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Geometrically nonlinear vibrations of thin plates and shells with variable thickness1

are investigated numerically with the purpose of synthesizing the sound of cymbals.2

In cymbal making, taper refers to the gradual change in thickness from the centre to3

the rim, and is known to be a key feature that determines the tone of the instrument.4

It is generally used in conjunction with shape variations in order to enable the cymbal5

to play a bell-like sound when hit near its centre, or a crash sound when struck close6

to the edge. The von Kármán equations for thin plates with thickness and shape7

variations are derived, and a numerical method combining a Rayleigh-Ritz approach8

together with a Störmer-Verlet scheme for advancing the problem in time, is detailed.9

One main advantage of the method is its ability to implement easily any frequency-10

dependent loss mechanism which is a key property for sound synthesis. Also, the11

accuracy of the computation of the nonlinear restoring force is especially preserved.12

The method is employed to synthesize the sounds of cymbal-like instruments. The13

impact of taper is addressed and the relative effects of both thickness and shape14

variations, are contrasted.15
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I. INTRODUCTION16

Cymbals belong to the category of percussion instruments having a long history, and17

used in various contexts, from orchestral symphonic music to pop-rock and jazz music1,2.18

Having different shapes, names and tones and a wide range of playability, sounds and colors,19

they serve as a basis of all drum kits in modern amplified music, jazz bands and percussion20

ensembles. The usual terminologies to designate their roles and sounds are known as: ride,21

splash and crash, the last two names of which are evidently onomatopoeic. Ride cymbals22

are the largest ones, generally used to play a steady rhythmic pattern, whereas crash and23

splash are smaller and used to play dramatic accents.24

In cymbal making, taper refers to the thickness variation encountered from the centre to25

the edge of a cymbal. Indeed, for most of the cymbals, taper is very important in order to26

confer the cymbals the ability to have two distinct tones. On the one hand, cymbals shall27

play a clear tone with a dominant pitch when hit near the centre, in the region known as28

the bell. This bell-like sound is essential to mark the beat, and is favoured by two different29

physical characteristics : the protruding dome manufactured at centre, and the thickness30

which is more important in this area. On the other hand, a non-tonal, bright glittering31

sound is awaited when strongly striking crash and splash cymbals at the edge.32

A series of measurements have been realized in two different drum stores in Paris with33

an electronic vernier calliper in order to quantify more precisely the thickness at centre34

and edge. It has been found that for crash cymbals, the thickness at edge he ranges from35

0.9 mm to 0.5 mm, the minimal values being obtained for series known for their explosive36
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sounds: The Paiste fast crash 14” (35 cm diameter) and the Sabian AA thin crash (30 cm37

diameter), and also for the Paiste ”paperthin formula 602”, generally used in hi-hat. The38

mean measured value for crash is 0.65 - 0.7 mm. The thickness at centre hc is larger, with39

measured values ranging from 1.4 mm to 0.9 mm. For ride cymbals, hc can go up to 1.5 mm40

while he ranges between 1.4 mm to 0.8 mm. Splash cymbals are the smallest ones, and he41

has been found to be of the order of 0.55 mm to 0.65 mm, with a minimal value he=0.4 mm42

for a Sabian AAX splash 8” (20 cm diameter).43

The bright shimmering sound of gongs and cymbals is obtained thanks to strongly nonlin-44

ear vibrations1,3 occuring because the amplitude of the vibrations is larger than the thickness.45

Recent studies revealed that the phenomenon at hand is wave turbulence, resulting from the46

geometric nonlinearity, and also at work in gongs and thunder plates4–8. For the gongs, the47

energy cascade driven by the wave turbulence can be relatively slow and take up to half a48

second to fully develop and attain the highest frequencies. This results in the characteristic49

sound of gongs with a blow-up of higher frequencies occuring shortly after the strike. In50

the case of cymbals (and more specifically for crash and splash), taper strongly favours the51

nonlinearity by reducing the thickness close to the edge. Consequently, the cascade of energy52

and the excitation of high frequencies is very fast, so that the maximal frequency is obtained53

right after the strike, without an audible delay.54

Numerical simulations and sound synthesis based on physical models face a number of dif-55

ficulties while solving for the vibrations, the nonlinearity and the presence of the wave turbu-56

lence effect being the most important ones. However, successful results have been obtained in57

the last years, where a key component has been the derivation of energy-conserving schemes58
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for von Kármán problems describing geometrically nonlinear vibrations of thin plates9,10.59

The temporal scheme has then been used together with finite difference methods11, or with60

a modal approach4, the advantage of which is to offer an ability to easily implement losses61

with any frequency-dependent law, and to give a better control on the accuracy of the62

computation of the nonlinear terms. These two points are key to the realism of synthe-63

sized sounds. Other methods have been used where the kinematics of plates and shells is64

simplified by using ad-hoc bending models that are easier to implement for finite element65

approaches, hence opening the doors to create more complex geometries for a wide variety66

of shells12. This last work has been more deeply investigated recently13, with an interesting67

improvement to efficiently simulate the energy cascade due to wave turbulence thanks to68

the phenomenological model proposed14.69

Even though the sound of gongs has been recovered with accuracy and realism by using70

the modal approach4, simulations of cymbal-like circular plates failed to reproduce the very71

fast cascade and the immediate emergence of the broadband Fourier spectrum, which gives72

to crash and splash cymbals their specific sparkling and explosive sound. A main reason is73

the absence of taper in earlier simulations, thus not covering the ability of cymbals to play74

