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ABSTRACT. Magnetic nanoparticles are important tools for biomedicine, where they serve as 

versatile multifunctional instruments for a wide range of applications. Among these 

applications, magnetic hyperthermia is of special interest for the destruction of tumors and 

triggering of drug delivery. However, many applications of magnetic nanoparticles require high 

quality magnetic nanoparticles displaying high specific absorption rates, which remains a 

challenge today. We report here the functionalization and stabilization in aqueous media of 

highly magnetic 15 nm iron carbide nanoparticles featuring excellent heating power through 

magnetic induction. The challenge of achieving water solubility and colloidal stability was 

addressed by designing and using specific dopamine-based ligands. The resulting nanoparticles 

were completely stable for several months in water, phosphate, phosphate-buffered saline and 

serum-containing media. Iron carbide nanoparticles displayed high specific absorption rates 

(SAR) in water and viscous media (water/glycerol mixtures), even after extended exposition to 

water and oxygen (SAR up to. 1000 W·g-1 in water at 100 kHz, 47 mT). The cytotoxicity and 
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cellular uptake of iron carbide nanoparticles could be easily tuned and were highly dependent 

on the chemical structure of the ligands used.  

KEY WORDS. nanoparticles – iron carbide – magnetic hyperthermia – functionalization – 

biocompatibility 

Magnetic nanoparticles (NPs) are of strategic interest for several biomedical applications such 

as magnetic resonance imaging,1-3 magnetic hyperthermia1,4-6 and drug delivery.1,3,6 When 

exposed to an alternating magnetic field, suitable magnetic NPs undergo energy losses, thus 

producing heat. This phenomenon, called magnetic hyperthermia, is widely applied 

biomedically to destroy or weaken tumors,5 trigger drug delivery6 or improve drug efficacy.6 

For magnetic hyperthermia to be efficient, however, magnetic NPs must be designed to 

maximize energy losses and thus the production of heat. The ability of NPs to heat through 

magnetic induction is commonly expressed by their specific absorption rate (SAR), and the 

objective is to reach high SAR at frequencies and amplitudes harmless for healthy tissues7,8 

(typically 100 kHz, 20 mT). Substantial effort has been dedicated to the synthesis of water 

stable and biocompatible NPs displaying high SARs. Given these requirements, iron-based 

nanoparticles appear to be promising candidates.9 Among them, iron oxide nanoparticles 

(IONPs) have been extensively studied. As a result, a significant number of synthetic 

procedures allowing the production of tunable iron oxide nanoparticles (size, shape, 

composition, etc.) are available.10,11 While commercially available IONPs generally display 

poor hyperthermia properties, very good SARs were reported for complex IONPs such as 

magnetite bacterial magnetosomes,12 maghemite nanoflowers13 or maghemite nanocubes.14,15 

Despite their promising properties, these complex IONPs are not easily synthesized and exhibit 

a low saturation magnetization (70-80 A.m2.kg-1 in the best cases). Iron has the highest 

saturation magnetization (210 A.m2.kg-1) among all elements, and Fe(0) NPs were shown to 

have very good SARs in organic solvents.16,17 Unfortunately, in the presence of oxygen or 
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water, zero-valent iron NPs undergo very fast oxidation that dramatically affects their magnetic 

properties, reducing their utility as hyperthermic agents.  

Iron carbide NPs provide a potential compromise between high saturation magnetization and 

stability in biological media. Several studies evidenced their potential for applications including 

magnetic hyperthermia,18-20 magnetic resonance imaging,21 catalysis.19,20,22-24 We recently 

reported the synthesis of specific Fe2.2C ICNPs displaying exceptional SAR for applications in 

CO2 hydrogenation.20 We report here the use of dopamine-based ligands to functionalize these 

ICNP structures and stabilize them efficiently in aqueous and biological media. Even after 

extended exposure to water and oxygen, these ICNPs present SARs higher than the ones of 

Fe(0) nanoparticles. The critical influence of the ligand structural design regarding the 

cytotoxicity and cellular-uptake of these ICNPs was also evidenced. 

