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ABSTRACT

Singular vector (SV) analysis has proved to be helpful in understanding the linear instability properties
of various types of flows. SVs are the perturbations with the largest amplification rate over a given time
interval when linearizing the equations of a model along a particular solution. However, the linear approxi-
mation necessary to derive SVs has strong limitations and does not take into account several mechanisms
present during the nonlinear development (such as wave-mean flow interactions). A new technique has
been recently proposed that allows the generalization of SVs in terms of optimal perturbations with the
largest amplification rate in the fully nonlinear regime. In the context of a two-layer quasigeostrophic model
of baroclinic instability, the effect of nonlinearities on these nonlinear optimal perturbations [herein, non-
linear singular vectors (NLSVs)] is examined in terms of structure and dynamics. NLSVs essentially differ
from SVs in the presence of a positive zonal-mean shear at initial time and in a broader meridional
extension. As a result, NLSVs sustain a significant amplification in the nonlinear model while SVs exhibit
a reduction of amplification in the nonlinear model. The presence of an initial zonal-mean shear in the
NLSV increases the initial extraction of energy from the total shear (basic plus zonal-mean flows) and
opposes wave-mean flow interactions that decrease the shear through the nonlinear evolution. The spatial
shape of the NLSVs (and especially their meridional elongation) allows them to limit wave—wave interac-
tions. These wave—wave interactions are responsible for the formation of vortices and for a smaller extrac-
tion of energy from the basic flow. Therefore, NLSVs are able to modify their shape in order to evolve quasi-
linearly to preserve a large nonlinear growth. Results are generalized for different norms and optimization
times. When the streamfunction variance norm is used, the NLSV technique fails to converge because this
norm selects very small scales at initial time. This indicates that this technique may be inadequate for
problems for which the length scale of instability is not properly defined. For other norms (such as the
potential enstrophy norm) and for different optimization times, the mechanisms of the NLSV amplification
can still be viewed through wave-wave and wave-mean flow interactions.

1. Introduction niques are traditionally used to study the linear insta-
bility problem. The first one uses the normal mode
(NM) approach, that is, linearizing a model about a
mean state and finding a solution asymptotically grow-
ing in time. Such a method presents the disadvantage
that it fails to capture localized disturbances that can
have a rapid growth over a limited period in time (Far-
rell 1982). A second approach consists of identifying
“optimal perturbations” [called singular vectors (SVs)]
that maximize the growth rate over a given time inter-
. . val (Farrell 1982; Lacarra and Talagrand 1988; Farrell
Corresponding author address: G. Lapeyre, Laboratoire de i . . .
‘o : . ‘o and Toannou 1996), thus permitting diagnosis of regions
Météorologie Dynamique, Ecole Normale Supérieure, 24 Rue ° 3 >
Lhomond, 75005 Paris, France. in the physical space where small disturbances can have
E-mail: glapeyre@lmd.ens.fr an explosive growth. This idea has been applied in pre-

The properties of baroclinic instability have been ex-
tensively studied in linear approximation since the pio-
neering work of Charney (1947) and Eady (1949). The
crucial characteristics of the mean state for the devel-
opment of the instability [in terms of potential vorticity
(PV) gradients] have been identified (Charney and
Stern 1962; Bretherton 1966; Pedlosky 1987). Two tech-
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dictability studies, and it has been shown that SVs cap-
ture the essential ingredients of growth of extratropical
synoptic systems (Badger and Hoskins 2001; Buizza
and Palmer 1995; Hoskins et al. 2000, among others).
However, their main disadvantage is that they are
based on a linearization of the equations of motion.
Under the linear assumption, positive and negative per-
turbations have the same growth rate although they can
evolve rather differently under nonlinear dynamics
(Gilmour et al. 2001; Reynolds and Rosmond 2003;
Hoskins and Coutinho 2005). In addition, the growth of
the singular vectors in the nonlinear system can be
greatly reduced compared to the growth in the linear
case. We may then wonder if the optimality of singular
vectors is still valid for the original nonlinear problem.

Recently, Mu (2000) has developed a new method to
extend the concept of optimal perturbations to the non-
linear regime. The idea is to find a perturbation of a
given model solution that will be an extremum in terms
of the amplification rate of the perturbation energy
over a finite time interval. This solution will be referred
to as the nonlinear singular vector (NLSV) throughout
the paper. The energy of the perturbation is con-
strained to a fixed value at initial time. A solution of
such a problem can be computed using numerical tech-
niques available for large-scale nonlinear optimization
problems. A second and similar technique called con-
ditional nonlinear optimal perturbations (CNOPs) was
developed by Mu et al. (2003). CNOPs are the pertur-
bations with the largest final energy for an initial energy
smaller than a given value. This technique has been
applied in a simple ENSO model (Duan et al. 2004), in
a two-box model of the thermohaline circulation (Mu et
al. 2004), and also in a problem of equivalent barotropic
instability (Mu and Zhang 2006). One can also mention
the work of Barkmeijer (1996), who has developed an
iterative method for the same purpose.

Even if it is generally admitted that the linear ap-
proximation is valid for up to about two days for large-
scale meteorology, optimized perturbations for the
nonlinear problem are important in situations of insta-
bility of well-formed coherent structures (Snyder 1999)
or when strongly nonlinear and intermittent processes
are at play (e.g., in the case of latent heat release by
large-scale or convective precipitation). This is one mo-
tivation for this work. To understand the potentials of
this new technique, we have chosen to apply it to the
baroclinic instability problem in a quasigeostrophic
(QG) two-layer model. The Phillips (1954) model is a
good test case to study the baroclinic wave develop-
ment because its properties in terms of linear and non-
linear dynamics are well known.
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The paper is organized as follows: in the next section,
we succinctly describe the QG model we use. Then we
discuss the algorithm to compute the leading singular
vector and the nonlinear optimal perturbations. In sec-
tion 4, we compare the properties of the leading SV and
NLSVs in terms of spatial evolution and amplification
rate. Then, in section 5, we present two mechanisms to
explain how NLSVs are able to adjust in order to maxi-
mize their growth rate and limit nonlinearities. These
mechanisms are related to wave-mean flow and wave-
wave interactions. Section 6 examines the impact of
using different norms and optimization times. Finally,
conclusions are drawn.