two different sounds when hit near the centre or close to the edge. The goal of this article75

is thus to introduce a nonlinear model for plate vibrations including both taper (thickness76

variations) and curvature (also denoted as bow in cymbal description terminology, i.e. shape77

variations), and to develop a numerical method for solving the problem in time, based on78

earlier works4,15–17. Once the model is established, numerical simulations are drawn in order79

to show the important effect of taper on the nonlinear vibrations, and to contrast both80
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effects of shape and thickness variations, as well as to distinguish the bell sound from the81

crash sound obtained with strikes at the edge.82

II. MODEL AND METHODS83

In this section, the equations of motion for a thin plate with variable thickness are first84

recalled. A linear analysis is then performed for the two unknowns, namely the transverse85

displacement w and the Airy stress function F . The problem is subsequently discretized86

using a Rayleigh-Ritz approach and the time integration method is detailed. Finally a com-87

plete model including thickness together with shape variations, modeled as an imperfection88

of the plate at rest, is highlighted.89

A. Von Kármán model for thin plates with variable thickness90

In this paper a circular plate of radius Rd, made of a homogeneous material of volume

density ρ, Young’s modulus E and Poisson’s ratio ν, is considered. The surface of the plate

is denoted as S = {(r, θ) ∈ [0, Rd]× [0, 2π]}. In order to simplify the presentation, the

thickness of the plate h is assumed to depend only on the radius coordinate r. The von

Kármán model for geometrically nonlinear vibrations of thin plates is used to compute the

solutions for the transverse displacement w(r, θ, t) and the Airy stress function F (r, θ, t). It
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reads18–21

ρh(r)ẅ + ∆(D(r)∆w)− (1− ν)L(D(r), w)

= p(r, θ, t)−R(ẇ) + L(w,F ), (1a)

∆(B(r)∆F )− (1 + ν)L(B(r), F ) = −1

2
L(w,w). (1b)

In these expressions, D(r) = Eh3(r)/12(1 − ν2) is the flexural rigidity, B(r) = 1/Eh(r), p

stands for the normal pressure loading and R(ẇ) is a generic expression accounting for the

losses. ∆ is the laplacian operator, and L is the von Kármán bilinear operator, which reads,

in polar coordinates for two arbitrary functions f(r, θ) and g(r, θ):

L(f, g) = f,rr

(
g,r
r

+
g,θθ
r2

)
+ g,rr

(
f,r
r

+
f,θθ
r2

)
− 2

(
f,rθ
r

+
f,θ
r2

)(
g,rθ
r

+
g,θ
r2

)
· (2)

As compared to the equations of motion with constant thickness16, the main incidence of the

variable thickness onto the equations of motion is an added complexity to derive the linear

terms. On the other hand, the nonlinear terms are not affected by the thickness variations,

which is in line with the definition of the geometric nonlinearity. As applications to cymbals

are targeted, a free-edge boundary condition is selected. It reads16, ∀t, ∀θ ∈ [0, 2π], and for
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r = Rd:

w,rr +
ν

Rd

w,r +
ν

R2
d

w,θθ = 0 , (3a)

w,rrr +
1

Rd

w,rr −
1

R2
d

w,r +
2− ν
R2
d

w,rθθ −
3− ν
R3
d

w,θθ = 0 , (3b)

F,r +
1

Rd

F,θθ = 0 , F,rθ +
1

Rd

F,θ = 0. (3c)

B. Linear analysis91

The aim of this section is to analyse the linear part of Eqs. (1). As already underlined,92

the linear terms are deeply modified when taking the variable thickness into account, hence93

most of the added work focuses on calculating these new terms. In the course of this section,94

the results will be derived without referring to a particular case of boundary conditions, for95

the sake of generality. However when turning to numerical results, the free-edge boundary96

condition presented in the previous section, is used. The linear parts of Eqs. (1a) and97

(1b) correspond to two distinct linear problems in terms of the two unknowns w and F ,98

respectively. Each of these two problems is tackled separately, by using the Rayleigh-Ritz99

method with the appropriate boundary conditions.100

1. Transverse vibration101

The linear solution for the transverse vibration is first derived. The problem at hand102

reads :103

ρh(r)ẅ + ∆(D(r)∆w)− (1− ν)L(D(r), w) = 0. (4)
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Let us assume that the eigenmodes of this problem with constant thickness (i.e. a perfect flat104

plate with h0 a reference thickness, ) are known and denoted as Φp(r, θ) for the eigenfunctions105

and ωp for the eigenfrequencies, meaning that we have :106

∆∆Φp(r, θ) =
ρh0

ω2
pΦp(r, θ). (5)

In the computations, h0 is defined from the thickness variation profile as the value at the107

plate centre. The eigenfunctions Φp(r, θ) verify the boundary conditions for the transverse108

displacement w at the edge, and they are assumed to be normalized such that
∫
S ΦpΦqdS =109

δpq, with δpq the Kronecker symbol. Following the Rayleigh-Ritz approach, the problem (4)110

is discretized in space with the expansion w(r, θ) =
∑NΦ Xp(t)Φp(r, θ). Substituting this111

last expression in (4), multiplying by another basis function Φj and integrating over the112

surface S, the problem can be rewritten as :113

MΦẌ + KΦX = 0, (6)

with X = [X1, X2, ..., XNΦ
]T the vector of generalized coordinates and NΦ the number114

of transverse modes retained in the truncation. The complete expressions for the mass115

and stiffness matrices MΦ and KΦ are given in Appendix A. The advantage of using the116

