto Mosco [Mos02].

Yet, things are not that simple, and interesting questions arise on the scene. One may wonder what
happens when a fractal set can be obtained by two different processes, first, by means of an iterated
function system, second, by means of a L-system where the same self-similarity no longer seems to
hold, as it is the case of the Sierpiński gasket ?

The Sierpiński gasket is, in fact, the limit of the so-called Sierpiński arrowhead curve (see [Man77],
plate 141, and [HOP04], page 346). First, the curve has a completely different topology, second, con-
trary to the triangle, it can be thought to belong to the category of Moran fractals (we refer to [Fal86]
and [Hut81]), since, at first sight (only), it is not self-similar as the gasket. Yet, in so far as the limit
curve reaches each point of the gasket, and as explained by Benoît Mandelbrot, by “fusing together
four appropriately neighboring tiles, one gets a tile increased in the ratio of 2”, it appears legitimate to
consider the limit curve as self-similar. There does not seem to be other references to the arrowhead
curve in the literature, and none dealing with the building of a Laplacian on such a curve.
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This brings us to a question that appears of interest. Dirichlet forms solely depend on the topology
of the domain, and not of its geometry. Which means that, if one aims at building a Laplacian on a
fractal domain as the aforementioned curve, the topology of which is the same as, for instance, a line
segment, one has to find a way of taking account such a specific geometry.

Building a Laplacian on the arrowhead curve has thus led us to use methods that are not so stan-
dard. May one want to follow the work of J. Kigami and R. S. Strichartz, it requires a measure.
J. Kigami and R. S. Strichartz choose to build measures that were more like the Riemann or Cauchy
ones, rather than the Lebesgue one. To this purpose, they introduced, first, a regular probability mea-

sure, where each subcell of level m ∈ N?, a triangular one, has measure
1

3m
. This measure happened

to coincide, up to a constant, to the Hausdorff measure of the triangle. It is worth noting that the
considered integral is thus a two dimensional one.

The Sierpiński Gasket can be considered as a curve: it is, as evoked in the above, the limit of
the so-called Sierpiński arrowhead curve. The point is that, generally, the Hausdorff measure is not
suited for integration along fractal curves, due to dissimilarities between its properties, and the one
of integrals along curves, as it is well explained in the paper by Boris Kats [Kat99]: for a fractal
set F of the complex plane C, the Hausdorff dimension of which is α ∈ {1, 2}, the related Hausdorff
measure mα is such that the function

z ∈ C 7→ 1

2 i π

∫
F

u(ζ)

ζ − z
dmα(ζ)

is continuous on the whole complex plane, whereas the integral

1

2 i π

∫
F

u(ζ)

ζ − z
dζ

has unit gaps on F .

For whom aims at studying diffusion in such media, it appears as more appropriate to consider
the integral over the whole area delimited by the curve, rather than the one along the curve. To this
purpose, we found it all the more natural to introduce a sequence of trapezes (Tmj)m∈N, 1 6 j 6 3m−1,
delimitating a trapezoidal domain infinitely close to the arrowhead curve SGC , D

(
SGC

)
. In the lit-

erature, one can already find approximating polygons, for instance in the case of the Peano curve, as
introduced by W. Wunderlich [Wun73]. Such a notion was then adopted by H. Sagan [Sag86], [Sag94].

It also seemed natural, in the sense that it enables one to take into account the trapezoidal repli-
cated patterns that appear thanks to the curve, patterns, the measure of which plays the part of a
pound. This joins the seminal work of J. Harrison et al. [HN91], [HN92], [Har93], in the spirit of the
one by H. Withney [Whi57], and the remark of U. Mosco [Mos02], where the author suggests, in the
case of the Sierpiński curve, to “fill each small simplex (...) not only with its edges, but with the whole
portion of the limit curve which it encompasses. ”

Again, one encounters a difference due to the geometry, since the sub-cells of the Kigami and
Strichartz approach are triangular and closed, whereas ours are semi-closed trapezoids. As far as we
know, and until now, such an approach is not a common one, and does not appear in such a context.

It intererestingly happens that the measure we choose corresponds, in a sense, to the natural
counting measure on the curve. Also, it is in perfect accordance with the one used in the Kigami and
Strichartz approach, as we will see it further. In doing so, we make the comparison - and the link -
between three different approaches, that enable one to obtain the Laplacian on the arrowhead curve:
the natural method ; the Kigami and Strichartz approach [Kig03] [Str06], using decimation ; the Mosco
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approach [Mos02].

Thus, we aim at investigating the links between energy forms and geometry that can arise in such
cases. Does one obtain the same Laplacian as for the triangle ? The question appears as worth to be
investigated.

2 Framework of the study

In the sequel, we place ourselves in the Euclidean plane of dimension 2, referred to a direct orthonormal
frame. The usual Cartesian coordinates are (x, y).

Notation. We will denote by:

DSGC = DSG =
ln 3

ln 2

the box dimension (equal to the Hausdorff dimension), of the Sierpiński arrowhead curve SGC .
For the sake of simplicity, we will from now on denote it by DSG .

Notation. Given a point X ∈ R2, we will denote by:

i. SimX, 1
2
,π
3
the similarity of ratio

1

2
, the center of which is X, and the angle,

π

3
;

ii. SimX, 1
2
,−π

3
the similarity of ratio

1

2
, the center of which is X, and the angle, −π

3
.

Definition 2.1. Let us consider the following points of R2:

A = (0, 0) , D = (1, 0) , B = SimX, 1
2
,π
3
(D) , C = SimX, 1

2
,−π

3
(A)

We will denote by V1 the ordered set, of the points:

{A,B,C,D}

The set of points V1, where A is linked to B, B is linked to C, and where C is linked to D, constitutes
an oriented graph, that we will denote by SGC1 . V1 is called the set of vertices of the graph SGC1 .

Let us build by induction the sequence of points:

(Vm)m∈N? =
(
Xm
j

)
16j6NSm,m∈N?