2. Numerical model

The QG potential vorticity equations in the two-layer
model on the 8 plane can be written as

d,q, +J(Wy, qy) + B, =0 and (1a)
9,42 + (W2, 42) + A = 0, (1b)
where
g, =V, + A %, — ) and (2a)
d2 =V + N2 — ) (2b)

are the upper- and lower-layer potential vorticities,
Y;(i = 1, 2) the associated streamfunctions, and A the
Rossby deformation radius. Here, J(A, B) = 9,A9,B —
d,Ad,B. All the equations that will be presented here
are nondimensionalized following Pedlosky (1987) and
Riviere et al. (2001). We first decompose the potential
vorticity g into a perturbation § and a stationary basic
state Q. The equations for PV perturbations are

3,41 + Iy, 4y) + J(Py, ¢y) + Iy, Q) + oy =0
(3a)

and

3,G> + I, Go) + (P, G2) + (s Q) + Bos, = 0,
(3b)

where ¥, and ¥, are the basic-state streamfunctions of
the upper and lower layers, and Jll and sz are their
analogs for the perturbations. The linearization of these
equations yields

9,G, +J(¥,, 4,) + Iy, O)) + Bop, =0 and
(4a)

3,4z + (P, 4y) + J(hy, Q) + Bd, = 0. (4b)
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The hats will be omitted in the following discussion. We
choose a basic state that is zonally symmetric with zonal
velocity equal to

Uiy) = —Ux(y) 2 cosh2 /L)
where U; = —9,¥,(i = 1, 2). (The meridional profile of
the shear of the basic flow is presented in Fig. 6a.) The
parameters used in this study are those of Riviére et al.
(2001) who studied the structure of SVs and normal
modes for a similar model. For a typical velocity scale
U = 735 ms !, a deformation radius A = 507 km, a
meridional domain size of 3744 km, a Brunt-Viisila
frequency of 1.13 X 1072 s~ ! f, = 107*s™!, and a jet
scale of L. = 600 km, we introduce nondimensionalized
variables (with “adim” subscripts) U,qim = 2, Aagim =
54.53, Bgim = 32.4, and L,4;,,, = 1. The basic state we
use here is a stationary and baroclinically unstable so-
lution of (3a) and (3b) with a change in sign of the PV
gradient between the two layers. Moreover, it is baro-
tropically stable because the PV gradient has a constant
sign in each layer. The spatial resolution is 256° The
numerical model is pseudospectral over a doubly peri-
odic domain with size [2m, 27]. The code was initially
developed by Smith and Vallis (2002).

3. Numerical computation of leading SV and
NLSV

The leading SV is the solution of the linearized Eqgs.
(4a) and (4b) with the largest amplification rate for a
given norm over a finite time. We first use the total
energy norm for our optimization problem. Total en-
ergy is defined as the sum of the kinetic and potential
energies,

1
E@) =5 IV + [V + 20721 — 4)),

where () denotes the spatial horizontal mean. The lead-
ing SV can be viewed as the eigenvector associated with
the largest eigenvalue of the matrix (in spectral space
variables) involved in the Rayleigh quotient E(t =
Top)/E(t = 0). Here T, is the optimization time. A
Lanczos method can then be used to compute the SV
with the help of the adjoint equations of (4a) and (4b);
see Buizza and Palmer (1995) for a complete descrip-
tion of the procedure.

The NLSV is a maximum (possibly local; see below)
of the scalar function

E(t = Topt)

f(Q):m
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under the constraint ¢(q) = E(t = 0) — E, = 0. Here E,
is the initial energy of the perturbation and E(¢) is the
total energy after the evolution in the nonlinear model
[(3a), (3b)]. The variable g represents the initial state
q1, g»- This is a standard problem in large-scale con-
strained nonlinear optimization, which we solve here
with a quasi-Newton Broyden-Fletcher—-Goldfarb-
Shanno (BFGS) algorithm called IPOPT (Wichter and
Biegler 2006). The algorithm proceeds in minimizing
the inverse of the cost function, that is, 1/f(¢q). It needs
to evaluate the gradients of the function f(g) and the
constraint c(g), which are computed using the adjoint
equations of the model. The algorithm also approxi-
mates the Hessian by the BFGS method. Further de-
tails can be found in Wichter and Biegler (2006). The
algorithm stops when the optimality error e, com-
puted as

€err = max{[|V[1/f(q)] + pVe(g)|l.., llc(q) ..},

where « is a scaling factor and p the Lagrangian mul-
tiplier for the constraints that are implicitly defined by
the numerical algorithm and are of order unity, be-
comes less than a specified error tolerance e. We have
found that the rate of convergence of the technique
depends on the spectral resolution. If two wavenum-
bers are associated with almost equal growth rates, then
the algorithm may not converge toward either one and
tends instead to wander from one mode to the other.
This may be the case if there is not enough spatial
resolution, or if the parameter € is not small enough. To
reduce this tendency, the algorithm is stopped in most
cases after 50 iterations. In practice, it takes less than 20
iterations for the algorithm to converge for € = 10™*
(except for E, = 1).

One would like a method to find an NLSV that is
known to be a global maximum for the amplification
rate. However, our numerical method cannot ensure
this. In practice, we find an NLSV that is close to the
global maximum amplification by initializing the NLSV
algorithm starting from the leading SV or its opposite
as a first guess (in the nonlinear model they can have a
different amplification). For small enough perturba-
tions, the NLSV and the leading SV will be almost the
same. In this way, for small enough energy E,, the so-
lution should be close to the global maximum.