Rayleigh-Ritz method in the case of a circular plate where the modes of the perfect plate117

Φp(x) are analytic is that the resulting coefficients appearing in MΦ and KΦ , such as the118

finite-difference scheme where the convergence is more difficult to be achieved up to high119

frequencies21.120
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2. Airy stress function121

The same methodology is applied to the second linear equation (1b), which reads:122

∆(B(r)∆F )− (1 + ν)L(B(r), F ) = 0. (7)

This problem in case of constant thickness is associated with in-plane eigenmodes Ψj which123

verify ∆∆Ψj = ζ4
j Ψj, together with the associated boundary conditions. Expanding the124

unknown F (r, θ) =
∑NΨ YpΨp(r, θ), the Rayleigh-Ritz approach applied to (7) leads to125

KΨY = 0, (8)

with Y = [Y1, Y2, ..., YNΨ
]T the vector of generalized coordinates and NΨ the number of126

in-plane modes retained in the truncation. Note that no mass matrix is present here as the127

longitudinal inertia is neglected in the von Kármán model. The complete expressions of the128

entries of KΨ are given in appendix B.129

3. Comparison with a finite element computation130

In order to validate eigenmode computation with the Rayleigh-Ritz method, a comparison131

is drawn with the results obtained from a commercial finite element (FE) software, namely132

ANSYS. The case study is that of a free edge circular plate, with radius Rd = 0.2 m, and133

material parameters as E = 2.1011 Pa, ν = 0.38 and ρ = 7860 kg/m3. Two thickness134

variations are selected and represented in Fig. 1(a-b). In the first case the thickness is135

constant and equal to 1 mm from the centre to r = 0.04 m, then it decreases linearly from136
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FIG. 1. Comparison of eigenfrequency computation for two different cases of thickness variation.

(a) thickness constant near centre then linearly decreasing. (b) parabolic thickness. (c-d) eigenfre-

quency variations for he ∈ [0.4, 1] mm, corresponding respectively to cases (a) and (b). Red circles:

Rayleigh-Ritz method, Blue triangles: Finite-element model.

that point to the edge, with a final value at edge he which is a parameter ranging from he = 1137

mm (case of a plate with constant thickness) to he = 0.4 mm. In the second case shown138

in 1(b), a parabolic dependence of the thickness on the radius is selected, with the same139

range of variation for the thickness at edge he. In this numerical test, only the transverse140

eigenfrequencies corresponding to (6) can be easily computed as no direct output relative141

to the in-plane problem can be found. However since the coding of the two problems share142

numerous similarities, it has been found sufficient to test only the transverse problem. In143

the Rayleigh-Ritz method, the convergence is controlled by the number of modes NΦ used as144

a projection space to build the matrices MΦ and KΦ. It has been found that NΦ = 150 was145

sufficient to obtain converged values for the first 31 eigenfrequencies shown in Fig. 1(c-d). .146
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Regarding the computations realised with ANSYS, the FE solution has been obtained147

by using the element SHELL181, a four-node element with six degrees of freedom at each148

node implementing a Reissner-Mindlin kinematics. These computations have reached a fine149

convergence by using up to 33387 nodes (33091 elements).150

Fig. 1(c-d) shows the results obtained by varying he. When he = 1 mm, the thickness151

is uniform and one retrieves the eigenfrequencies of a perfect circular plate. Decreasing he152

leads to the reduction of the local stiffness of the plate, so that the eigenfrequencies are153

also lessened, explaining the general trend observed on the curves. Finally one observes a154

very good match between the eigenfrequencies calculated with the two methods. Whereas155

the results are perfectly similar in the case 2 (parabolic variation of thickness), case 1156

(linear variation with two different slopes) shows some slight discrepancies between the two157

methods. They are attributed to the modeling difference and in particular to the fact that158

transverse shear is taken into account in the FE model.159

C. Nonlinear analysis and time integration160

We now address the time integration of the full problem given by Eqs. (1), including the

nonlinear terms and the losses. Following the Rayleigh-Ritz procedure started in the previous

section to solve the linear part, i.e. using the expansions w(r, θ) =
∑NΦ Xp(t)Φp(r, θ) and

F (r, θ) =
∑NΨ Yj(t)Ψj(r, θ), one can rewrite Eqs. (1) as :

MΦẌ + KΦX + CΦẊ = NΦ(X,Y ) + Pf , (9a)

KΨY = −1

2
NΨ (X,X). (9b)
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Note that, as underlined before, the thickness variation modifies only the linear parts of

the von Kármán equations of motion. Consequently, in the semi-discrete equations (9),

the new terms appearing are : the force vector Pf , of which the entry k reads : Pf k =∫
S p(r, θ, t)Φk(r, θ)dS, ∀ k ∈ [0, NΦ]; the damping matrix CΦ which will be detailed later,

and the two quadratic nonlinear terms NΦ(X,Y ) and NΨ (X,X). These two nonlinear

terms are computed following earlier studies on plates with uniform thickness, see e.g.4,16,19.