, N Sm ∈ N?

such that:

X1
1 = A , X1

2 = B , X1
3 = A , X1

4 = D

and for any integers m > 2, 1 6 j 6 N Sm, k ∈ N, ` ∈ N:

Xm
j+k = Xm−1

j if k ≡ 0 [3]

Xm
j+k+` = SimXm−1

j+` ,
1
2
,(−1)m+j+`+k+1 π

3

(
Xm−1
j+`+1

)
if k ≡ 1 [3] and ` ∈ 2N
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Xm
j+k+` = SimXm−1

j+`+1,
1
2
,(−1)m+j+`+k+1 π

3

(
Xm−1
j+`

)
if k ≡ 2 [3] and ` ∈ N \ 2N

The set of points Vm, where two consecutive points are linked, is an oriented graph, which we will
denote by SGCm. Vm is called the set of vertices of the graph SGCm.

Property 2.1. For any strictly positive integer m:

Vm ⊂ Vm+1

Property 2.2. If one denotes by (SGm)m∈N the sequence of graphs that approximate the Sierpiński
gasket SG, then, for any strictly positive integer m:

SGCm ( SGm

Definition 2.2. Sierpiński arrowhead curve
We will denote by SGC the limit:

SGC = lim
m→+∞

SGCm

which will be called the Sierpiński arrowhead curve.

Property 2.3. Let us denote by SG the Sierpiński Gasket. Then:

lim
m→+∞

SGCm = SGC = SG

Remark 2.1. The sequence of graphs (SGm)m∈N? can also be seen as a Lindenmayer system
(“L-system”), i.e. a set (V, ω, P ), where V denotes an alphabet (or, equivalently, the set of constant
elements and rules, and variables), ω, the initial state (also called "axiom"), and P , the production
rules, which are to be applied, iteratively, to the initial state.
In the case of the Sierpiński arrowhead curve, if one denotes by:

i. F the rule: “Draw forward, on one unit length” ;

ii. + the rule: “Turn left, with an angle of
π

3
” ;

iii. − the rule: “Turn right, with an angle of
π

3
” ;

then:

i. the variables can be denoted by X and Y ;

ii. the constants are F , +, − ;

iii. the initial state is XF ;
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Figure 1: The graph SGC1 .

Figure 2: The graph SGC2 .

iv. the production rules are:

X → Y F +XF + Y , Y → XF − Y F −X
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Figure 3: The graph SGC4 .

Figure 4: The graph SGC7 .

Notation. Given a point X ∈ R2, we will denote by HX, 1
2
the homothecy of ratio

1

2
, the center of

which is X,.

Property 2.4. Self-similarity properties of the Sierpiński arrowhead curve

Let us denote by E the point of R2 such that A, D and E are the consecutive vertices of a direct
equilateral triangle. One may note that A, D and E are, also, the frontier vertices of the Sierpiński
gasket SG.
The Sierpiński arrowhead curve is self similar with the three homothecies:

H1 = HA, 1
2

, H2 = HD, 1
2

, H3 = HE, 1
2
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Figure 5: The points A, D and E, as frontier vertices of the Sierpiński gasket.

Proof. The result comes from the self-similarity of the Sierpiński Gasket with respect to those homote-
cies:

SG =

3⋃
i=1

Hi(SG)

Property 2.5. The sequence
(
N Sm
)
m∈N is an arithmetico-geometric one, with N S1 = 4 as first term:

∀m ∈ N : N Sm+1 = 4
(
N Sm − 1

)
−
(
N Sm − 1

)
= 3N Sm − 2

This leads to:

∀m ∈ N? : N Sm+1 = 3m
(
N S1 − 1

)
+ 1 = 3m+1 + 1

Definition 2.3. Consecutive vertices on the graph SGC

Two points X and Y of SGC will be called consecutive vertices of the graph SGC if there exists a
natural integer m, and an integer j of

{
1, ...,N Sm − 1

}
, such that:

X = Xm
j and Y = Xm

j+1

or:
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Y = Xm
j and X = Xm

j+1

Definition 2.4. For any positive integer m, the N Sm consecutive vertices of the graph SGCm are, also,
the vertices of 3m−1 trapezes Tm,j , 1 6 j 6 3m−1. For any integer j such that 1 6 j 6 3m−1, one
obtains each trapeze by linking the point number j to the point number j+1 if j = imod 4, 0 6 i 6 2,
and the point number j to the point number j − 3 if j = −1mod 4.
One has to consider those polygons as semi-closed ones, since, for any of those 4−gons, the starting
vertex, i.e. the point number j, is not connected, on the graph SGCm, to the extreme one, i.e. the point
number j − 3, if j = −1mod 4. These trapezes generate a Borel set of R2.
In the sequel, we will denote by T1 the initial trapeze, the vertices of which are, respectively:

A , B , C , D

Figure 6: The trapezes T2,1, T2,2 and T2,3.

Definition 2.5. Trapezoidal domain delimited by the graph SGCm, m ∈ N

For any natural integer m, well call trapezoidal domain delimited by the graph SGCm, and denote
by D

(
SGCm

)
, the reunion of the 3m−1 trapezes Tm,j , 1 6 j 6 3m−1.

Property 2.6. In the sequel, we set, for the Lebesgue measure of the first trapeze T1:

A1 = A (T1) = 1

One may note that this trapeze can be divided into three equilateral triangles, each of measure
1

3
, as it

is shown in figures 7, 8.
By considering the prefractal graphs that approximate the Sierpiński Gasket, as in [Str06] (see fig-
ures 9, 10), one can see that, at a given level m ∈ N?, if each of the 3m cells, which also corresponds
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Figure 7: The initial trapeze, divided into three equilateral triangles.

Figure 8: The trapezes, at step 2, each divided into three equilateral triangles.

to an equilateral triangle at level m of the trapezes that approximate the Arrowhead Curve, has mea-

sure
1

3m
, then, for any natural integer m > 2, the measure of a trapeze Tm,j, 1 6 j 6 3m−1 is given

by:

Am = A (Tm,j) =
1

3m−1

Figure 9: The Gasket, at level 1.