4. Comparison of normal mode, leading SV, and
NLSVs

First, we describe the properties of the leading sin-
gular vector and normal mode. The normal mode was
computed through a linear integration of the model
with a time sufficiently long that the exponential
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(a) normal mode
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(b) singular vector at initial time
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(c) singular vector at optimization time
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FIG. 1. Snapshot of (a) normal mode with an initial energy E, = 0.5, the leading SV (b) at initial time and (c) at t = T, (in the linear
tangent model). The filled contours represent the upper-layer potential vorticity and the solid and dashed contours represent the
lower-layer PV (solid for positive values and dashed for negative values). Negative and positive values have the same contour intervals.

growth rate becomes almost constant. For the SV and
NLSV, we have chosen an optimization time 7, = 0.3
for which the linear and nonlinear evolutions of the SV
with initial energy of E, = 0.5 significantly differ. We
will discuss the impact of different optimization times
and different choices of norms in section 6. In dimen-
sional units, T, = 0.3 corresponds to an integration of
42 h. The leading SV and NM have respective linear
amplification rates in total energy E(t = T,,)/E(t = 0)
of 9.85 and 8.38. They are concentrated along the axis
of the basic jet (see Figs. 1a,b) and have a zonal wave-
number equal to 7 for the NM and 6 for the SV. We will
see in section 6 that for a longer optimization time, the
dominant zonal wavenumber and structure of the lead-
ing SV converges toward those of the NM. During the
time evolution, the SV moves eastward and the upper-
and lower-layer waves mutually amplify (cf. Figs. 1b,c).
The upper and lower PV anomalies of the leading SV
are approximately in phase quadrature at initial time
and close to phase opposition at final time. The upper
and lower PV anomalies of the normal mode are also in
phase opposition. This means that the temperature sig-
nal ({»; — {,) dominates in the PV signal [see Egs. (2a),

(2b)].

a. SV evolution

If we let the SV evolve in the nonlinear model for an
initial energy of E, = 0.5, we observe that the amplifi-
cation is much smaller (6.86; see Table 1). A similar
result is obtained for the normal mode (which has non-
linear amplification 4.99 for E, = 0.5). We will not
discuss the nonlinear evolution of the NM in the fol-
lowing because it is qualitatively similar to the SV ex-
cept for the reduced amplification. To understand the
behavior of the leading SV, one can look at the SV at
the optimization time (Fig. 2). For small initial energies
(Fig. 2a), the SV at final time resembles the SV in the
linear model (cf. Fig. 1c). When the initial energy in-

creases (Figs. 2b,c), we see that PV anomalies tend to
move strongly in the meridional direction, whereas
their displacement in the zonal direction is similar to
the linear case. Upper-layer positive PV anomalies and
lower-layer negative anomalies move toward the equa-
tor, whereas upper-layer negative PV anomalies and
lower-layer positive anomalies move toward the pole.
This movement contributes to a meridional PV flux
corresponding to a net poleward transport of heat that
is typical of the development of baroclinic waves (Ped-
losky 1987; Heifetz et al. 2004). For values of initial
energy of the order of 0.5 and larger, we see the devel-
opment of vortices (Fig. 2d). Both phenomena (merid-
ional displacement and formation of vortices) are re-
lated to wave-wave and wave-mean flow interactions
as we will see later. This has profound consequences for
the amplification of the SV in the nonlinear model be-
cause it decays by a factor of 3 when the initial energy
is increased to E, = 5 (solid curve in Fig. 3). Indeed, the
SV amplification rate decreases very rapidly when in-
creasing initial energy beyond E, > 5 X 1072 A similar
result was obtained by Snyder and Joly (1998) for a
growing baroclinic wave in the Eady model. It is pos-
sible here to predict the energy for which nonlinear
terms will become important. Such a situation will oc-
cur when linear and nonlinear terms balance each other
in (3a) and (3b), that is, when d,q; ~ J({, q;). If we
approximate ¢,(t) by g;(t = 0) exp(Af), we have d,q; ~
Aq;(t). The advection term J(i, ¢g;) can be scaled as

TABLE 1. Amplification rates of energy for NM, SV, and NLSV
in different models: L, linear Egs. (4a), (4b); NL, nonlinear Egs.
(3a), (3b); and WKNL, weakly nonlinear Egs. (9a), (9b). In each
case E, = 0.5.

NM SV NY SV in NLSV in
Structure inL inL in NL WKNL NLSV WKNL
Amplification 838 9.85 6.86 6.71 8.21 8.13
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(a) SV with E_0=5 x 1074 at optimization time
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(b) SV with E_0=5 x 10A-2 at optimization time

FIG. 2. Snapshots at final time (¢t = T,,,) of the potential vorticity of the leading singular vector with initial energy
Ey=(a)5x 1074 (b) 5 X 1072, (c) 0.5, (d) 5 using the fully nonlinear equations. Potential vorticity has been
nondimensionalized by V E,. Contours have the same definition as in Fig. 1.

q;(¢) divided by an eddy time scale. A typical eddy time
scale is the root-mean-square of relative vorticity

Loms(0), GIVINg J(U, @) ~ Lms(1)4;(1). Nonlinear terms
will become important when

A=~ érms(Topt)'
Taking the square of this relation and using ,s(Top) =

Lems(t = 0) exp(AT,,,), we obtain

Loms(t = 0)
N~ E, R exp(2AT )

or
E,
{ims(t = 0)

Because the amplification rate is equal to exp(2AT,,),
and §rms/\/E70 ~ 7.63 for the leading SV, we find a
value for E, of 2.5 X 1072, which gives a relative agree-
ment with Fig. 3.