They are two vectors with the entry k reading as

NΦ(X,Y )k =

NΦ∑
i=1

NΨ∑
j=1

Ek
ijXiYj, (10a)

NΨ (X,X)k =

NΦ∑
p=1

NΦ∑
q=1

Hk
pqXpXj, (10b)

where the introduced coefficients Ek
ij and Hk

pq write

Ek
ij =

∫
S
Φk L(Φi, Ψj)dS, (11a)

Hk
pq =

∫
S
Ψk L(Φp, Φq)dS. (11b)

Note that Eqs. (9) can be condensed by replacing (9b) into (9a), highlighting the fact161

that a cubic nonlinearity is at hand for the transverse displacement variable X. Also, the162

von Kármán operator L has some symmetry properties19, such that for some particular163

boundary conditions, the relationship El
m,n = Hn

m,l is fulfilled4. The free-edge boundary164

conditions considered in this paper belong to the category where the relationship holds, so165

that subsequent gain in pre-computing time can be saved thanks to this symmetry property.166
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The damping matrix CΦ has to be populated with ad-hoc values. As underlined in4,167

one advantage of the present approach is that one can select modal damping factors at168

ease, following any frequency dependence. However, as the problem is semi-discretized by169

using the eigenmodes of the plate with constant thickness that are not the eigenmodes of the170

problem considered, the relationship between the modal damping matrix C = diag(µk) (with171

µk = 2ξkωk the modal loss coefficient associated to the modal loss factor ξk) and CΦ has to172

be used. Even though the equations of motion will be integrated in time using Eqs. (9), the173

idea is to use the modal loss coefficients µk as input parameters of the simulations, since the174

physical meaning of these values is more tractable. Then, using P the matrix of normalized175

eigenvectors computed from (6), the matrix CΦ is computed using the relationship C =176

P TCΦP .177

To integrate the problem in time, a Störmer-Verlet scheme is used. This is a symmetric178

and symplectic method of order two22. It is simply deduced from Eqs. (9) by replacing the179

second-order time derivative by the centred finite difference operator δtt ≡
1

k2
(et+−2+et−),180

where k is the time step, and et+ and et− are respectively the forward and backward shift181

operators. The first-order time derivative for the damping term is replaced by the centred182

finite difference operator δt· ≡
1

2k
(et+ − et−), and all the other terms are computed at the183

current time step. The method has a stability condition reading fS > πfNΦ
, with fS = 1/k184

is the sampling rate and fNΦ
the eigenfrequency of the last transverse mode retained in the185

truncation.186
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D. A complete model with shape imperfection187

A complete model for the simulation of cymbal vibrations can be derived from the previous

one by adding a static, geometric imperfection to the plate model, representing the position

of the structure at rest. Let us denote w0(r, θ) this geometric imperfection. In order to

comply with von Kármán assumptions17,19, w0 should not be too large so as to obtain a

shallow shell. The full model equations can be derived easily following for example15,23, and

read

ρh(r)ẅ + ∆(D(r)∆w)− (1− ν)L(D(r), w)

= L(w,F ) + L(w0, F ) + p−R(ẇ), (12a)

∆(B(r)∆F )− (1 + ν)L(B(r), F )

= −1

2

[
L(w,w) + 2L(w,w0)

]
(12b)

Note that taking this shape imperfection into account modifies only the nonlinear terms188

appearing in the right-hand side. The complete model can be semi-discretized in the same189

manner, following the Rayleigh-Ritz method and using the eigenmodes of the perfect plate190

without imperfection nor thickness variation as the expansion basis. The shape imperfection191

w0 has also to be expanded as15:192

w0(r, θ) =

Nk∑
k=1

akΦk(r, θ) + zg, (13)

15
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where zg is the centre of mass offset due to imperfection, and the coefficients ak are the

semi-discrete representation of the shape. They read

ak =

∫
S
(w0 − zg)ΦkdS, (14)

zg =

∫
S w0dS
Ap

, (15)

where Ap is the area of the perfect plate. The two unknowns w and F are expanded using the

same procedure as in the previous sections. This leads to a semi-discrete problem reading

MΦẌ + KΦX + CΦẊ = NΦ(X,Y ) + NΦ(a,Y ) + Pf , (16a)

KΨY = −1

2
[NΨ (X,X) + 2NΨ (a,X)] . (16b)

In these equations, the nonlinear terms NΦ and NΨ have the same expressions as in Eqs. (10),193

the only difference being that they are also applied to the imperfection represented by194

the vector a = [a1, a2, ..., aNΦ ]T . Consequently the Y vector, linked to the Airy stress195

function, is a function with linear and quadratic dependence on X. Substituting (16b)196

into (16a), one observes now that the problem from the transverse motion arising from the197

right-hand side of (16a) shows a linear, quadratic and cubic dependence on X. The linear198

dependence can be solved alone so as to obtain the eigenmodeshapes and eigenfrequencies199

of the complete problem. All these computations follow closely those presented15, where200

only the shape imperfection was taken into account. The method was compared to finite201

element simulations to assess the results, and this step has been repeated here, showing a202

16
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FIG. 2. Ouput displacements (first row, a-c) and velocity spectrograms (second row, d-f) for the

simulations of the nonlinear vibrations of a thin circular plate with a uniform thickness h=1 mm

(a,d) ; with a linearly varying thickness down to he = 0.7 mm (b,e), and to he = 0.4 mm (c,f).