RESULTS/DISCUSSION 

Monodisperse ICNPs (15 nm) were synthesized through the carbidization of preformed Fe(0) 

nanoparticles under CO/H2, following an approach previously described by our group (Figure 

S1).20,25 These nanoparticles displayed excellent hyperthermia properties, with specific 

absorption rates (SARs) far higher than any iron oxide or iron(0) nanoparticles. However, due 

to the fatty acid and amine ligands of the as-prepared ICNPs, these particles are dispersible only 

in organic solvents, and further surface modification was mandatory to provide solubility and 

colloidal stability in aqueous environment. This challenge was addressed by replacing the initial 

hydrophobic stabilizers by specifically designed dopamine-based ligands (Figure 1) through a 

ligand exchange reaction.  
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Figure 1: Dopamine-based ligand structural design. 

The ligand family was synthesized by adapting a previously described synthetic procedure26,27 

starting from the dopamine derivative (I), which contains a catechol moiety. This catechol 

moiety is known to bind strongly to iron-based nanoparticle surfaces,28 and especially to iron 

oxide. However, dopamine derivatives were also recently described as suitable ligands for the 

stabilization of iron carbide nanoparticles (Fe5C2) in water.18,21,29  

The ligand structure contains a hydrophobic alkyl chain (II) which contributes to the 

stabilization of the NPs by fostering micelle-like hydrophobic assembly of the ligands. The 

tetraethylene glycol moiety (III) affords water solubility, biocompatibility and stability to the 

functionalized NPs. At the terminus, the function (IV) of the ligand can be easily modified to 

tune the behavior of the NPs in biological media. In a typical ligand exchange reaction, ICNPs 

(10 mg) were dispersed in a mixture of dichloromethane and methanol (5/1). The water-soluble 

ligand (50 mg, 5 mass equivalents compared to ICNPs) was added to the dispersion, followed 

by triethylamine (250 µL). The mixture was stirred overnight at room temperature. The work 

up of the reaction consisted of 3 washings with hexane followed by redispersion in water and 
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purification by dialysis for 48 h. The presence of the desired ligands on the surface of ICNPs 

was confirmed by LDI/MS experiments (Figure S2-6).27 In addition, thermo-gravimetric 

analysis of the ICNPs before and after the ligand exchange reaction was performed (Figure S7). 

The results showed that the characteristic signature of the long chain amine and acid ligands 

observed for as-synthesized ICNPs is missing in the case of water soluble ICNPs, and replaced 

by a signal attributed to the dopamine-based ligands. These observations indicate that the long 

chain amine and acid ligands were efficiently exchanged by the dopamine-derivatives during 

the ligand exchange reaction. This is in agreement with LDI-MS measurements, which did not 

evidence the presence of the initial hydrophobic ligands at the surface of the functionalized 

ICNPs (Figure S2-6). Taken together, these results suggest that the ICNPs are stabilized through 

the direct coordination of the dopamine-based ligands, rather than by their intercalation through 

hydrophobic interaction with remaining hexadecylamine and palmitic acid. 

The stability of ICNPs functionalized with different types of ligands was investigated in 

multiple aqueous media (de-ionized water, phosphate buffer 5 mM (PB), phosphate-buffered 

saline 150 mM (PBS) and media containing 10% bovine serum albumin (BSA) using dynamic 

light scattering (DLS) and transmission electron microscopy (TEM) analysis. Special interest 

was dedicated to the stability of ICNPs in PBS and serum media since their properties are closer 

to real biological conditions.  The multiple types of ligands tested – commercial or synthesized 

– are disclosed in Table 1, together with their ability to bring ICNPs solubility and stability in 

aqueous media. 
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Table 1. Summary of the ligands used to transfer ICNPs in aqueous media. aPB = Phosphate 

Buffer 5 mM; bPBS = Phosphate-Buffered Saline 150 mM; cSerum containing 10% Bovine 

Serum Albumin. (I) DOP-TEG-OH; (II) DOP-TEG-COOH; (III) DOP-TEG-TTMA; (IV) 

DOP-TEG-C6; (V) DOP-TEG-Zwitter. 