This leads to the following correspondance, which, for the sake of clarity, is given in Table 1.

9



Figure 10: The Gasket, at level 2.

Level of approximation Sierpiński Gasket Arrowhead Curve

m triangular cell, measure
1

3m
trapezoidal cell, measure

1

3m−1

Table 1: Comparison between the Sierpiński Gasket and the Arrowhead Curve

Definition 2.6. Trapezoidal domain delimited by the graph SGC

We will call trapezoidal domain delimited by the graph SGC , and denote by D
(
SGC

)
, the limit:

D
(
SGC

)
= lim

m→+∞
D
(
SGCm

)
in the sense that, for any continuous function u on the graph, and any measure with full support µ
on R2: ∫

D(SGC)
u dµ = lim

m→+∞

3m∑
j=1

∑
X vertex of Tm,j

u (X) p(X)µ (Tm,j)
4

where:

 if X isn’t a junction point between two consecutive trapezes:

p(X) = 1

 if X is the junction point between two consecutive trapezes Pm,j and Pm,j+1:

p(X) =
1

2

Notation. In the sequel, we will denote by dR2 the Euclidean distance on R2.

Definition 2.7. Edge relation, on the graph SGC

Given a natural integer m, two points X and Y of SGCm will be called adjacent if and only if X and Y
are two consecutive vertices of SGCm. We will write:

X ∼
m
Y

10



Given two points X and Y of the graph SGC , we will say that X and Y are adjacent if and only if
there exists a natural integer m such that:

X ∼
m
Y

Property 2.7. Euclidean distance of two adjacent vertices of SGCm, m ∈ N

Given a natural integer m, and two points X and Y of SGCm such that X ∼
m
Y :

dR2(X,Y ) =
1

2m

Property 2.8. The set of vertices (Vm)m∈N is dense in SGC.

3 The Laplacian, by means of a natural approach

Definition 3.1. Laplacian of order m ∈ N?

For any strictly positive integer m, and any real-valued function u, defined on the set Vm of the vertices
of the graph SGCm, we introduce the Laplacian of order m, ∆m(u), by:

∆mu(X) =
∑

Y ∈Vm, Y∼
m
X

cm
u(Y )− u(X)

`2m
∀X ∈ Vm \ V0

where cm is a strictly positive constant.

Remark 3.1. Determination of the constant cm, m ∈ N

For any natural integer m, the elementary length is:

`m =
1

2m

Since: #Vm = 3m+1 + 1, the total length is thus:(
3m+1 + 1

)
`m =

(
3m+1 + 1

)
× 1

2m
>> 1

This amounts to place Km = 3m+1 + 1 points on a circle, of perimeter:

3m+1 + 1

2m

For m ∈ N, the set of points on the circle is of the form:

Xk,m =
2π k

Km
, 0 6 k 6 Km − 1

Given a continuous function u defined on Vm, we set, for k ∈ {0, . . . ,Km − 1}:

11



U (Xk,m) =

Km−1∑
j=0

u (Xj,m) ei j k
2π
Km

Thus:

U (Xk,m + `m) = U (Xk+1,m) =

Km−1∑
j=0

u (Xj,m) ei j (k+1) 2π
Km

U (Xk,m − `m) = U (Xk−1,m) =

Km−1∑
j=0

u (Xj,m) ei j (k−1)
2π
Km

and:

U (Xk,m + `m) + U (Xk,m − `m)− 2U (Xk,m) =

Km−1∑
j=0

{
e
i j 2π

Km + e
−i j 2π

Km − 2
}

u (Xj,m) e
i j k 2π

Km

For k ∈ {0, . . . ,Km − 1}:

ei j
2π
Km + e−i j

2π
Km − 2

`2m
=

2
{

cos 2π j
Km
− 1
}

`2m

The spectrum of the normalized discrete Laplacian is thus:

{Λj(hm) , j = 0, . . . ,Km − 1} = cm

2
{

cos
(
2π j
Km

)
− 1
}

h2m
, j = 0, . . . ,Km − 1


For j in {0, . . . ,Km − 1}, when m→ +∞:

cm
2
{

cos
(
2π j
Km

)
− 1
}

h2m
∼ cm

4π2 j2K−2m
`2m

The existence of the limit of the spectrum, when the integer m tends towards infinity, requires:

cm = `2mK
2
m = 4−m 32m+2

i.e.:

cm
`2m

= K2
m ∼ 32m

which corresponds to the value:

δ =
ln 3

ln 2
·

One thus retrieves, as it could have been expected, the value of the Hausdorff dimension of the Sierpiński
Gasket:

δ = DSGC = DSG =
ln 3

ln 2
·
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4 The Laplacian, by means of the Kigami and Strichartz approach

4.1 Dirichlet forms

Definition 4.1. Dirichlet form (we refer to the paper [BD85], or the book [FOT94])

Given a measured space (E,µ), a Dirichlet form on E is a bilinear symmetric form, that we will
denote by E , defined on a vectorial subspace D dense in L2(E,µ), such that:

1. For any real-valued function u defined on D : E(u, u) > 0.

2. D, equipped with the inner product which, to any pair (u, v) of D ×D, associates:

(u, v)E = (u, v)L2(E,µ) + E(u, v)

is a Hilbert space.

3. For any real-valued function u defined on D, if:

u? = min (max(u, 0), 1) ∈ D

then : E(u?, u?) 6 E(u, u) (Markov property, or lack of memory property).

Definition 4.2. Dirichlet form, on a finite set ([Kig93])

Let V denote a finite set V , equipped with the usual inner product which, to any pair (u, v) of functions
defined on V , associates:

(u, v) =
∑
p∈V

u(p) v(p)

A Dirichlet form on V is a symmetric bilinear form E , such that:

1. For any real valued function u defined on V : E(u, u) > 0.

2. E(u, u) = 0 if and only if u is constant on V .

3. For any real-valued function u defined on V , if:

u? = min (max(u, 0), 1)

i.e. :

∀ p ∈ V : u?(p) =


1 if u(p) > 1

u(p) si 0 < u(p) < 1
0 if u(p) 6 0

then: E(u?, u?) 6 E(u, u) (Markov property).
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4.2 Energy forms

Before introducing energy forms on our curve, we would like to recall that, a priori, Dirichlet forms
solely depend on the topology of the sequence of graphs that approximate our curve. One may thus
rightly think that, in this case, geometry won’t be taken into account. It is not so. We shall see,
further, how it plays its part.