Displacement of an arbitrary point located at r = 0.1792 in m, and spectrogram of the velocity

derived from the same displacement signal, in dB with a 90 dB dynamic.

perfect agreement. Finally, to integrate the semi-discrete problem in time, the Störmer-203

Verlet scheme is used, as in Section II C.204

III. NUMERICAL SIMULATIONS205

A. Effect of variable thickness206

Numerical simulations are conducted to highlight the effect of the thickness variation207

on the nonlinear vibrations of circular plates, and in particular on the explosiveness of the208

cymbal sound at the very beginning of a strong hit. Indeed, cymbals are known to produce209

on a very short time scale a very rich spectrum with a broadband frequency content, which210

is typical of their bright shimmering sound. In order to quantify the effect of thickness211

variations, a circular plate of radius Rd = 0.2 m has been selected, with material parameters212

typical for a metallic alloy : Young’s modulus E = 2.1011 Pa, Poisson’s ratio ν = 0.38 and213
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mass density ρ=7860 kg.m−3. The thickness variation has been selected with a constant214

thickness h0 = 1 mm, for r ∈ [0, 0.05] m, and then a linear decrease to a value he at r = Rd.215

Two cases, namely he = 0.7 mm and he = 0.4 mm, are investigated and compared to the216

plate with uniform thickness h0. These two cases have been selected from the thickness217

measurements realized on a number of cymbals: while he = 0.7 mm corresponds to a mean218

value found for crash cymbals, he = 0.4 mm is taken as the minimal thickness that can be219

reasonably attained and which has been measured on a splash cymbal. The modal damping220

coefficients have been selected following the rule : µk = 0.007ω0.6
k + 2. The constant term221

entails a small constant amount of damping even for the very low frequency modes, while222

the power-law form has already been used in4; it is based on measured experimental values223

identified in very large thin plates24 and has been found to give realistic results for the sound224

synthesis of gongs.225

To assess the explosiveness of the sound, a strike is given as an input force to the plate.226

This strike is located at a given point x0 = (r0, θ0) so that p(r, θ, t) = δ(x−x0)g(t), and the227

temporal content is a raised cosine :228

g(t) =


pm
2

[1 + cos (π(t− t0)/Twid)] if |t− t0| ≤ Twid;

0 if |t− t0| > Twid.

(17)

The input parameters of the force are thus the time t0, the temporal width of the interaction229

Twid and the amplitude of the force pm in N. All the computations have been implemented230

using the software VK-gong25, an open source code developed to handle nonlinear vibra-231

tions of plates and built from previous works by the second author. The first eigenfrequency232
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of the plate with constant thickness h0 = 1 mm is equal to 32 Hz, while the 800th transverse233

mode frequency is 18861 Hz. Consequently, all the calculations have been performed with234

NΦ = 800 so as to ensure an almost complete covering of the frequency band of human hear-235

ing. For the number of in-plane modes, Nϕ = 60 has been selected following the convergence236

guidelines given4. Note that this number is given as the cardinal of the subset of in-plane237

modes having non-vanishing coupling terms. This is another advantage of the method used238

to compute the coupling coefficients, especially for the case of free-edge circular plates where239

the modes are analytic and vanishing coefficients can be predicted from analytical formulas240

resulting in significant computational time savings. The sampling rate fS has to be larger241

than 59 kHz in order to comply with the stability condition for the Störmer-Verlet scheme,242

i.e. fS > πfNΦ with NΦ = 800. For all the computations, the sampling rate has been243

selected as fS = 100 kHz, well over the stability limit.244

A first set of simulations is realized with an amplitude of the strike as pm = 90 N245

located at the edge of the plate (r0 = Rd), and a short interaction time selected as Twid =246

1 ms, in order to mimick a strong hit given by a drumstick. Fig. 2 shows the results247

obtained for the three cases investigated : the uniform plate, and the two plates with248

variable thickness, respectively with he = 0.7 mm and he = 0.4 mm. The first row, Fig. 2(a-249

c) shows the displacement at an arbitrary point located at r = 0.1792 m (close to the250

edge), and θ = 0.52 rad, while the second row presents the spectrograms of the velocity251

of the same output point. The effect of the thickness variation is huge and can be clearly252

assessed both on the temporal displacement signal and the velocity spectrogram. For the253

displacement, one can observe that for the plate with uniform thickness, the maximum value254
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of the displacement is reached at the beginning and is equal to 2 mm, while for he = 0.7255

mm the maximum is 3 mm and finally 4 mm for the thinnest plate with he = 0.4 mm.256

The fast spectral enrichment can be more evidently assessed with the velocity spectro-257

grams shown in Fig. 2(d-f). For the plate with uniform thickness, most of the energy is258

concentrated below 5000 Hz, while the rapid generation of high frequencies is much more259

pronounced for the two cases with thickness variations. In particular when he = 0.4 mm,260

frequencies up to 15 kHz are created in the very first milliseconds of the vibration. This261

results in a more explosive sound which is typical for a cymbal, while the sound produced262

by the plate with uniform thickness has not the same properties. The readers are invited263

to hear at the associated sound files, corresponding to the velocity resampled at 44.1 kHz,264

which are available as supplementary materials. Note that all the sounds corresponding to265

the simulations presented in the figures are available as WAV files.266

Fig. 3 compares the displacement field of the plates with uniform thickness 1 mm (left267

column) to that obtained with the variable thickness and he = 0.4 mm, at different instants.268

For these figures, the amplitude of the excitation force pm has been raised to 150 N in order269

to enhance the vibration amplitudes. The temporal width of the strike is kept as Twid =270

1 ms, which means that, according to the raised cosine formula (17), the input force lasts271

from t = 0 to 3 ms. The first row shows the displacement field just after the beginning272

of the strike, at t =0.5 ms. One can see that the difference in the local stiffness between273

the two plates (local thickness 1 mm vs 0.4 mm), gives rise to very distinct magnitudes of274

displacements at the striking point (0.5 mm for the uniform thickness vs 2.2 mm). The275

second row shows the displacement fields at t = 3.3 ms, i.e. right after the end of the input276
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t=0.5 ms

t=3.3 ms

t=13 ms

t=31 ms

uniform thickness variable thickness

(a) (b)