 

 

The first stability tests were performed with simple commercial ligands commonly used to 

stabilize magnetic NPs such as iron oxide in aqueous media.30-32 The results show that these 

ligands all fail to stabilize ICNPs in water, with the nanoparticles aggregating and precipitating 

in a few minutes. ICNPs thus require more advanced ligands than iron oxide NPs to be stable 

in water. The use of specifically synthesized dopamine-based ligands provided ICNPs with 

surprisingly good solubility and stability in all aqueous media studied. Among the five 
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dopamine-based ligands presented in this table, we will focus on three particular ligands 

displaying respectively anionic (DOP-TEG-COOH), cationic (DOP-TEG-C6) and zwitterionic 

functionality (DOP-TEG-Zwitter). 

For all three ligands, TEM analyses of the NPs before and after functionalization show that the 

NPs morphology is not affected by the ligand exchange or water exposure (Figure 2a and 2c). 

Interestingly, the stability of the functionalized ICNPs is such that they cannot be precipitated 

by magnet-assisted decantation. At suitable concentration, however, the solutions containing 

functionalized ICNPs exhibit a ferrofluid behavior (Figure 2d). According to DLS 

measurements, the ICNPs display very good colloidal stability in all types of aqueous media 

considered, with their hydrodynamic diameter remaining constant for more than one month 

(Figure 2e,g,i). While in all cases ICNPs appear to be individually stabilized in water, PB and 

PBS (DH ~ 15-20 nm), the hydrodynamic diameter of the particles in serum media is 

significantly larger (~ 90 nm). This increase in size is attributed to a partial aggregation of 

nanoparticles induced by the interactions between the ligands and the proteins of the serum, 

forming a protein corona shell.33 TEM analysis revealed the presence of ~ 90 nm assemblies, 

thus confirming this hypothesis (Figure S8). 
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Figure 2: (a,b) ICNPs in mesitylene, (c,d) functionalized ICNPs (DOP-TEG-C6 ligand) in 

water, similar results were obtained with the other two ligands. DLS analysis of functionalized 

ICNPs in aqueous media as a function of time and temperature: (e,f) functionalized with DOP-

TEG-C6; (g,h) functionalized with DOP-TEG-COOH; (i,j) functionalized with DOP-TEG-

Zwitter. PBS = Phosphate-Buffered Saline. 
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Interestingly, colloidal solutions containing functionalized ICNPs could be exposed to a wide 

range of temperatures without any aggregation or precipitation of the NPs (Figure 2f,h,j). The 

only exception was observed with ICNPs functionalized with DOP-TEG-Zwitter, with an 

obvious aggregation and precipitation of the NPs after exposure to temperatures higher than 

60°C. The effects of the exposure of ICNPs to water and air on their structural and magnetic 

properties were investigated by XRD, VSM, and specific absorption rate (SAR) measurements 

(Figure 3 and S8). 

 

Figure 3: Magnetic properties of ICNPs before (as synthesized) and after 4 months exposure 

to water and air (functionalized ICNPs, DOP-TEG-C6 ligand). (a) VSM analysis at 300 K, (b) 

SAR measurement at 100 kHz. For comparison reasons, the SAR of as-synthesized Fe(0) NPs 

of similar size is also given. 