Proposition 4.1. Harmonic extension of a function, on the graph of Sierpiński arrowhead
curve - Ramification constant

For any integer m > 1, if u is a real-valued function defined on Vm−1, its harmonic extension,
denoted by ũ, is obtained as the extension of u to Vm which minimizes the energy:

ESGCm(ũ, ũ) =
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2

The link between ESGCm and ESGCm−1
is obtained through the introduction of two strictly positive con-

stants rm and rm+1 such that:

rm
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2 = rm−1
∑

X ∼
m−1

Y

(u(X)− u(Y ))2

For the sake of simplicity, we will fix the value of the initial constant: r1 = 1.
Let us set:

r =
1

r1
and:

Em(u) = rm
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2

By induction, one gets:

rm = rm1 = r−m

If v is a real-valued function, defined on Vm−1, of harmonic extension ṽ, we will write:

Em(u, v) = r−m
∑
X∼
m
Y

(ũ(X)− ũ(Y )) (ṽ(X)− ṽ(Y ))

The constant r−1, which can be interpreted as a topological one, will be called ramification constant.
For further precision on the construction and existence of harmonic extensions, we refer to [Sab97].

Remark 4.1. Determination of the ramification constant r−1

Let us denote by u a real-valued, continuous function defined on V1, and by ũ its harmonic extension
to V2.
Let us denote by a, b, c and d the values of u on the four consecutive vertices of V1 (see the following
figure):

u(A) = a , u(B) = b , u(C) = c , u(D) = d

and by:
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i. e and f the values of ũ on the two consecutive vertices E and F that are between A and B:

u(E) = e , u(F ) = f

ii. g and h the values of ũ on the two consecutive vertices G and H that are between B and C:

u(G) = g , u(H) = h

iii. i and j the values of ũ on the two consecutive vertices I and J that are between C and D:

u(I) = i , u(J) = j

Figure 11: Determination of the ramification constant between graphs of level 1 and 2.

One has:

ESGC1 (u, u) = (a− b2 + (b− c)2 + (c− d)2

ESGC2 (ũ, ũ) = (a− e)2 + (e− f)2 + (b− f)2 + (g− b)2 + (h− g)2 + (c−h)2 + (i− c)2 + (j− i)2 + (d− j)2

Since the harmonic extension ũ minimizes ESGC2 , the values of e, f , g, h, i, j are to be found among
the critical points e, f , g, h, i, j such that:

∂ESGC2 (ũ, ũ)
∂e

= 0 ,
∂ESGC2 (ũ, ũ)

∂f
= 0 ,

∂ESGC2 (ũ, ũ)
∂g

= 0 ,
∂ESGC2 (ũ, ũ)

∂h
= 0 ,

∂ESGC2 (ũ, ũ)
∂i

= 0 ,
∂ESGC2 (ũ, ũ)

∂j
= 0

This leads to:

e =
2 a+ b)

3
, f =

2 (a+ 2 b)

3
, g =

2 b+ c

3
, h =

2 (b+ 2 c)

3
, i =

2 c+ d)

3
, j =

2 (c+ 2 d)

3

and:

ESGC2 (ũ, ũ) =
1

3
ESGC1 (u, u)

Thus:

r−1 = 3

One may note that the ramification constant is exactly equal to one plus the number of points that
arise in Vm+1, for any value of the strictly positive integer m, between two consecutive vertices of Vm.
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Definition 4.3. Energy scaling factor

By definition, the energy scaling factor is the strictly positive constant ρ such that, for any inte-
ger m > 1, and any real-valued function u defined on Vm:

ESGCm(u, u) = ρ ESGCm
(
u|Vm−1

, u|Vm−1

)

Proposition 4.2. The energy scaling factor ρ is linked to the topology and the geometry of the fractal
curve by means of the relation:

ρ = r−1

Definition 4.4. Energy, on the graph SGCm, m ∈ N, of a pair of functions

Let m be a natural integer, and u and v two real valued functions, defined on the set

Vm =
{
Xm

1 , . . . , X
m
NSm

}
of the N Sm vertices of SGCm.

We introduce the energy, on the graph SGCm, of the pair of functions (u, v), as:

ESGCm(u, v) =

NSm−1∑
i=1

r−m
(
u (Xm

i )− u
(
Xm
i+1

)) (
v (Xm

i )− v
(
Xm
i+1

))
=

NSm−1∑
i=1

r−m
(
u (Xm

i )− u
(
Xm
i+1

)) (
v (Xm

i )− v
(
Xm
i+1

))
For the sake of simplicity, we will write it under the form:

ESGCm(u, v) =
∑
X∼
m
Y

r−m (u(X)− u(Y )) (v(X)− v(Y ))

Property 4.3. Given a natural integer m, and a real-valued function u, defined on the set of vertices
of SGCm, the map, which, to any pair of real-valued, continuous functions (u, v) defined on the set Vm
of the Nm vertices of SGCm, associates:

ESGCm(u, v) =
∑
X∼
m
Y

r−m (u(X)− u(Y )) (v(X)− v(Y ))

is a Dirichlet form on SGCm.
Moreover:

ESGCm(u, u) = 0⇔ u is constant
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Definition 4.5. Dirichlet form, for a pair of continuous functions defined on the graph SGC

We define the Dirichlet form E which, to any pair of real-valued, continuous functions (u, v) defined
on the Sierpiński arrowhead curve SGC , associates, subject to its existence:

E(u, v) = lim
m→+∞

Em
(
u|Vm , v|Vm

)
= lim

m→+∞

∑
X∼
m
Y

r−m
(
u|Vm(X)− u|Vm(Y )

) (
v|Vm(X)− v|Vm(Y )