(c) (d)

(e)
(f)

(g) (h)

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

d
is

p
la

ce
m

en
t 

[m
]

FIG. 3. Snapshots of the displacement fields. Comparison between the plate with uniform thickness

h0 = 1 mm (left column, a,c,e,g) and the plate with thickness at edge he = 0.4 mm (right column,

b,d,f,h), and at four different instants: t = 0.5 ms (a,b), t = 3.3 ms (c,d), t = 13 ms (e,f) and t =

31 ms (g,h). Strike imposed at the edge at t = 0, with an amplitude pm = 150 N.
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striking force. One can clearly observe that the plate with variable thickness experiences277

much more high frequencies, as attested by the important wavelets localized on the opposite278

side of the striking point. The last two rows present the displacement fiels at t = 13 ms279

and 31 ms, showing undoubtedly how the high frequency content is very quickly excited in280

the vibration and localized in the regions of smaller thickness. The last two rows clearly281

evidenced the very nonlinear characteristics of the vibration field when the thickness of the282

plate is severely decreased, as compared to the case of the constant thickness.283

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

 t [s]

f c
 [
H

z
]

FIG. 4. Characteristic frequency fc defined in Eq. (18) as a function of the time t of the computed

velocities. Blue lines correspond to the case of the plate with uniform thickness h = 1 mm, red

lines to the plate with linear varying thickness and he = 0.7 mm, and black lines with he = 0.4 mm.

Three different strike amplitudes are used for each case: pm = 20 N (circles ◦), 90 N (triangles O)

and 150 N (squares �).
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In order to have more quantitative results on the high-frequency content generated by284

the vibration, the following characteristic frequency fc is introduced as285

fc =

∫ fS/2
f=0

a(f)2fdf∫ fS/2
f=0

a(f)2df
, (18)

where a(f) is the Fourier amplitude (evaluated at frequency f) of the velocity signal obtained286

from the output point at r = 0.1792 m, and fS = 100 kHz is the sampling rate. This287

characteristic frequency has already been used for quantifying the frequency content of288

a turbulent cascade of energy26, as well as for the energy transfer observed in the contact289

dynamics of strings against frets27. Fig. 4 shows the behaviour of this characteristic frequency290

as function of the time t of the computed velocity output, and for 9 simulations, with 3291

different plates (uniform thickness, he = 0.7 mm and he = 0.4 mm) and 3 different striking292

amplitudes (pm = 20, 90 and 150 N); thus giving a quantitative point of view to the frequency293

behaviours displayed by the spectrograms shown in Fig. 2(d-f). In particular, one can294

clearly see the considerable effect of decreasing the thickness at edge from 1 to 0.4 mm,295

as the characteristic frequency is almost equal in the cases he = 1 mm, pm = 150 N and296

he = 0.4 mm, pm = 20 N. Concentrating on the case pm = 150 N, one can observe that the297

characteristic frequency is multiplied by a factor of 2 when he is decreased from 1 mm to298

0.7 mm, and once again a factor of 2.3 by decreasing from 0.7 to 0.4 mm.299

B. A complete model for cymbal vibrations300

In this section, a complete model including both shape and thickness variations, is con-301

sidered. The shape of the imperfection has been measured on a real Zildjian ”custom rock”302
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crash cymbal having a radius Rd = 0.2 m, and shown in Fig. 5. The height at the centre303

Hc has been found equal to 3.4 cm, however it will be used as a free parameter in order to304

compare cymbals with different shallowness. In particular, simulations with Hc = 1.7 cm305

(half of the real measurement, shown as a dashed line in Fig. 5), will be addressed.306

FIG. 5. Profile of the shape imperfection used in the simulations. The shape has been measured

from a real cymbal, with a height at centre Hc =3.4 cm. An intermediate case with Hc =1.7 cm

(dashed line), is also be considered.

The main aim of the section is to compare the relative effects of shape and thickness307

variations on the sound produced by cymbals, and in particular the ability of producing two308

distinctive sounds when hit on the bell or at the edge.309

A first comparison is drawn out in Fig. 6, which shows the velocity spectrograms of two310

different cases simulated. The first case, Fig. 6(a), is that of a plate having uniform thickness311

h = 1 mm, and only shape variation following the profile shown in Fig. 5 with a maximum312

height at centre Hc = 3.4 cm. In the second case, the same shape variation is considered, and313

a thickness dependence following the guidelines used in the previous section, is taken into314

account: a linear thickness variation, as in Fig. 1(a), with he = 0.4 mm. The two velocity315
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(a)

(b)

FIG. 6. Spectrogram of velocity with a 90 dB range. Strike at t = 0 s, with amplitude pm=90 N,

and contact time Twid = 1 ms. (a) cymbal with uniform thickness h = 1 mm, shape variation only

with height at centre Hc = 3.4 cm. (b) cymbal with the same shape variation, Hc = 3.4 cm, and

linear decrease of the thickness, he = 0.4 mm.

