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Abstract

In this paper, a modeling extension for the description of wave propagation in porous media at low-mid
frequencies is introduced. To better characterize the viscous and inertial interactions between the fluid
and the structure in this regime, two additional terms described by two parameters α1 and α2 are taken
into account in the representation of the dynamic tortuosity in a Laurent-series on frequency. The model
limitations are discussed. A sensitivity analysis is performed, showing that the influence of α1 and α2 on
the acoustic response of porous media is significant. A general Bayesian inference is then conducted to
infer simultaneously the posterior probability densities of the model parameters. The proposed method
is based on the measurement of waves transmitted by a slab of rigid porous material, using a temporal
model for the direct and inverse transmission problem. Bayesian inference results obtained on three
different porous materials are presented, which suggest that the two additional parameters are accessible
and help reducing systematic errors in the identification of other parameters: porosity, static viscous
permeability, static viscous tortuosity, static thermal permeability and static thermal tortuosity.

I Introduction

Porous media are of great interest for a wide range of applications: noise control [1], hydrology [2], biology [3],
etc. Wave propagation in air-saturated porous materials is determined by the viscous, inertial and thermal
interactions between the fluid and solid phases, which can usually be modeled assuming divergence-free fluid
motion at the pore scale. Depending on the frequency range considered, the physical intrinsic parameters
describing the porous material acoustic behavior are distinct. In the high-frequency regime, where the fluid
flow can be considered inviscid adiabatic in the bulk fluid except for a lossy boundary layer at the pore walls,
the inertial effects and the viscous and thermal dissipative effects are mainly characterized by the tortuosity
α∞ and the viscous and thermal characteristic lengths of the pores [4, 1] (Λ and Λ′, respectively). In the
low-frequency regime, where the fluid flow can be considered viscous isothermal within the pores, the viscous
and inertial effects are mainly described by the static viscous permeability k0 and the static viscous tortuosity
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α0 (also coined inertial factor [5, 6]). The thermal effects are described by the static thermal permeability
k′0 [6, 7] and the static thermal tortuosity α′0 [6, 1]. In this regime we will see however that if we consider the
effect of the two last thermal parameters, we should simultaneously consider the effect of two more, higher
order, viscous and inertial parameters. The porosity φ influences both asymptotic regimes. The modeling
of wave propagation inside porous media and the non invasive determination of their micro-structure are
crucial for the diverse research fields in which porous materials are studied, sparking a vast interest in their
characterization.

Dedicated direct measurements have been performed in order to individually access some of these
parameters [8, 9, 10, 11], but some drawbacks (intrusive measurements, specialized equipment, need of
different samples for each experiment) have oriented the identification strategies towards new characterization
methods. Auspiciously, all the morphological characteristics of a porous material have a certain influence
on its acoustical response, which has naturally led to the development of acoustical indirect identification
methods that allow the inference of these properties from acoustic measurements (see [12] for a review on
these methods and [13] for an application in outdoor ground characterization). The general idea of such an
inverse identification is to fit the output of an acoustic model to a measurement. Inverse characterization
methods are preferred, since they allow the simultaneous identification of multiple parameters, while using
prevailing equipment such as wave guides (impedance tube, transmission tube) or ultrasonic transducers.

In [14, 15], the static viscous permeability k0 was successfully identified using transmitted and reflected
waves of very low-frequency bandwidth, in the time domain. In [16], the direct problem of wave propa-
gation in air-saturated porous media was worked out at low frequencies, using the inertial parameter of
Norris α0 in the low frequency approximation of the tortuosity. This model was later used in [17], where
an inverse scattering problem was solved in the time domain to obtain both the static thermal permeabil-
ity k′0 and the static viscous tortuosity α0 simultaneously, using transmitted waves in the low-frequency
range. Based on measurements of the surface impedance of a porous sample backed by different air gaps,
the method developed by Zieliński [18] allowed the simultaneous retrieval of the 6 parameters of the John-
son–Champoux–Allard–Lafarge [4, 19, 7] JCAL model (φ, α∞, k0, Λ, Λ′ and k′0), using impedance tube
experiments, in the frequency domain.

While the studies conducted on the inverse identification of porous material properties presented here-
inbefore focused on a deterministic fit between models and experiments, and were thus exempt from any
statistical analysis of the inversion outcome, Chazot et al. [20] pioneered a Bayesian inference approach for
this kind of identification, taking into account measurement uncertainties in the inversion and using a trans-
mission tube to obtain pressure measurements in the audio-frequency regime on both sides of a clamped
poroelastic material. The inference of φ, α∞, k0, Λ and Λ′ (plus 3 parameters of the Biot model) was
conducted using a Differential-Evolution Markov-Chain Monte-Carlo strategy to explore the marginal poste-
rior probability of each parameters. Later, Niskanen et al. [21] conducted both deterministic and statistical
inversions on porous samples in the frequency domain, in a Bayesian setting similar to the one in [20], using
measurements in an impedance tube and a transmission tube. Their work showed the ability of Bayesian
inference methods to efficiently invert the JCAL parameters and the associated uncertainties. More recently,
Bayesian inference was used [22] to carry the identification of φ, α∞, Λ and Λ′ using ultrasonic reflected
waves by the first interface, in the time dimain.