XRD analysis evidences partial oxidation of the nanoparticles after a four-month exposure to 

water and air, but the pseudo-hexagonal Fe2.2C structure is still clearly visible (Figure S9). As 

a result of oxidation, VSM analysis (Figure 3a) shows that the saturation magnetization (90 

A.m2.kg-1) and the coercive field (32 mT) of ICNPs are significantly reduced as compared to 

starting nanoparticles (160 A.m2.kg-1, 102 mT respectively). Nevertheless, the SAR of these 

functionalized NPs in water remain high, reaching ca. 1000 W·g-1 at 47 mT, 100 kHz. Indeed, 

their magnetic heating properties even after partial oxidation are still better than those of 12.5 
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nm Fe(0) NPs synthesized and kept under oxygen- and water-free conditions (Figure 3b). Thus, 

despite a partial oxidation and modification of their magnetic properties, ICNPs maintain high 

SARs values after 4 months in water and under air, making them promising candidates for 

biomedical applications in which magnetic heating is required. 

Having a library of ligands displaying different functions and charges allows tuning of the 

cytotoxicity and cellular-uptake of the [ICNPs-Ligand] couple. The cytotoxicity against HeLa 

cells of ICNPs functionalized with the three different ligands was investigated for several 

incubation times and ICNPs concentrations ranging from 0.01 to 2 mg·mL-1 (Figure 4). 

 

Figure 4: Cytotoxicity of different [ICNPs-ligand] systems as a function of the incubation time 

and of the ICNPs concentration of the incubation media. Color code: [100-80%]: green; [80-

60%]: yellow; [60-0%]: red. 
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ICNPs functionalized by the cationic ligand DOP-TEG-C6 display an acute toxicity even for 

short incubation times. This toxicity can be attributed to the C6 hydrophobic chain carried by 

the quaternary ammonium group. In sharp contrast, the ligands DOP-TEG-COOH and DOP-

TEG-Zwitter provide ICNPs with a very good biocompatibility. No significant cytotoxicity was 

observed for incubation times up to 4 h at any of the concentrations in NPs of the incubation 

media. For 24 h incubation, the biocompatibility of ICNPs is very good up to 0.025 mg·mL-1, 

the toxicity increasing slightly for higher concentrations. These values are comparable to what 

can be observed with typical biocompatible iron oxide nanoparticles.34 Concerning iron carbide 

nanoparticles, studies are scarce, and until now limited to Fe5C2 nanoparticles. For example, 

Xie et al observed a 20% cellular death after 24 h incubation with 0.025 mg·mL-1 of 

polydisperse polymer coated Fe5C2 nanoparticles.21 With similar nanoparticles coated with 

BSA, Hou et al evidenced the death of 10% of the cells after 24 h incubation with a NPs 

concentration of 0.025 mg·mL-1.29 The biocompatibility of our system is significantly better, 

since no cytotoxicity was evidenced when cells were incubated for 24 h with 0.025 mg·mL-1 

Fe2.2C ICNPs functionalized with DOP-TEG-COOH and Zwitter. These results clearly 

evidence the critical role played by the ligands in the final biocompatibility of the couple 

[ICNPs-Ligand]. The three systems were further characterized through a cellular uptake study. 

HeLa cells were incubated for 4 h in media containing different concentration of functionalized 

ICNPs. After incubation, the cells were washed with PBS, and subjected to ICP analysis to 

determine their iron content (Table 2). 
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Table 2. Cellular-uptake of different [ICNPs-ligand] systems as a function of the concentration 

of the incubation media (incubation time = 4 h). 

Ligand 
NPs conc. 

(mg·mL-1) 

Viability 

(%) 

ppbFe/well 

[error%] 

pgFe/cell 

[error%] 

Control experiment - 100 17 [8] 4 [9] 

DOP-TEG-C6 (IV) 

 

0.5 2 169 [34] 44 [36] 

1.0 2 349 [31] 88 [29] 

2.0 3 821 [9] 213 [8] 

DOP-TEG-COOH (II) 

 

0.5 100 9 [15] 2 [14] 

1.0 90 14 [9] 4 [8] 

2.0 86 10 [39] 2 [40] 

DOP-TEG-Zwitter (V) 

 

0.5 100 276 [2] 69 [4] 

1.0 86 551 [3] 140 [3] 

2.0 93 234 [13] 60 [12] 