spectrograms shown in Fig. 6 are thus complementary to those shown in Fig. 2 and must be316
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compared altogether. In particular, contrasting Fig. 6(a) with 2(d), i.e. the two cases with317

the uniform thickness h = 1 mm and with/without shape variations, one can observe that318

the energy transfer is slightly more pronounced in the case with shape variation. Indeed,319

the maximum frequency attained in the spectrogram of Fig. 6(a) is around 750-800 Hz320

whereas it is only 500 Hz in 2(d) for the flat plate. This phenonemenon is easily explained321

by the presence of quadratic nonlinearity in the case of shape imperfections, which is key322

to generating more easily energy transfers28. This effect is aurally particularly striking (see323

companion wav files) : the enrichment brought by the shape and the quadratic nonlinearities324

is really noticeable, especially because it happens in the most sensitive frequency band for the325

ear. However, shape variation alone is not sufficient in order to create a rich spectrum as that326

obtained in Fig. 2(f). Adding the thickness variation allows retrieving the bright spectrum327

with frequencies up to 14 kHz, as shown in Fig. 6(b). Hence, variation of thickness seems328

to be really needed in order to build the explosive sound and excite very high frequencies329

beyond 10 kHz; however it is undoubted that shape variation is already important and adds330

a brightness to the sound produced by adding frequencies in the sensitive band of the ear.331332

For a more quantitative comparison, Fig. 7 shows the characteristic frequencies for a333

number of test cases, mixing both shape and thickness variations. Interestingly, it is found334

that when the thickness is uniform, h = 1 mm, and with the maximum height of the shape335

imperfection being half the measured one, Hc = 1.7 cm; a better energy build-up is obtained336

than with Hc = 3.4 cm. This can be explained that this case offers a better compromise337

between the appearance of quadratic nonlinearity and the stiffening effect produced by338

the curvature. Increasing Hc results in a more and more stiff structure with increasing339
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FIG. 7. Characteristic frequency fc as a function of the time t for twelve different cases reported

in inset, mixing shape and thickness variations, amplitudes of strike at the edge 90 and 150 N.

eigenfrequencies, making the couplings between modes and energy transfer more difficult.340

Anyhow Fig. 7 highlights that adding a shape imperfection always favours the energy build-341

up, but the thickness variation is also needed in order to attain very high values for this342

characteristic frequency. Indeed, all the curves with he = 0.4 mm are always the upper one343

for the characteristic frequency fc.344

Another aspect not investigated yet with the thickness decrease is related to the pitch345

glide. Indeed, decreasing the thickness at the edge results in geometric nonlinearities more346

easily excited since they are proportional to the ratio between the transverse displacement347
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(a) (b) (c)

FIG. 8. Velocity spectrograms in the low frequency range for a strike at the edge of magnitude

pm = 150 N, and for three different cymbal configurations. Restrained range of 50 dB in order

to highlight the frequency peaks. (a) only linear thickness variation down to he = 0.4 mm, flat

plate without shape imperfection. (b) shape variation only with height at centre Hc = 3.4 cm, and

uniform thickness h=1 mm. (c) shape and thickness variation with Hc=3.4 cm and he = 0.4 mm.

and the thickness. The pitch glide is related to the backbone curve of the modes of the348

structure, and is more pronounced if the transverse displacement is large as compared to349

h3,11,29–31. problem one may encounter if the plate is too thin, is that the pitch glide will be350

too important, resulting in a sound which is not pleasant to the ear and will more resemble351

that of a membrane. This effect can be easily simulated with the methods used in this352

paper, showing the need to stiffen the structure and explaining why very thin flat plates are353

not used as cymbals. This is illustrated in Fig. 8(a) concerning the case of the plate with354

linear thickness variation and he = 0.4 mm, for a vigorous strike with pm = 150 N. The355

attention is paid to the low frequency range, below 1200 Hz, and the very important pitch356

glides of all frequency peaks are clearly visible. On the other hand, Fig. 8(b) is concerned357

with a cymbal with uniform thickness and shape variation only, with a maximum height at358

centre Hc = 3.4 cm. In this case, the cymbal is so stiff that almost no pitch glide is present,359

even though an important strike is given to the structure. Fig. 8(c) displays the case with360

he = 0.4 mm and Hc = 3.4 cm, where a good compromise is found between creating a strong361
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FIG. 9. Velocity spectrograms, cymbal hit at r=4 cm from the centre. First row : soft strike, pm=20

N, second row, hard strike, pm=90 N. First column (a-b) : variable thickness only, he = 0.4 mm.

Second column, (c-d) : Shape variation only, uniform thickness h=1mm and height at centre

Hc=3.4 cm. Third column (e-f) : Hc=3.4 cm and linear thickness variation down to he = 0.4 mm.

nonlinear effect resulting in rapid energy build-up, and minimizing the pitch glide which362

shall not be too pronounced and unpleasant to the ear.363

The last simulation investigates the behaviour of the cymbal when hit at centre. Indeed,364

as stated before, a bell sound has to be obtained when striking the cymbal near the centre.365

Fig. 9 shows the velocity spectrograms for three different cymbal configurations and two366

amplitudes of strikes, pm = 20 N and pm = 90 N. The strike is imposed near the centre, at367

r = 4 cm. Fig. 9(a-b) considers the case of only thickness variation, with linear variation368

and he = 0.4 mm. It shows that even with moderate strikes the nonlinear regime is too369

rapidly excited, and the broadband spectrum is at hand, even though the cymbal is hit370

at centre. This shows undoubtedly that this configuration is not and cannot be used for371
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a cymbal since the two distinctive sounds (bell and crash) are out of reach. Fig. 9(c-d)372

shows the results when only shape variation is considered, with Hc = 3.4 cm, and a constant373

thickness h = 1 mm. In this case the spectrograms are almost unchanged and the sounds374

are completely equivalent to the ear. This is always the case if the strike is increased up375

to pm = 150 N, meaning that linear vibrations are at hand up to very large amplitudes of376

input forces. This case appears to be too stiff, preventing the drummer some colours to the377

sound found when striking the bell. Finally, Fig. 9(e-f) shows the results obtained with both378

shape and thickness variations, where Hc = 3.4 cm and he = 0.4 mm. This case seems to379

show a correct compromise, the sound produced when striking at centre being almost linear380

with a small excitation of nonlinearity for pm=90 N, giving a nice colour to the sound.381