E, A2 exp(—2AT,y).

b. NLSV evolution

We now turn to the characteristics of the NLSV.
First, we can check how the amplification rates of the
NLSV and the leading SV compare in the nonlinear
model as a function of initial energy. Figure 3 shows

that the growth rate of the NLSV is systematically
larger than for the leading SV, as it must be. The figure
also reveals that the maximum of amplification of the
NLSV is reached for very small initial energies, that is,
when the evolution of perturbations is linear. When the

12

10=

amplification rate

107" 10°
initial energy E_0O

3

‘3 10

10

FiG. 3. Amplification rates for SV (solid line) and the NLSV
(dashed line) in the nonlinear model as a function of initial energy
E,. The thick line represents the amplification rate of the SV in
the linear model.
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(a) NLSV with E_0=5 x 10"-4 at initial time

h E_0=0.5 at initial time
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(b) NLSV with E_0=5 x 107-2 at initial time

-3 -2 -15 -5 5 15 25 35 45

FiG. 4. Potential vorticity of the NLSV (total energy norm) at initial time for different initial energies: E, = (a)
5% 1074, (b) 5 X 1072, (c) 0.5, (d) 5. Potential vorticity has been nondimensionalized by V E,,. Contours have the

same definition as in Fig. 1.

initial energy is increased, the NLSV is able to maintain
a substantial amplification rate in the nonlinear model
even for E, = 0.1. For this problem [in contrast to
situations examined by Duan et al. (2004) and Mu et al.
(2004)], nonlinearities systematically inhibit the growth
of perturbations.

Figure 4 shows the initial spatial structure of the
NLSVs for different initial energies. A comparison of
Fig. 4a with Fig. 1b reveals that for small energies, the
NLSV and SV have very similar spatial structures, in-
dicating that the method is able to find the global maxi-
mum. (We have checked that, when initialized with ran-
dom initial conditions, the algorithm that computes the
NLSV converges toward the leading SV.) When the
initial energy is increased, the structures of the NLSV
and SV at initial time begin to differ (cf. different pan-
els of Fig. 4). An asymmetry in the initial location of
positive and negative PV anomalies can be observed:
positive upper-layer and negative lower-layer PV
anomalies tend to be on the poleward side of the jet,
while opposite anomalies are on the equatorward side
of the jet. This asymmetry cannot exist for the SV be-
cause there is a symmetry in y/—y in the linear equa-
tions of the system (4a), (4b). Also, an increase in the
latitudinal extension of the NLSVs can be observed as
initial energy is increased. Overall, the spatial field is

dominated by large scales and the zonal wavenumber 6
dominates. At the end of the optimization time, for
small values of E,, we obtain a structure similar to the
SV (cf. Figs. 5a and 2a). When the initial energy is
increased, we observe that the upper- and lower-layer
PV extrema of the NLSV move essentially poleward or
equatorward (Figs. Sb—d), similarly to the SV case. For
E, =5, and contrary to the SV nonlinear evolution, the
NLSVs do not form coherent vortices (cf. Figs. 5d and
2d). Another difference is that PV extrema remain ver-
tically aligned for the NLSV at t = T, while the PV
extrema move in different directions for the leading SV
in the nonlinear model. Thus the degree of nonlinearity
seems much reduced for the NLSV compared to the SV
in the nonlinear model, even for large initial energy. In
addition, the NLSV structures are more efficient at car-
rying heat poleward than SV in the nonlinear model.

5. Interpretation

It is necessary to explain the physical mechanisms
that differentiate the NLSV from the leading SV, in
particular in terms of growth. In the nonlinear evolu-
tion, two different mechanisms can be invoked. First,
nonlinear dynamics result in wave-mean flow interac-
tions. Perturbations develop through the instability of

Unauthenticated | Downloaded 12/08/21 12:53 PM UTC



1902

(a) NLSV with E_0=5 x 10*-4 at optimization time
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(b) NLSV with E_0=5 x 107-2 at optimization time

0 1 2 3 4 5 6

0 1 2 3 4 5 6

-126 -90

-54 -18 18 54 90 126 162

FIG. 5. Potential vorticity of the NLSV (total energy norm) at optimization time 7, = 0.3 for different initial

opt

energies: E, = (a) 5 X 1074, (b) 5 X 1072, (c) 0.5, (d) 5. Potential vorticity has been nondimensionalized by V E,,.

Contours have the same definition as in Fig. 1.

the basic jet and give back their energy to the zonally
averaged jet. This can weaken the jet and diminish the
shear through the mechanism of baroclinic adjustment.
As a result, perturbations will extract less energy from
the zonally averaged flow and the perturbation growth
will be limited. Second, wave-wave interactions can
lead to the development of vortices and to a smaller
energy extraction. We will show that the spatial struc-
ture of the NLSV adapts to counteract these different
interactions, resulting in a larger amplification of the
NLSV compared to the SV.

a. Zonal-mean shear of the NLSV

One important characteristic of nonlinear regimes
such as the one studied here is the strong interactions
between the perturbations and the large-scale flow. In
our setting, it is instructive to decompose the potential
vorticity of the NLSV into a zonal mean (g), and a
deviation (or eddy part) ¢’ such that

qi(x7 Y, t) = <qi>x(Ya t) + qlf(x, Vs t) (5)

where (q/(x, y, 1)), = 0, with (), denoting the zonal
mean and i = 1, 2. Using the decomposition given by
(5) in (3a) and (3b), we can separate the time evolution
of the zonal-mean (g,), and the deviation g} by

al’ql’ = _Baxlpz, - ](q,l + <‘1l’i>x’ Q;) - ](d/z,v Qi + <ql>x)
- VW, q) — (Wi, g),] and (6a)

at<qi>x = _<J(lljt,’ q:))x = _ay<v1{q;>x' (6b)
The first equation reveals that the energy of the non-
zonal perturbations comes from the instability of the
basic flow (V¥; and Q,) and the zonal-mean flow ({{,),
and (g,),). The last term in the right-hand side of (6a) is
due to the self-interactions (or wave-wave interac-
tions). The second equation is the standard wave-mean
flow interaction term, which reveals that the eddies ret-
roact on the mean flow (i.e., the zonally averaged flow)
through the meridional PV transport, or the divergence
of Eliassen—Palm flux (Edmon et al. 1980; Shepherd
1983). This retroaction is important because it modifies
the properties of the large-scale flow and in turn this
impacts the perturbation growth in (6a).