Extensions of the Johnson–Champoux–Allard (JCA [4, 19]) equivalent fluid model were proposed by
Norris [5] and Lafarge [6, 23] to correct the low frequency behavior of visco-inertial and thermal effects. How-
ever, the more detailed full-frequency model proposed so far, the JCAPL (Johnson–Champoux–Allard–Pride–Lafarge)
model [6, 1, 23] turns out to be inappropriate to describe precisely the low-mid frequency range. Indeed,
JCAPL uses the same number of low-frequency viscous, inertial and thermal parameters. But the effective
density, in accordance with its Laurent series which starts at a power (jω)−1, will require two additional
parameters to be described with the same precision as the effective compressibility (which starts at a power
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(jω)0 with a pure physical constant γ). Therefore, a consistent description of the low-mid frequencies visco-
inertial effects should introduce N + 2 geometrical parameters, N being the number used for thermal effects.
The current modeling of visco-inertial effects should be extended by introducing two additional parameters,
due to the strong influence of visco-inertial effects on porous media acoustics at low-mid frequencies. In
particular, these parameters should be able to represent the deviation from the purely viscous regime, when
inertial effects start growing within the intra-pore fluid-flow.

The purpose of the present work is thus twofold. The main goal is to extend the previous equivalent fluid
model in the low-mid frequency range, with the introduction of the two new parameters, and to understand
their influence on the acoustic behavior of porous media. The second objective set in the present study is to
evaluate the model parameters using a Bayesian inference method in a setting similar to the one in [20, 21],
but using measurements of transmitted waves in the time domain. The attractive feature of a time-domain-
based approach is that the analysis is naturally limited by the signals finite duration, and is consequently the
most appropriate approach to transient signal processing. To perform the identification of the new higher
order parameters, all the other parameters are also identified simultaneously, including the inertial parameter
of Norris, which has not been done before.

This paper is organized as follows. The acoustical model is presented in Sec. II, where the new intrinsic
parameters are detailed, and their influence on the acoustic response highlighted. The inference methodology
is described in Sec. III, where the Bayes formula is recalled and the numerical exploration of the parameter
space is detailed. Results for the inference of three different porous materials are presented in Sec. IV.
Concluding remarks are laid out in Sec. V.

II Acoustical Modeling

In the study of porous media, two different cases typically arise. When the fluid and solid phases have
coupled contributions to the acoustic attenuation in the material, the Biot model is used to describe the
wave propagation in both the solid and fluid phases [24], resulting in the occurrence of two compressional
and one rotational wave. When the solid structure can be assumed rigid and its vibrations neglected, which
is often the case in air-saturated porous media, one usually resorts to using an equivalent fluid model where
only the compressional wave propagation in the fluid phase of the porous material is considered. The classical
properties of density and compressibility are replaced by equivalent ones in order to take into account visco-
inertial and thermal fluid-structure interactions in the pores.

A Extension of the acoustical low frequency modeling for rigid porous media

Let us consider a macroscopically homogeneous rigid porous material filled with a fluid of density ρf , fluid
adiabatic bulk modulus Kf and dynamic viscosity η. We further assume that the geometry is simple enough
so that the movement of the fluid remains incompressible at the pore scale. One can then apply continuum
mechanics to the fluid phase in the material and identify the whole porous medium as an equivalent fluid
material of effective properties to account for viscous and thermal dissipation arising from the fluid-frame
interaction. As initially proposed by Zwikker and Kosten [25], one can decouple the contribution of viscous
and thermal dissipation in the pores. To do so, one defines two response factors that represent the deviation
from fluid behavior in free space as a function of frequency: the dynamic tortuosity α(ω) that encompasses
all viscous and inertial effects, and the dynamic compressibility β(ω) that takes into account all thermal
effects. In the time domain, these factors are operators [26] (with kernels α̃(t), β̃(t)) and the equations
controlling the wave behavior are given by

ρf

∫ t

0

α̃(t− τ)
∂v(τ)

∂τ
dτ = −∇p, 1

Kf

∫ t

0

β̃(t− τ)
∂p(τ)

∂τ
dτ = −∇ · v. (1)
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In the previous equations, v is the macroscopic fluid velocity and p the acoustic pressure, obtained by aver-
aging the microscopic velocity and pressure fields over a representative elementary volume. The integration
limits t and 0 respectively account for causality and absence of motion for t < 0.