)

Definition 4.6. Normalized energy, for a continuous function u, defined on the Sierpiński
arrowhead curve
Taking into account that the sequence

(
Em
(
u|Vm

))
m∈N is defined on

V? =
⋃
i∈N

Vi

one defines the normalized energy, for a continuous function u, defined on the curve SGC , by:

E(u) = lim
m→+∞

Em
(
u|Vm

)

Notation. We will denote by dom E the subspace of continuous functions defined on SGC , such that:

E(u) < +∞

Notation. We will denote by dom0 E the subspace of continuous functions defined on SGC , which
vanish on V0, and such that:

E(u) < +∞

4.3 Measures

Definition 4.7. Self-similar measure, on the graph of the Sierpiński arrowhead curve

A measure µ on R2 will be said to be self-similar for the domain delimited by the Sierpiński arrowhead
curve, if there exists a family of strictly positive pounds (µ1, µ2, µ3) such that:

µ =

3∑
i=1

µi µ ◦ H−1i ,

3∑
i=1

µi = 1

For further precisions on self-similar measures, we refer to the works of J. E. Hutchinson (see [Hut81]).
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Property 4.4. Building of a self-similar measure, for the domain delimited by the Sier-
piński arrowhead curve

The Dirichlet forms mentioned in the above require a positive Radon measure with full support. The
choice of a self-similar measure, which is, mots of the time, built with regards to a reference set, of
measure 1, appears, first, as very natural. R. S. Strichartz [RSS95], [Str99], showed that one can simply
consider auto-replicant measures µ̃, i.e. measures µ̃ such that:

µ̃ =
3∑
i=1

µ̃i µ̃ ◦ H−1i (?)

where (µ̃1, µ̃2, µ̃3) denotes a family of strictly positive pounds.

This latter approach appears as the best suited in our study, since, in the case of the graph SGC, the ini-
tial set consists of the trapeze T0, the measure of which, equal to its surface, is not necessarily equal to 1.

Let us assume that there exists a measure µ̃ satisfying (?).
Relation (?) yields, for any set of trapezes Tm,j, m ∈ N, 1 6 j 6 3m−1:

µ̃

 ⋃
16j63m−1

Tm,j

 =
3∑
i=1

µ̃i µ̃

H−1i
 ⋃

16j63m−1

Tm,j


and, in particular:

µ̃ (H1 (T1) ∪H2 (T1) ∪H3 (T1)) =
3∑
i=1

µ̃i µ̃ (T1)

i.e.:

3∑
i=1

µ̃ (Hi (T1)) =
3∑
i=1

µ̃i µ̃ (T1)

The convenient choice, for any i of {1, 2, 3} , is:

µ̃i =
µ̃ (Hi (T1))
µ̃ (T1)

=
3

4

One can, from the measure µ̃, build the self-similar measure µ, such that:

µ =
3∑
i=1

µi µ ◦ H−1i

where (µi)16i63 is a family of strictly positive pounds, the sum of which is equal to 1.

One has simply to set, for any i of {1, 2, 3} :

µi =
4 µ̃i
9

The measure µ is self-similar, for the domain delimited by the Sierpiński arrowhead curve.
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4.4 Laplacian

Definition 4.8. Topological Laplacian of order m ∈ N?

For any strictly positive integer m, and any real-valued function u, defined on the set Vm of the vertices
of the graph SGCm, we introduce the topological Laplacian of order m, ∆τ

m(u), by:

∆τ
mu(X) =

∑
Y ∈Vm, Y∼

m
X

(u(Y )− u(X)) ∀X ∈ Vm \ V0 ·

Definition 4.9. Harmonic function of order m ∈ N?

Let m be a strictly positive integer. A real-valued function u,defined on the set Vm of the vertices of
the graph SGcm, will be said to be harmonic of order m if its Laplacian of order m is null:

∆τ
mu(X) = 0 ∀X ∈ Vm \ V0

Definition 4.10. Piecewise harmonic function of order m ∈ N?

Given a strictly positive integer m, a real valued function u, defined on the set of vertices of SGC , is
said to be piecewise harmonic function of order m if, for any word M of length m, u ◦ TM is
harmonic of order m.

Definition 4.11. Existence domain of the Laplacian, for a continuous function on the
graph SGC (see [BD85])

We will denote by dom∆ the existence domain of the Laplacian, on the graph SGC , as the set of
functions u of dom Esuch that there exists a continuous function on SGC , denoted ∆u, that we will
call Laplacian of u, such that :

E(u, v) = −
∫
D(SGC)

v∆u dµ for any v ∈ dom1 E

Definition 4.12. Harmonic function

A function u belonging to dom∆ will be said to be harmonic if its Laplacian is equal to zero.

Notation. In the following, we will denote by H0 ⊂ dom∆ the space of harmonic functions, i.e. the
space of functions u ∈ dom∆ such that:

∆u = 0

Given a natural integerm, we will denote by S (H0, Vm) the space, of dimension Nm
b , of spline functions

“of levelm”, u, defined on SGC , continuous, such that, for any wordM of lengthm, u ◦ TM is harmonic,
i.e.:
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∆τ
m (u ◦ TM) = 0

Property 4.5. For any natural integer m:

S (H0, Vm) ⊂ dom E

Property 4.6. Letm be a strictly positive integer, X /∈ V0 a vertex of the graph SGC, and ψkX ∈ S (H0, Vk)
a spline function such that:

ψmX (Y ) =

{
δXY ∀ Y ∈ Vk

0 ∀ Y /∈ Vm
, where δXY =

{
1 if X = Y
0 else

Given a self-similar measure µ on the domain delimited by the Sierpiński arrowhead curve, one has:

E (u, ψmX ) = Em (u, ψmX )

=
∑
X∼
k
Y

r−m
(
u|Vm(X)− u|Vm(Y )

) (
ψmX |Vm(X)− ψmX |Vm(Y )

)
=

∑
X∼
m
Y

r−m ∆τ
m(u)(X)

(
ψmX |Vm(X)− ψmX |Vm(Y )

)
= −

∫
D(SGC)

∆τu(X)(Y )ψX(Y ) dµ

∼ −∆u(X)Am
Thus:

∆u(X) = lim
m→+∞

1

Am
r−m ∆τ

mu(X) = lim
m→+∞

32m ∆τ
mu(X)

5 The Mosco approach

Let us consider again the problem of energy forms on our curve, which cannot be obtained by means
of a classical iterated function system, as it is the case with the Sierpiński gasket.