The time evolution of the SV or the NLSV can be
described in different stages (Pedlosky 1964). Initially,
perturbations (q') develop through the instability of the
basic flow. During this stage, the linear approximation
is valid because the amplitude of the perturbations is
small so that the term J({}, q;) — {J(¥}, q})), in (6a) is
small (not shown). Then, the eddies modify the mean
jet through the poleward advection of heat leading to a
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FIG. 6. (a) Zonal-mean shear of the basic jet. Zonal-mean shear (u; —

0.2 0.25 0.3

1), as a function of time (abscissa) and y (ordinate), for the

(b) SV in the nonlinear model and (c) NLSV. For these cases E, = 0.5.

modification of {g), through (6b). This is apparent in
Fig. 6b, which shows the evolution in time of the zonal
shear (u; — u,), for the leading SV. A strong zonal
shear opposite to the basic shear develops through
time. In response, the growth rate of instability (given
by the total zonal-mean shear) should diminish (Gu-
towski 1985; Nakamura 1999). Another effect is that
the nonlinear term J(¢', ¢") — (J(¥, q')), modifies the
waves so that they may break and form vortices. This
last stage is apparent for the SV time evolution, while it
seems absent for the NLSV (cf. Figs. 2d and 5d).

An important difference between the leading SV and
the NLSV at initial time is that the NLSV possesses a
zonal-mean shear in the same direction as the basic jet,
but with retrograde jets on both sides (Fig. 6c). This
reinforces the basic jet so that the final mean shear of
the NLSV is smaller than in the SV case. The asym-
metric meridional structure of the PV of the NLSV (as
shown in Fig. 4) is indeed related to the presence of this
zonal component. The thermal wind balance implies
that the zonal shear is associated with a meridional tem-
perature gradient that reinforces positive temperature
anomalies equatorward and negative anomalies pole-
ward at initial time. Another confirmation of the im-
portance of this mean shear is provided by the com-
parison with experiments for which the initial zonal-
mean shear is reversed or suppressed. In these two
cases, the amplification of the structure is smaller than
for the SV (Table 2). In contrast, changing SV into its
opposite has no influence on the amplification rate (not
shown). This demonstrates the important role played
by the total mean shear (basic state plus perturbation)
in the nonlinear development of the instability.

To confirm the importance of the initial zonal-mean
shear, it is instructive to decompose the energetics into
a zonal and an eddy part. Multiplying (6a) by — ., (6b)

y —(,),, horizontally averaging each equation, and
summing over the layers, we obtain

2
0, ETE = D, ([0’ W}) + E (oo,
i=1

= A Hui(] — $5)9,(¥y — V)
= A2 — 93)3, (I — o)) and  (Ta)
9, ZTE = —(uiv[oy(i)) — (uav03(tha).)
+ ATH0i] — )9, — do)), (7b)
where
ETE = %((axw +(@00)° + (0.05)° + (0,05)°)

1
+5 AW — 2% and

1 2 2
ZTE = §<(6y<d’1>x) + (ay<¢2>x) )

1
+ 5 (W = )

ETE is the eddy part of the total energy (kinetic plus
available potential energies) and ZTE is the zonal part.
The decomposition of the total energy [Egs. (7a), (7b)]
reveals that the eddy energy can grow through barotro-
pic and baroclinic extraction from the basic flow ¥
[terms 1 and 3 on the right-hand side of (7a)]. Then this
energy can be transferred to the zonal part through
terms 2 and 4 of (7a). Figure 7a shows the ETE pro-
duction [right-hand side of (7a)] for both the SV and
NLSV in the nonlinear model for E, = 0.5. The growth

TABLE 2. Amplification rates for different initial conditions
based on the NLSV; (g), is the zonal-mean part of the NLSV and
q' the deviation. For each type of structure, there was no rescaling
of initial energy.

Structure +q'

7.73

.+ q
6.17

@ +4q'
821

Amplification

Unauthenticated | Downloaded 12/08/21 12:53 PM UTC



(@) (b)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 65

(©

60 ‘ 30 ‘ 60
: —SVinNL R
-=-SVin LT 25 —NLSV ~-8VinLT
50 _—svinN o 50 | _svinNL
—NLSV -
. g 20 NLSV
30 10 30

20 . 20

10 gl 10

Oy 005 01 015 02 o025 03 '% 005 01 015 02 025 03 % 005 01 015 02 025 03
time time time

FiG. 7. (a) Production of eddy total energy over time following Eq. (7a). The dash-dotted (thin solid) line represents the energy
production for the SV in the linear (nonlinear) model. The thick solid line represents the production for the NLSV. (b) Production of
zonal total energy over time following Eq. (7b). The thin solid (thick solid) line represents the production for the SV (NLSV). (c)
Extraction of EAPE from the basic jet [term 3 in Eq. (7a)]. Curves have same definition as in (a). The initial energy for each case is

E, = 05.

rate of ETE of the SV saturates very rapidly in time
compared to the linear case. This can be attributed to
the steady growth of the zonal part (Fig. 7b). On the
contrary, the zonal part of the NLSV remains small
until £ = 0.1 (Fig. 7b) and the eddy part has a growth
rate as strong as the linear SV until that time (Fig. 7a).
For the particular basic jet we use, we have found that
the barotropic terms remain small over the entire time
evolution and the energy production essentially comes
from the eddy available potential energy [EAPE;
N (P, — Pb)?)/2] production. The impact of the eddy—
eddy interaction can be assessed by examining the en-
ergy extraction terms 3 and 4 of (7a). Figure 7c shows a
smaller extraction of EAPE from the basic flow for the
SV than for the NLSV after + = 0.1. This means that
after that time, wave—wave interactions have made the
SV less efficient in extracting energy. On the contrary,
the NLSV has an extraction that compares well with the
linear SV case.