 

For the ICNP-DOP-TEG-C6 system, the concentration of iron inside the cells increases with 

the increase of the concentration, evidencing the ability of this system to easily enter in the 

cells. The high cellular-uptake of ICNPs-DOP-TEG-C6 is not surprising, since NPs with 

positively charged surface interact strongly with the negatively charged surface of cells.35,36 

The ICNPs-DOP-TEG-Zwitter system displays a similar behavior, though a drop in the cellular 

uptake can be observed for the most concentrated incubation medium (2 mg·mL-1). This 

decrease is attributed to a partial aggregation and precipitation of ICNPs in the incubation 

medium at this concentration. The cellular-uptake of ICNPs functionalized by DOP-TEG-C6 

and Zwitter is in the same range than what is usually observed with conventional iron oxide 

nanoparticles.37,38 
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In strong contrast, no significant cellular uptake was observed for ICNPs functionalized by 

DOP-TEG-COOH. This result is expected since at the pH at which this study was performed 

(7.2), the ligands are under the carboxylate form (anionic). Both ICNPs surface and cells surface 

are thus negatively charged, and the repulsive electrostatic interactions between them prevent 

the penetration of the NPs in the cells. These observations prove once again that the behavior 

of nanoparticles in biological conditions is highly impacted by the ligands that are present at 

their surface. 

ICNPs functionalized with the DOP-TEG-Zwitter ligand appear as promising candidates for 

medical magnetic hyperthermia since they combine high SAR in water, low cytotoxicity and 

good cellular uptake. However, the environment in cells and tumors is known to have a higher 

viscosity than pure water, which can affect the heating properties of magnetic nanoparticles. To 

investigate the influence of the medium’s viscosity on the heating power of ICNPs, their SAR 

was measured in aqueous solutions containing different concentrations of glycerol (Figure 5). 

 

Figure 5. SAR measurement at 100 kHz for ICNPs (DOP-TEG-Zwitter ligand) dispersed in 

media with different viscosities. 



14 

 

The results show that the SAR of ICNPs is slowly decreasing when the proportion of glycerol 

is increasing, evidencing a dependence of the SAR on the solvent’s viscosity. Nevertheless, the 

SAR values remain high (exceeding 515 W/g up to 20 wt% glycerol, and 320 W/g at 50 wt% 

glycerol (47 mT, 100 kHz)), making these NPs of interest for practical applications. 

To finish, ICNPs functionalized by the DOP-TEG-Zwitter ligand were further characterized by 

high resolution TEM and STEM-HAADF-EDX at t0, and after 40 days in water (Figure 6). 

 

Figure 6. High resolution electron microscopy of ICNPs in water: at t0 after functionalization, 

and after 40 days in water. a) High Angle Annular Dark Field Scanning Electron Microscopy 

(STEM-HAADF); b) Bright field high resolution TEM; c) STEM-HAADF-EDX (Energy 

Dispersive X-ray) elemental mapping. 

The results show in both cases a core-shell structure with an oxygen rich shell and an iron rich 

core, suggesting the formation of a thin shell of iron oxide (ca. 2 nm) around the iron carbide 

core. The presence of this oxide shell already at t0 shows that the surface oxidation of ICNPs is 

very fast when they are exposed to air and water during the ligand exchange reaction. 

Interestingly, no significant difference can be observed between the ICNPs at t0 and after 40 

days in water, indicating that ICNPs can be conserved a long time in aqueous solution without 

suffering from advanced oxidation and losing their advantageous magnetic properties. In 
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addition, their ability to undergo surface oxidation suggest that they could be slowly degraded 

by liver cells, which is an important factor when considering practical in-vivo applications.39-40 

CONCLUSIONS 

In summary, we show that engineered dopamine-based ligands are suitable for the transfer of 

magnetic iron carbide nanoparticles into water. The functionalized ICNPs are highly soluble 

and stable several months in all types of aqueous media investigated (water, PB, PBS, Serum). 