Such a problem was studied by U. Mosco [Mos02], who specifically considered the case of what
he called “the Sierpiński curve”, or “Sierpiński string”. Yet, he did not dealt with the curve itself, but
with the Sierpiński gasket: “2D branches (...) meet together”. Contrary to the arrowhead curve, the
Sierpiński gasket exhibits self-similarity properties which turn it into a post-critically finite fractal (pcf
fractal).

Yet, one can find interesting ideas in the work of U. Mosco. For instance, he suggests to generalize
Riemaniann models to fractals and relate the fractal analogous of gradient forms, i.e. the Dirichlet
forms, to a metric that could reflect the fractal properties of the considered structure. The link is to
be made by means of specific energy forms.

There are two major features that enable one to characterize fractal structures:

i. Their topology, i.e. their ramification.
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ii. Their geometry.

The topology can be taken into account by means of classical energy forms (we refer to [Kig89], [Kig93], [Str99],
[Str06]).
As for the geometry, again, things are not that simple to handle. U. Mosco introduces a strictly positive
parameter, δ, which is supposed to reflect the way ramification - or the iterative process that gives
birth to the sequence of graphs that approximate the structure - affects the initial geometry of the
structure. For instance, if m is a natural integer, X and Y two points of the initial graph V1, andM
a word of length m, the Euclidean distance dR2(X,Y ) between X and Y is changed into the effective
distance:

(dR2(X,Y ))δ

This parameter δ appears to be the one that can be obtained when building the effective resistance
metric of a fractal structure (see [Str06]), which is obtained by means of energy forms. To avoid turning
into circles, this means:

i. either working, in a first time, with a value δ0 equal to one, and, then, adjusting it when building
the effective resistance metric ;

ii. using existing results, as done in [FL04].

In the case of the Sierpiński Gasket, at a stepm ∈ N? of the iteration process, the effective distance
between two adjacent points, as given in the work of. U. Mosco, is:

`δSGm

where:
`m =

1

2m
and δSG =

ln 3

ln 2

6 Three approaches, one Laplacian

Let us note that:

i. The natural approach enables one to retrieve the usual Laplacian:

∆u(X) = lim
m→+∞

cm
`2m

∆τ
mu(X) = lim

m→+∞
32m ∆τ

mu(X)

ii. In the Kigami and Strichartz approach, in the case of the Sierpińki Gasket SG:, the discrete
Laplacians are graph ones (thus solely topological ones), wich do not take account any metric.

But, in fact, the geometry of the structure is indeed taken into account since, for a function u in
the domain of the Laplacian:

∆u(X) = lim
m→+∞

r−m
(∫
SG
ψmX dµ

)−1
∆τ
mu(X)

where:
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∫
SG
ψmX dµ =

1

3m

is exactly the Lebesgue measure of the mth-order triangular cell to which the vertex X belongs.
If one denotes by lm > 0 a characteristic length of the mth-order cell (the length of a side, for
instance): ∫

SG
ψmX dµ ∼ l2m

and thus retrieve a Riemannian expression, of the form:

∆u(X) = lim
m→+∞

Constant (m)

l2m
∆τ
mu(X)

iiii. In the case of the Mosco approach, topology and geometry are taken into account by means
of a quasi-distance, built from the euclidean one deucl between adjacent points X and Y such
that X ∼

m
Y :

d(X,Y ) = (deucl(X,Y ))δ , δ > 0

The related energy writes:

Em(u) =
∑
X∼
m
Y

(ũ(X)− ũ(Y ))2

d2(X,Y )

This yields:
∆u(X) = lim

m→+∞
32m ∆τ

mu(X)

Satisfactorily, those three approaches generate the same Laplacian.

6.1 Spectrum of the Laplacian

In the following, u denotes a continuous function on SGC which leblongs to dom∆. We will apply
the spectral decimation method developed by R. S. Strichartz [Str06], in the spirit of the works
of M. Fukushima et T. Shima [FS92]. In order to determine the eigenvalues of the Laplacian ∆u
built in the above, we concentrate first on the eigenvalues (−Λm)m∈N of the sequence of graph Lapla-
cians (∆m u)m∈N, built on the discrete sequence of graphs (ΓWm)m∈N. For any natural integer m, the
restrictions of the eigenfunctions of the continuous Laplacian ∆u to the graph ΓWm are, also, eigen-
functions of the Laplacian ∆m, which leads to recurrence relations between the eigenvalues of order m
and m+ 1.

We thus aim at determining the solutions of the eigenvalue equation:

−∆u = Λu on SGC

as limits, when the integer m tends towards infinity, of the solutions of:

−∆m u = Λm u on Vm \ V0
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Let m > 2. We consider an eigenfunction um−1 on Vm−1 \ V1, for the eigenvalue Λm−1. The aim
is to extend um−1 on Vm \ V1 in a function um, which will itself be an eigenfunction of ∆m, for the
eigenvalue Λm, and, thus, to obtain a recurrence relation between the eigenvalues Λm and Λm−1. Given
three consecutive vertices of SGCm−1, Xk, Xk+1, Xk+2, where k denotes a generic natural integer, we
will denote by Yk+1, Yk+2 the points of Vm \ Vm−1 such that: Yk+1, Yk+2 are between Xk and Xk+1,
by Yk+4, Yk+5, the points of Vm \ Vm−1 such that: Yk+4, Yk+5 are between Xk+1 and Xk+2, and
by Yk+7, Yk+8, the points of Vm \ Vm−1 such that: Yk+7, Yk+8 are between Xk+2 and Xk+3. For the
sake of consistency, let us set:

Yk = Xk , Yk+3 = Xk+1 , Yk+6 = Xk+2 , Yk+9 = Xk+3

Figure 12: The points Xk, Xk+1, Xk+2, Xk+3, and Yk, . . ., Yk+9.