b. Meridional extension of the NLSV

One could think that the presence of the initial zonal
shear in the NLSV can explain most of the behavior of
the NLSV. However, in addition to this zonal shear, the
NLSV is more elongated in the meridional direction
than the SV and this phenomenon needs to be exam-
ined. To see if this effect is important for the amplifi-
cation, we have conducted experiments where we ini-
tialized a structure with the same profile in x as the SV
and with an exponential decay in the y direction, such
that

qx,y,t=0) = <qNLSV>x(y> t=0)
+ yqsv(x, y = 0,1 = 0) exp(—ay?®), (8)

where a~ 2 sets the meridional decay set and vy is an

adjustable parameter so that the initial energy is E, =
0.5. Different profiles are represented in Fig. 8. We
have verified that the exponential function in y fits the
SV well for a = 6 (not shown). The differences in be-
havior for different values of a allow us to interpret the
effect of the meridional extension of the structure.
Table 3 shows that adding the zonal shear to the SV
increases the amplification (7.35 against 6.86) but this is
still smaller than the NLSV amplification (8.21). We
conclude from this that the zonal shear of the SV alone
is not sufficient to increase the growth rate of the SV
compared to the NLSV growth rate for the same total

0.8

0.6

0.4r

0.2r

0
-3

Fic. 8. Profile of exp(—ay?) as a function of a = 1 (thin solid
line), a = 2 (thin dashed line), a = 4 (dash—dotted line), a = 6
(dotted line). The thick and dashed curve is the basic shear —d, ¥
and the thick and solid line is the total zonal-mean shear —d, (¥ +
(¥),) for the NLSV at E, = 0.5. All quantities were renormalized.
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TABLE 3. Amplification rate for the experiment with a different
meridional extension for the SV with the zonal mean of the NLSV

[see (8)]-
a 6 4 2 1
7.35 7.76

Amplification 8.09 7.80

energy. It is also necessary to modify the nonzonal
structure to obtain the largest growth rate. Indeed, it is
possible to obtain an amplification (8.09) that is close to
the NLSV (8.21) for a meridional extension parameter
a = 2. From Table 3, we see that there is an optimal
extension for the amplification after which the amplifi-
cation rate decays. The reason is that when the struc-
tures are too broad, they cannot extract energy from
the basic jet because the basic jet is meridionally con-
fined.

The existence of an optimal extension suggests that
there is a link between the optimal structure and the
shape of the jet. Indeed, Pedlosky and Klein (1991)
have shown that for weakly nonlinear baroclinic un-
stable flows, the meridional variation of the basic shear
can strongly modify the amplification of perturbations.
For perturbations having the same meridional structure
as the basic shear, wave-mean flow interactions are
unable to arrest the growth of the waves. It is interest-
ing to compare the exponential profile of the different
solutions of (8) with the basic shear —d,¥ and the total
shear of the NLSV —d,(¥ + (¢),). Figure 8 shows these
quantities and demonstrates a good agreement between
the total shear and the exponential profile for a = 2.
Surprisingly, this corresponds to the case of maximum
amplification. Therefore, we are able to confirm the
mechanism of Pedlosky and Klein (1991) in our fully
nonlinear setting. It reveals that the meridional exten-
sion of the NLSV is tightly linked to the initial shear
present in the NLSV so that wave-mean flow interac-
tions cannot arrest the growth of the perturbations.

The presence of the zonal-mean shear and the me-
ridional elongation of the NLSV has an impact on the
nonlinearities of the system because it reduces the ini-
tial amplitude of ¢g;. For a given total energy E, = 0.5,
the eddy energy is only 0.45, that is, smaller than the
eddy energy of the SV (equal to E;). Also, the merid-
ional broadening of the NLSV favors a smaller pertur-
bation maximum for the same energy. This reduces the
importance of nonlinearities in the term J({', q') —
(', q')), in the case of the NLSV in contrast to the
SV. To verify this, we can examine a model where the
nonlinear term J({!, q;) — (J({!, q/)), = 0 in (6a). The
evolution equations for this weakly nonlinear model
are
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and

at<qt>x = _<J(ll’:” qz’»x (93)
3,q; = —J(V; + (W q) — T, Q; + {g;),).  (9b)

As shown in Table 1, the amplifications of the NLSV
and the leading SV in the weakly nonlinear model are
quite close to the amplifications in the nonlinear model
for E, = 0.5. We found that this is not true for larger
initial energy E, (not shown). This can be expected
because nonlinearities may be stronger in that case.

6. Generalization

Singular vectors are known to be sensitive to the
choice of the norm and to the optimization time. We
thus expect that NLSVs will also exhibit a dependence
on these parameters. However, the arguments devel-
oped above that explain the difference between SV and
NLSV were expressed in terms of energetics, and we
may be inclined to think that they may still be valid
when changing these parameters.

a. Other norms

Joly (1995) and Palmer et al. (1998), among others,
have examined the effect of the norm on singular vec-
tors. They have found that SVs computed using total
energy or streamfunction variance as norm are spatially
confined whereas SVs computed using potential enstro-
phy have a larger spatial extent. The reason is that the
potential enstrophy gives more weight to small scales as
a norm. It will thus favor large scales at initial time and
smaller scales will develop during the time evolution,
leading to an amplification of the norm. The situation is
the opposite for the streamfunction variance norm that
gives more weight to large scales as a norm and selects
smaller scales at initial time. Moreover, the potential
enstrophy norm is more barotropic because it is less
sensitive to the Orr mechanism (Joly 1995; Riviere et al.
2001; Kim and Morgan 2002; Heifetz and Methven
2005). We therefore tried to compute the leading SV
and different NLSVs for different norms. We can first
examine the total potential enstrophy norm