Despite partial oxidation, ICNPs maintain good magnetic properties, and most importantly high 

SAR in water and water-glycerol mixtures. The nature of the ligands is a key parameter 

governing the cytotoxicity and cellular-uptake of the functionalized nanoparticles. Through 

proper choice of ligand structure we were in particular able to obtain [ICNPs-ligand] systems 

displaying very low cytotoxicity, and entering easily or not in the cells. 

The biocompatibility of these ICNPs is comparable to the best of the IONs, with their superior 

magnetic properties making them promising candidates for biomedical applications, and in 

particular medical magnetic hyperthermia.  

 

METHODS/EXPERIMENTAL 

General 

All syntheses of iron-based nanoparticles were performed under argon either by using Schlenk 

techniques or in a glove box. Mesitylene (99%), toluene (99%), and tetrahydrofuran (99%) were 

purchased from VWR Prolabo, then purified on alumina desiccant and degassed through three 

freeze-pump-thaw cycles. The commercial products, hexadecylamine (HDA, 99%) and 

palmitic acid (PA, 99%) were purchased from Sigma-Aldrich. These compounds were used 

without any additional purification. Dopamine-based ligands were synthesized following 

methods reported in the literature. Ligand exchange reactions were performed using methanol 

and dichloromethane degassed by nitrogen bubbling. 
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Characterization 

The size and the morphology of as-synthesized nanoparticles were studied by transmission 

electronic microscopy TEM. TEM grids were prepared by drop casting a colloidal solution 

containing as prepared NPs on a copper grid covered with amorphous carbon. Conventional 

bright-field images were performed using JEOL microscopes (Model 1400 and 2010) working 

at 120 kV and 200 kV respectively. HR-TEM, STEM-HAADF and EDX measurements were 

carried out using a JEOL JEM-ARM200F Cold FEG working at 200 kV. XRD measurements 

were performed on a PANalytical Empyrean diffractometer using Co-Kα radiation (λ=0.1789 

nm) at 45 kV and 40 mA. Magnetic measurements were performed on a Vibrating Sample 

Magnetometer (VSM, Quantum Device PPMS Evercool II). XRD and VSM studies were 

carried out on compact powder samples as well as on diluted assemblies that were prepared and 

sealed under argon atmosphere. DLS analyses were performed on a Malvern Zetasizer Nano 

ZS equipment ([0,3 nm – 10 µm]). Laser He-Ne 633 nm, 4 mW maxi). Synthesized organic 

ligands were characterized by 1H NMR (Bruker 400 MHz). LDI-MS were performed on a 

Bruker Autoflex III MALDI-TOF mass spectrometer equiped with a Smartbeam 2 laser and a 

MTP 384 steel target. Analysis conditions : ion source 1 = 19.00 kV, ion source 2 = 16.60 kV, 

lens voltage = 8.44 kV, reflector voltage = 20.00 kV, reflector voltage 2 = 9.69 kV, pulsed ion 

extraction time = 10 ns, suppression = 100 Da. TGA were carried out with a Mettler Toledo 

“TGA/DSC 1 STAR System”. 

Hyperthermia measurements 

For a typical hyperthermia experiment, an air-tight tube containing about 10 mg of powder of 

iron carbide or iron/iron carbide nanocrystals dispersed in 0.5 ml of mesitylene was filled under 

inert atmosphere. The tube was then placed in a calorimeter containing 2.5 ml of deionized 

water, the temperature of which was monitored during the experiment. The calorimeter was 

exposed to an alternative magnetic field for a time varying between 10 and 40 s so that the 

temperature rise never exceeded 20°C. The temperature rise at the end of the magnetic field 
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application was always measured after shaking the calorimeter to ensure the temperature 

homogeneity, which was measured by two probes (at the top and the bottom of the calorimeter). 