IV. CONCLUSION382

This paper investigates the nonlinear vibrations of cymbals with a particular emphasis on383

the presence of the thickness variations in a physical model. While the model of flat plates384

with uniform thickness derived has been shown to be effective for simulating the sound of385

gongs4, the explosive sound of cymbal was more difficult to obtain. Indeed, thickness and386

shape variations play important roles in cymbal making, particularly in order to obtain two387

different behaviours when the excitation is at the centre or at the edge. When a cymbal388

is hit at its centre, a bell-like sound is awaited so that nonlinearities should not be too389

much excited. On the contrary, a scintillating sound with a rapid build-up of energy and390

generation of a large broadband Fourier spectrum in the first miliseconds is expected from391

vigorous strikes at the edge. One of the main outcomes of the present study is to derive such a392
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model, based on the von Kármán assumptions for thin plates, and accounting for both effects393

of thickness and shape variations. An ad-hoc numerical method is adopted, from earlier394

studies, to handle the complexity brought by these new terms for a time-domain simulation,395

using the Störmer-Verlet scheme for time integration and the Rayleigh-Ritz method, which396

allows one to give frequency-dependent modal damping factors as inputs. The substantial397

effect of thickness variations has been underlined and a set of simulations has been conducted398

in order to get a comprehensive view of the two different effects, resulting from shape and399

thickness variations. Simulations and synthesized sounds show that shape variations are400

very important the energy build-up, a result that was not expected but could easily be401

understood thanks to the quadratic nonlinearity. However, imposing only shape variations402

results in too stiff cymbals, so that only linear behaviour is observed when hit at centre,403

and the energy build-up is less important than that obtained with thickness variations. On404

the other hand, thickness variations alone make the plate too compliant in general, causing405

too high pitch glides that are not pleasant to the ear. Both of the physical features are406

thus needed, but the fact that shape variations already have an important effect, which is407

especially prominent in the frequency band where the ear is the most sensitive, shows that408

the thickness variations may be at a moderate level, a conclusion that is confirmed by the409

values of the edge thickness found in most of the cymbals.410

APPENDIX A: LINEAR ANALYSIS FOR THE TRANSVERSE PROBLEM411

In this section the complete formula for computing the mass and stiffness matrices MΦ412

and KΦ, related to the linear problem for the transverse vibrations, are given. The mass413
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matrix comes from the inertia term in (4). A simple calculation shows that the entries MΦij414

read:415

MΦij =

∫
S
ρh(r)ΦiΦjrdrdθ. (A1)

In order to compute easily the current term in the stiffness matrix, the following identity is416

used:417

∆(D(r)∆Φp) = ∆D∆Φp +D∆∆Φp + 2∇D · ∇(∆Φp). (A2)

Consequently the stiffness matrix can be decomposed as KΦ = K1
Φ +K2

Φ +K3
Φ +K4

Φ, where

the entries of each term read:

K1
Φij =

∫
S

(∆D) (∆Φj) Φirdrdθ, (A3)

K2
Φij =

∫
S
ω2
jD(r)ΦiΦjrdrdθ, (A4)

K3
Φij = 2

∫
S
∇D · ∇(∆Φj)Φirdrdθ, (A5)

K4
Φij = −(1− ν)

∫
S
L(D,Φj)Φirdrdθ. (A6)

These equations can be used for an arbitrary boundary conditions once the eigenmodes418

Φi and eigenfrequencies ωi are known. In the case of a free edge, the eigenmodes write419

Φkn(r, θ) = Rkn(r) cos kθ (first configuration) and Φkn(r, θ) = Rkn(r) sin kθ (second configu-420

ration), where the index k refers to the number of nodal diameters and n to the number of421

nodal circles. When k = 0 the modes are axisymmetric and no dependence on θ is found.422

When k 6= 0, the eigenfrequency is degenerated with a multiplicity of 2, and the two con-423

figurations, one in sine and the other one in cosine, are present. Rkn(r) is a combination of424
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Bessel functions, the expression of which is given16. Plugging these expressions of Φi into425

the previous equations, one can separate the radial part from the angular part, and all the426

expressions are analytic. The integrals are then computed numerically from the analytic427

expressions, leading to a perfect control of the accuracy of the results.428

APPENDIX B: LINEAR ANALYSIS FOR THE IN-PLANE PROBLEM429

Using the same identity (A2) to develop the terms arising from (7), one can write KΨ =

K1
Ψ + K2

Ψ + K3
Ψ + K4

Ψ, where the elements of each matrix read:

K1
Ψij =

∫
S

∆B∆ΨjΨirdrdθ, (B1)

K2
Ψij =

∫
S
ζ4
jD(r)ΨjΨirdrdθ, (B2)

K3
Ψij =2

∫
S
∇B · ∇(∆Ψj)Ψirdrdθ, (B3)

K4
Ψij =− (1 + ν)

∫
S
L(B,Ψj)Ψirdrdθ. (B4)
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