1
Z(q) = 5(d7 + 43).

We use the same optimization time 7,,,, = 0.3 as for the
total energy norm. Figure 9 shows that the singular
vector that has evolved in the nonlinear model has an
amplification rate Z[q(t = T,,)]/Z[q(t = 0)] that rap-
idly decreases between Z, = Z[q(t = 0)] = 1 and Z, =
100. For these potential enstrophies, the NLSV has a
significantly larger amplification rate than the SV. The

spatial structure of the SV (or the NLSV with very
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small Z,) has a zonal wavenumber 4 that emerges (Fig.
10a). This is a known result because SVs peak at larger
scales for the potential enstrophy norm than for the
total energy norm (Riviere et al. 2001). One noticeable
feature, different from the total energy norm, is the
almost barotropic character of the PV perturbations.
When increasing the initial potential enstrophy Z,, we
observe the meridional shift of positive and negative
PV maxima (Figs. 10b,c). This was also apparent for the
total energy norm. This displacement of the structures
is due to the presence of a mean shear that increases
with Z; (not shown). Also, the NLSV structure spreads
meridionally (Fig. 10d) and is reminiscent of results for
the total energy norm (cf. with Fig. 4c). At the optimi-
zation time, we see that the NLSV structures tend to
move meridionally (Figs. 11b,c,d) whereas the SV
moves zonally in the linear model (Fig. 11a). The PV
maxima are vertically aligned with PV minima, which
means that temperature dominates relative vorticity in
the PV. For very large potential enstrophy, we see that
vortices begin to emerge at the end of the optimization
time (Fig. 11d). This norm seems less effective in inhib-
iting vortex formation. However, the general character-
istics of potential enstrophy NLSV are similar to those
of the total energy NLSV. This indicates that the
mechanisms of nonlinear amplification are very similar
to the mechanisms for the total energy norm.

Another norm that can be considered is the stream-
function variance

1
P(q) =5 (U7 + 43).

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 65

Linear singular vectors are well defined with this norm.
We have made several tests to compute NLSVs with
this norm but we were not able to make the algorithm
converge for P(q) large enough so that nonlinearities
limit amplification. During the process of optimization,
structures at the smallest possible scales begin to
emerge and become dominant in the spectrum (not
shown). We attribute this problem to the choice of the
norm: as stated before, the streamfunction variance
puts more weight on the development of larger scales
between t = 0 and ¢ = T,,,. Therefore, the optimization
algorithm tries to find an initial structure that possesses
energetic small scales that it will make grow in size as
time evolves. In the linear setting, there is no scale
interaction and a particular mode is selected. When
nonlinear interactions are allowed, the algorithm
makes large and small scales interact. As a result, small
scales tend to dominate the energy spectrum and the
NLSV technique exacerbates these scales. The compu-
tation of physically relevant NLSVs in this case is there-
fore not possible.

b. Optimization time

As investigated by Riviere et al. (2001) and others,
the optimization time has some effect on the singular
vector structure. We examine here the dependence of
NLSV on T,,, using the total energy norm.

First, we examine the long time limit, taking T, =
1.2. In this case, the SV structure has a dominant zonal
wavenumber 7 similar to the normal mode. Indeed, at
the final time, the leading SV strongly resembles the
normal mode (not shown). Its amplification rate is
6297.5 in the linear model and 3555.8 in the nonlinear
model for E, = 10~>. The corresponding NLSV has an
amplification rate of 3748.8. The structure of the NLSV
in physical space is quite similar to results with T, =
0.3. Comparing Figs. 12a and 4c, we see that the initial
PV structures are in each case asymmetric with respect
to the jet axis, with PV extrema on either side of the jet.
A difference is that NLSVs with T, = 0.3 are
stretched in a triangular shape, whereas NLSVs with
T,p = 1.2 have a more rectangular shape. This means
that the shear is less intense and weakly shifts the PV
extrema. At the end of the optimization time, the PV
structures have a stronger horizontal tilt than for T, =
0.3 (Fig. 12b).

We now examine the short time limit, taking 7, =
0.03. The leading SV has an amplification rate of 1.28 in
the linear model. It has a zonal wavenumber 4 (Fig.
13a). In the nonlinear model, the amplification rate is
only 1.21 for E, = 100. We still see the meridional
displacement of PV maxima, associated with the devel-
opment of a negative shear (Fig. 13c). Also, PV tends to
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(a) NLSV for Z_0=2.5 x 1075 at t=0
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(b) NLSV for Z_0=5 at t=0
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(c) NLSV for Z_0=50 at t=0
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Fi1G. 10. Potential vorticity of the NLSV (potential enstrophy norm) at initial time for different initial potential
enstrophies: Z, = (a) 2.5 X 107>, (b) 5, (c) 50, (d) 500. Potential vorticity has been nondimensionalized by V Z,,.

Contours have the same definition as in Fig. 1.

roll up into vortices even for this small optimization
time. The corresponding NLSV has an amplification
rate of 1.26 and the structure in physical space (Fig.
13b) has a strong asymmetry in the PV extrema, similar
to the case of T, = 0.3. There is still the presence of a
positive shear that helps in maintaining the growth rate.
The NLSV structure extends meridionally as E; in-
creases. At the final time, the PV structures move me-
ridionally and do not form vortices (Fig. 13d), similar to
the case of E,,, = 0.3.

The amplitude of the shear compared to the non-
zonal velocity anomalies seems to depend on the opti-
mization time; it is less intense for longer optimization
times. This means that to maintain a growth rate over a
long time period, the NLSV structure needs to inhibit
the formation of vortices, leading to a broader meridi-
onal extension. On the contrary, this effect is less in-
tense for short optimization times and the optimization
needs to put more weight on the zonal-mean shear.

7. Discussion

This study has revealed how nonlinearities affect
baroclinic growth through the use of a new technique

called nonlinear singular vector. NLSVs are an exten-
sion to the nonlinear regime of singular vectors and
were first proposed by Mu (2000). More specifically,
they are perturbations with a given initial energy that
maximize the amplification rate over a fixed time in the
fully nonlinear system. They can be computed using
constrained optimization algorithms.