The eigenvalue equation in Λm leads to the following system:

{
{Λm − 2} um (Yk+i+1) = −um (Yk+i)− um (Yk+i+2) = −um−1 (Xk+i)− um (Yk+i+2)
{Λm − 2} um (Yk+i+2) = −um (Yk+i+1)− um (Yk+i+1) = −um−1 (Xk+i+1)− um (Yk+i+1)

, 0 6 i 6 2

The sequence (um (Yk+i))06i69 satisfies a second order recurrence relation, the characteristic equation
of which is:

r2 + {Λm − 2} r + 1 = 0

The discriminant is:

δm = {Λm − 2}2 − 4 = ω2
m , ωm ∈ C

The roots r1,m and r2,m of the characteristic equation are the scalar given by:

r1,m =
2− Λm − ωm

2
, r2,m =

2− Λm + ωm
2

One has then, for any natural integer i of {0, . . . , 9} :

um (Yk+i) = αm r
i
1,m + βm r

i
2,m

where αm and βm denote scalar constants.
The extension um of um−1 to Vm \ V1 has to be an eigenfunction of ∆m, for the eigenvalue Λm.
Since um−1 is an eigenfunction of ∆m−1, for the eigenvalue Λm−1, the sequence (um−1 (Xk+i))06i69
must itself satisfy a second order linear recurrence relation which be the pendant, at order m, of the
one satisfied by the sequence (um (Yk+i))06i69, the characteristic equation of which is:
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{Λm−1 − 2} r = −1− r2

and discriminant:

δm−1 = {Λm−1 − 2}2 − 4 = ω2
m−1 , ωm−1 ∈ C

The roots r1,m−1 and r2,m−1 of this characteristic equation are the scalar given by:

r1,m−1 =
2− Λm−1 − ωm−1

2
, r2,m−1 =

2− Λm−1 + ωm−1
2

For any integer i of {0, . . . , 9}:

um−1 (Yk+i) = αm−1 r
i
1,m−1 + βm−1 r

i
2,m−1

where αm−1 and βm−1 denote scalar constants.
From this point, the compatibility conditions, imposed by spectral decimation, have to be satisfied:

um (Yk) = um−1 (Xk)
um (Yk+3) = um−1 (Xk+1)
um (Yk+6) = um−1 (Xk+2)
um (Yk+9) = um−1 (Xk+3)

i.e.: 
αm + βm = αm−1 + βm−1 Cm

αm r
3
1,m + βm r

3
2,m = αm−1 r1,m−1 + βm−1 r2,m−1 C1,m

αm r
6
1,m + βm r

6
2,m = αm−1 r

2
1,m−1 + βm−1 r

2
2,m−1 C2,m

αm r
9
1,m + βm r

9
2,m = αm−1 r

3
1,m−1 + βm−1 r

3
2,m−1 C3,m

where, for any natural integer m, αm and βm are scalar constants (real or complex).

Since the graph SGCm−1 is linked to the graph SGCm by a similar process to the one that links SGC2
to SGC1 , one can legitimately consider that the constants αm and βm do not depend on the integer m:

∀m ∈ N? : αm = α ∈ R , βm = β ∈ R

The above system writes: 
α r31,m + β r32,m = α r1,m−1 + β r2,m−1
α r61,m + β r62,m = α r21,m−1 + β r22,m−1
α r81,m + β r82,m = α r41,m−1 + β r42,m−1

One has then to consider the following configurations:

i. First case:

For any natural integer m :

r1,m ∈ R , r2,m ∈ R

and, more precisely:

r1,m < 0 , r2,m < 0

since the function ϕ, which, to any real number x > 4, associates:
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ϕ(x) =
2− x+ ε

√
{x− 2}2 − 4

2
, ε ∈ {−1, 1}

is strictly increasing on ]4,+∞[. Due to its continuity, is is a bijection of ]4,+∞[ on ϕ (]4,+∞[) =]− 1, 0[.

Let us introduce the function φ, which, to any real number x > 2, associates:

φ(x) = |ϕ(x)| =
−2 + x− ε

√
{x− 2}2 − 4

2

where ε ∈ {−1, 1}.
The function φ is a bijection of ]4,+∞[ on φ (]4,+∞[) =]0, 1[. We will denote by φ−1 its inverse
bijection:

∀ x ∈ ]0, 1[ : φ−1(x) =
(y + 1)2

y
.

One has then:

ϕ (Λm−1) =
2− Λm−1 + ε ωm−1

2
6 0

This yields:

(−1)3 (ϕ (Λm))3 = ϕ (Λm−1) 6 0

which leads to:

φ (Λm) = (φ (Λm−1))
1
3

and:

Λm = φ−1
(

(φ (Λm−1))
1
3

)
=

{
(φ (Λm−1))

1
3 + 1

}2

(φ (Λm−1))
1
3

=


−2 + Λm−1 − ε

√
{Λm−1 − 2}2 − 4

2


1
3

+ 1


2

−2 + Λm−1 − ε
√
{Λm−1 − 2}2 − 4

2


1
3

ii. Second case :

For any natural integer m:

r1,m ∈ C \ R r2,m = r1,m ∈ C \ R

Let us introduce:
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ρm = |r1,m| ∈ R+ , θm = arg r1,m if r1,m 6= 0

The above system writes:
ρ3m {γ cos (3 θm) + δ sin (3 θm)} = ρm−1 {γ cos (θm−1) + δ sin (θm−1)}
ρ6m {γ cos (6 θm) + δ sin (6 θm)} = ρ2m−1 {γ cos (2 θm−1) + δ sin (2 θm−1)}
ρ9m {γ cos (9 θm) + δ sin (9 θm)} = ρ3m−1 {γ cos (3 θm−1) + δ sin (3 θm−1)}

where γ and δ denote real constants.