The temperature rise was determined after this process from the mean slope of the ΔT/Δt 

function. Then the raw SAR values were calculated using the expression: 

𝑆𝐴𝑅 =
∑ Cpimii

mFe
×
ΔT

Δt
 

where Cpi and mi are the specific heat capacity and the mass for each component respectively 

(Cp = 449 J kg-1K-1 for Fe NPs, Cp = 1750 J kg-1K-1for mesitylene, Cp = 4186 J kg-1K-1 for 

water, Cp = 2430 J kg-1K-1 for glycerol and Cp = 720 J kg-1K-1 for glass), and mFe is the mass 

of the pure iron carbide nanocristals. 

 

Synthesis of Fe(0) nanoparticles 

In a typical synthesis, the Fe(0) NPs were prepared as follows: in the glove box, 0.65 mmol of 

PA (333.2 mg) and 0.5 mmol of HDA (241.5 mg) were added to a green solution of 0.5 mmol 

{Fe[N(SiMe3)2]2}2 (376.5 mg) in 20 ml of distilled and degassed mesitylene in a Fischer Porter 

bottle. The bottle was then pressurized with dihydrogen (2 bar) and placed in an oil bath at 

150°C for 48 h under magnetic stirring (400 rpm). After 48 h, the reaction was stopped and the 

NPs were recovered by decantation assisted by a magnet, and washed 3 times (3*10 mL) with 

toluene and 3 times (3*10 mL) with THF. The NPs were then dried under vacuum. According 

to elemental analysis, the black powder obtained contains ~50 wt% of iron. The NPs were 

further characterized by XRD, VSM and TEM. 

 

Synthesis of iron carbide nanoparticles (ICNPs) 

Iron carbide NPs were obtained through the carbidization of preformed Fe(0) NPs. In a typical 

experiment, 12.5 nm Fe(0) NPs (50 mg, 0.45 mmol of iron) were dispersed in mesitylene (9 

mL), and the mixture was pressurized with CO / H2 (2 bar / 2 bar) at 150°C for 140 h. At the 
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end of the reaction, the NPs were recovered by decantation assisted by a magnet and were 

washed 3 times with toluene (3x5 mL). The NPs were then dried under vacuum. According to 

the elemental analysis, the black powder obtained contains ~70 wt% of iron. The NPs were 

further characterized by XRD, VSM and TEM. 

 

Ligand exchange reaction 

In a typical ligand exchange reaction, ICNPs were dispersed in a mixture of dichloromethane 

and methanol (5/1). The water-soluble ligand (5 mass equivalents) was added to the dispersion, 

followed by triethylamine (250 µL) addition. The mixture was stirred overnight at room 

temperature. The work up of the reaction consisted of 3 washing cycles with hexane, followed 

by redispersion in water and purification by dialysis during 48 h. The presence of the desired 

ligands at the surface of the ICNPs was confirmed by LDI/MS experiments. 

Cell viability assay 

Cell viability (HeLa cells) was measured by quantifying the reduction of a dye indicator alamar 

blue. Alamar blue is a dye that takes advantage of mitochondrial reductases to change from 

oxidized indigo blue state to reduced pink state. This dye has been successfully used in various 

cell cultures to measure cell viability. Briefly, cells in 4 well plates are loaded with 300 mL 

culture medium containing 10% alamar blue (Biosource International) and incubated in 37°C, 

5% CO2 for 2 h. 100 mL medium from each well was then transferred to a 96 well plate and 

subjected to measurement. The reduction of alamar blue was measured and calculated by a 

SpectroMax M5 micro-plate reader (Molecular Device) at 570 nm and 600 nm wavelengths. 
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Highly magnetic Fe2.2C iron carbide nanoparticles displaying excellent specific absorption rates 

were successfully stabilized in aqueous media using specific dopamine-based ligands. Even 

after several months of exposure to water and air, iron carbide nanoparticles retained high 

heating power through magnetic induction. The nature of the ligands was proven to be a critical 

parameter to tune the biocompatibility and cellular-uptake of the considered nanoparticles. 