In the Phillips model of baroclinic instability, it is well
known that SVs have a limited growth in the nonlinear
model. We showed here that NLSVs are rather similar
to SV in their spatial patterns but that they maintain a
larger amplification in the nonlinear model. NLSVs dif-
fer from the leading SV essentially by the presence of a
zonal-mean flow (that is precluded for the SV by the
symmetry in the linear equations) and by their broader
meridional extension. The zonal-mean flow initially
present in the NLSV maintains a strong production of
potential energy during the time evolution. This ten-
dency opposes the natural tendency of nonlinearities in
baroclinic unstable flows that are responsible for a
poleward heat flux that decelerates the mean jet
(through the Eliassen—Palm flux). As a result, one can
view NLSVs in this baroclinic problem as weakly non-
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(a) NLSV for Z_0=2.5 x 107-5 at t=T_opt (b) NLSV for Z_0=5 at t=T_opt
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F1G. 11. Potential vorticity of the NLSV (potential enstrophy norm) at optimization time for different initial
potential enstrophies: Z, = (a) 2.5 X 1073, (b) 5, (c) 50, (d) 500. Potential vorticity has been nondimensionalized
by V Z,. Contours have the same definition as in Fig. 1.

linear structures for which nonlinearities apply to the NLSV as one increases its initial energy. We observed
zonal-mean flow at the first order, similarly to the de- that in other settings (in particular without the 8 effect
velopment of Pedlosky (1964). Another aspect is that and with a bottom drag), the zonal wavenumber de-
NLSVs have a broader meridional extension than SVs. creases as E, increases (not shown).

This limits wave-wave interactions and the develop- The picture that emerges is that the NLSV modifies
ment of vortices so that the NLSV extracts more energy the structure of the wave (the nonzonal part of the
than the SV during the time evolution. In these simu- NLSV) and adds a zonal flow to take the nonlinear
lations, the zonal wavenumber remains the same for the  baroclinic adjustment into account. The most unstable

(a) NLSV at initial time for T_opt=1.2 1(b) NLSV at final time for T_opt=1.2
“ \
o\ \ \
/ww@/@@@z[

=36 -256 -15 -5 5 15 25 35

FIG 12. Potential vorticity of the NLSV (total energy norm) at (a) initial and (b) optimization times for E, =
3and T, opt = 1.2. Potential vorticity has been nondimensionalized by V E,. Contours have the same definition
as in Fig. 1.
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(a) SV at t=0 for T_opt=0.03

RIVIERE ET AL.

1909

(b) NLSV at t=0 for T_opt=0.03

., ~ Py

F1G. 13. Potential vorticity of the (a) SV and (b) NLSV at initial time and (c) SV and (d) NLSV at optimization
time (total energy norm) for £, = 100 and T,,, = 0.03. Potential vorticity has been nondimensionalized by V E,,.
Contours have the same definition as in Fig. 1.

wave will saturate rapidly, so that it is not the wave of
largest growth rate over a finite time. Therefore, the
NLSV selects a modified wave (which has a different
meridional spatial scale but the same zonal scale in our
case) that may be less unstable initially, but that will
have a larger heat flux over the evolution in time. This
behavior is similar to the findings of Pedlosky (1979),
Hart (1981), and Cehelsky and Tung (1991), who found
a selection of a particular wave, different from the most
unstable one, for weakly nonlinear and baroclinic un-
stable flows.

These optimal nonlinear perturbations are suggestive
of bred vectors. Bred vectors are perturbations that
have grown in the nonlinear model and are rescaled to
a finite energy at a given frequency in time (Toth and
Kalnay 1993). Letting the energy amplitude of renor-
malization tend to zero, one obtains the Lyapunov vec-
tor (here the normal mode of the system because our
basic flow is steady). We have computed bred vectors
for our problem with a renormalization in initial en-
ergy, taking E, = 1072 and with a time of renormaliza-
tion equal to T, = 0.3. We have initialized the proce-
dure with the normal mode and we have run the non-
linear model for 1007, renormalizing the solution
after each T,, time interval. The solution converges
toward a stable structure. The growth rate of the bred
vector is only 7.73, that is, much smaller than the
growth rate of the SV and the NLSV in the nonlinear
model for the same initial energy (see Fig. 3). Figure 14
shows that these structures have PV maxima centered
on each side of the basic jet, with patterns resembling
those of the leading SV and NLSV at the final time (cf.

Figs. 2 and 5). Indeed, the bred vector has an initial
negative shear because the structure has evolved in
time. This shear limits the bred vector growth. On the
other hand, the NLSV possesses an initial positive
shear to counteract this effect and this explains why the
NLSV growth is larger.

We believe that the NLSV approach is well suited for
other problems, provided that there is a typical length
scale that defines the instability or its saturation. If
small scales are strongly unstable (such as for the case
of convection), the NLSV algorithm may not converge.
This is the case in our model when using the stream-
function variance norm for which small scales at initial
time are promoted by the NLSV algorithm. We are
currently extending the NLSV approach to more real-
istic situations using a primitive equation model. This
will allow us to better understand the role of nonlin-

-15 -9 -3 3 9 15

FIG. 14. Potential vorticity of the bred vector for E, = 1072 after
renormalization. Potential vorticity has been nondimensionalized
by VE,. Contours have the same definition as in Fig. 1.

Unauthenticated | Downloaded 12/08/21 12:53 PM UTC



1910

earities in stratified baroclinic unstable flows. Our ulti-
mate goal is to use such a method to study problems for
which nonlinearities can be important. Such a situation
can arise when taking into account the role of water
vapor and latent heat release, which can have a critical
impact on moist synoptic systems (Lapeyre and Held
2004). In this case, the precipitation introduces a
threshold function and this may not be well handled by
the adjoint model (used for the computation of the
NLSV). In the framework of four-dimensional varia-
tional data assimilation (4DV AR) studies, it was shown
that the BFGS method was still working well even in
the presence of thresholds (Zou et al. 1993). Two rea-
sons can be invoked: first, the gradient, even if not
perfectly defined, remains a good approximation of the
search direction; and second, the line-search procedure
(used once the search direction has been retrieved and
requiring sufficient decrease in the cost function) can
allow the algorithm to cross thresholds provided the
step size is not too small. Preliminary experiments have
been done and have shown some success in finding
NLSVs. These results will be reported in a future
manuscript.
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