The system is satisfied if:

{
ρ3m = ρm−1

θm =
θm−1

3

and thus:

φ (Λm) = (φ (Λm−1))
1
Nb

which leads to the same relation as in the previous case:

Λm = φ−1
(

(φ (Λm−1))
1
3

)
=

{
(φ (Λm−1))

1
3 + 1

}2

(φ (Λm−1))
1
3

=


−2 + Λm−1 − ε

√
{Λm−1 − 2}2 − 4

2


1
3

+ 1


2

−2 + Λm−1 − ε
√
{Λm−1 − 2}2 − 4

2


1
3

where ε ∈ {−1, 1}.

Proposition 6.1. Comparison with the spectrum of the Sierpiński Gasket

The eigenvalues
(
λSGm

)
m∈N of the Laplacian on the Sierpiński Gasket are related by the quadratic equa-

tion

∀m ∈ N? : λSGm−1 = λSGm
(
5− λSGm

)
(we refer to [Str99], [Str06] for further details).
Thus, the respective spectrums of the Sierpiński Gasket and arrowhead curve are distinct.

7 Detailed study of the spectrum of the Laplacian

As exposed by R. S. Strichartz in [Str06], one may bear in mind that the eigenvalues can be grouped
into two categories:

i. initial eigenvalues, which a priori belong to the set of forbidden values (as for instance Λ = 2) ;
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ii. continued eigenvalues, obtained by means of spectral decimation.

We present, in the sequel, a detailed study of the spectrum of ∆.

7.1 Eigenvalues and eigenvectors of ∆2

Let us recall that the vertices of the graph SGC2 are:

X2
j , 1 6 j 6 10

with:

X2
1 = A , X2

4 = B , X2
7 = C , X2

10 = A

For the sake of simplicity, we will set here:

X2
2 = E , X2

3 = F , X2
5 = G , X2

6 = H , X2
8 = I , X2

9 = J

Figure 13: Successive values of an eigenfunction on V2.

One may note that:

Card (V2 \ V1) = 10− 4 = 6

Let us denote by u an eigenfunction, for the eigenvalue −Λ. Let us set:

u(A) = a ∈ R , u(B) = b ∈ R , u(C) = c ∈ R , u(D) = d ∈ R

u(E) = e ∈ R , u(F ) = f ∈ R , u(G) = g ∈ R , u(H) = h ∈ R , u(I) = i ∈ R , u(J) = j ∈ R

One has then: 

a+ f = −(Λ− 2) e
b+ e = −(Λ− 2) f
b+ h = −(Λ− 2) g
g + c = −(Λ− 2)h
c+ j = −(Λ− 2) i
i+ d = −(Λ− 2) j

One may note that the only "Dirichlet eigenvalues", i.e. the ones related to the Dirichlet problem:
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u|V1 = 0 i.e. u(A) = u(B) = u(C) = u(D) = 0

are obtained for: 

f = −(Λ− 2) e
e = −(Λ− 2) f
h = −(Λ− 2) g
g = −(Λ− 2)h
j = −(Λ− 2) i
i = −(Λ− 2) j

i.e.: 

f = (Λ− 2)2 f
e = (Λ− 2)2 e
h = (Λ− 2)h
g = (Λ− 2)2 g
j = (Λ− 2)2 i
i = (Λ− 2)2 i

The forbidden eigenvalue Λ = 2 cannot thus be a Dirichlet one.

Let us consider the case where:

(Λ− 2)2 = 1

i.e.

Λ = 1 or Λ = 3

which yields a three-dimensional eigenspace. The multiplicity of the eigenvalue Λ = 1 is 3.

In the same way, the eigenvalue Λ = 3 yields a three-dimensional eigenspace. the multiplicity of the
eigenvalue Λ = 3 is 3.
Since the cardinal of V2 \ V1 is:

N S2 − 4 = 6

one may note that we have the complete spectrum.

7.2 Eigenvalues of ∆m, m ∈ N, m > 3

As previously, one can easily check that the forbidden eigenvalue Λ = 2 is not a Dirichlet one.

One can also check that Λm = 1 and Λm = 3 are eigenvalues of ∆m.

By induction, one may note that, due to the spectral decimation, the initial eigenvalue Λ2 = 1 gives
birth, at this mth step, to eigenvalues Λ↪→1,m, and, in the same way, the initial eigenvalue Λ2 = 3 gives
birth, at this mth step, to eigenvalues Λ↪→3,m.
The dimension of the Dirichlet eigenspace is equal to the cardinal of Vm \ V1, i.e.:
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N Sm −N S1 = 3m − 3

Level Cardinal of the Dirichlet spectrum

m 3m − 3

2 6

3 24

4 78

7.3 Eigenvalue counting function

Definition 7.1. Eigenvalue counting function

Let us introduce the eigenvalue counting function, related to SGC \ V1, such that, for any positive
number x:

N SG
C\V1(x) = Card {ΛDirichlet eigenvalue of −∆ : Λ 6 x}

Property 7.1. Given an integer m > 2, the cardinal of Vm \ V1 is:

N Sm −N S1 = 3m − 3

This leads to the existence of a strictly positive constant C such that:

N SG
C
(C 9m) = 3m − 3

If one looks for an asymptotic growth rate of the form

N SG
C
(x) ∼ xαSGC

one obtains:

αSGC =
1

2

which is not the same value as in the case of the Sierpiński gasket (we refer to [Str06]):

αSGC < αSG =
ln 3

ln 5

It appears then that increasing the number of points, and the number of connections, increases the value
of the Weyl exponent α.
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Conclusion

In an interesting way, it appears that the Laplacian on the Sierpiński gasket and on the arrowhead
curve are different. In so far as different topologies are involved, it seems as a rather natural result.
Yet, the geometry is the same. So what ? We do not have the answer to this question, but one may
argue that it comes from the non-uniqueness of the Laplacian. Our study has, also, put the light on
the fact that increasing the number of points of a structure, and the number of connections, as it is
the case in the triangle, increases the value of the Weyl exponent.

Thanks

To G. for the light put on the Laplacian, and for all that followed.
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