In this study, we propose to enhance the modeling of α(ω) in the low-mid frequency range (so that the
viscous boundary layer thickness δ = (2η/ωρf )1/2 is larger than the typical radius r of the pores), by taking
into account two more terms in its Laurent series expansion (as compared with the work of Norris [5] and
the JCAPL model [23]). This reads, in the frequency domain, as

α(ω) =
ωv
jω

+ α0 − α2
1

(
jω
ωv

)
+ α3

2

(
jω
ωv

)2

+O
(
jω
ωv

)3

, (2)

with j2 = −1, +jω is the time derivative, ωv = ηφ/ (ρfk0) is a frequency characteristic of the viscous effects,
φ is the porosity, k0 is the static viscous permeability and α0 is the static viscous tortuosity. α1 and α2 are
two new positive dimensionless intrinsic geometrical parameters related to the low frequency dynamics of
the viscous-inertial forces between fluid and structure, to be discussed in the remainder of this work. The
signs associated with the additional terms stem from a physical analysis, given in Sec. B.
The dynamic thermal compressibility is given by [23]

β(ω) = γ − (γ − 1)/α′(ω), (3)

where the dynamic thermal tortuosity α′(ω) is

α′(ω) =
ωτ
jω

+ α′0 +O
(
jω
ωτ

)
, (4)

with ωτ = ηφ/ (ρfk
′
0Pr) a frequency characteristic of the thermal effects, where k′0 is the static thermal

permeability, α′0 is the static thermal tortuosity, γ is the fluid heat capacity ratio and Pr is the Prandtl
number. Note that the dynamic thermal tortuosity Laurent series in 4 is limited to its first two terms since
it yields, inserted in 3, a β(ω) expansion up to terms of order (jω)

2, the same as in 2:

β(ω) = γ − (γ − 1)

[
jω
ωτ

+ α′0

(
jω
ωτ

)2
]

+O
(
jω
ωτ

)3

. (5)

Therefore, α′1 and α′2, the thermal counterparts of visco-inertial parameters α1 and α2, need not be considered
here.

B Physical interpretation of α0, α1, α2, α′0
The focus in this study is put on the visco-inertial terms intervening in the modeling of α(ω). Their physical
interpretation is given in the following.

� The static viscous tortuosity α0 (also coined inertial factor [5]) corresponds to the real part of the low
frequency limit of the dynamic tortuosity, given by Norris [5] and Lafarge [6]: α0 =

〈
v2(r)

〉
/ 〈v(r)〉2

(seel also [23]), where 〈v(r)〉 is the average velocity of the viscous fluid for direct current flow within a
volume element, small compared with the relevant wavelength but large compared with the individual
material pores. It represents a measure of the direct current viscous-flow disorder, and is increased by
irregular solid distributions or by constrictions within the pores [23]. The inertial factor is indirectly
related to the standard deviation of the pore size distribution [12], with increasing values when the
standard deviation increases. For cylindrical circular pores with log-normally distributed radius of
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standard deviation σR, the inertial factor is [12] α0 = 4
3α∞e

4(σR ln 2)2 . This parameter has been
used before to determine the acoustic properties of multi-periodic composites [27], but experimental
techniques to measure it are very scarce in the literature [17]. The thermal counterpart of α0, the
thermal tortuosity α′0, is similarly defined [6, 23] by α′0 =

〈
θ2(r)

〉
/ 〈θ(r)〉2, where 〈θ(r)〉 is the average

of the relaxed excess temperature field. This parameter has not been measured experimentally before.

� The dimensionless parameter α1 is related to the low-frequency dynamics of the viscous forces between
fluid and structure. The dimensionless parameter α2 is related to the low-frequency dynamics of the
inertial forces between fluid and structure. We can rewrite Eq. 2 in terms of an apparent characteristic
frequency ωc app and an apparent inertial factor α0 app(ω) as

α(ω) =
ωc app(ω)

jω
+ α0 app(ω), (6)

with
ωc app(ω) =

ηφ

ρfk0 app(ω)
, (7)

which introduces k0 app(ω), an apparent permeability function. From the expressions 6,7 and the
expansion 2, we find for the apparent permeability function

k0 app(ω) = k0

 1

1− α2
1

(
jω
ωv

)2

+O (jω)
4

 , (8)

and for the apparent inertial factor α0 app(ω)

α0 app(ω) = α0 + α3
2

(
jω
ωv

)2

+O (jω)
4
. (9)

We can now justify a posteriori the signs associated with α2
1 and α3

2 in Eq. 2. It suffices to invoke the general
property that, because of the divergence-free nature of the fluid flow, the functions k0 app(ω) and α0 app(ω)

necessarily are strictly decreasing functions of frequency: d
dωk0 app(ω) < 0 and d

dωα0 app(ω) < 0. Indeed, these
are the inequalities (18) in Ref. [28], where the theory of asymptotic homogenization at two scales was used
to derive the condition of incompressibility. We consider it more lucid to recognize in this condition a mere
hypothesis that is made on the microgeometries considered, then making the detour by the homogenization
method in question useless. In fact, as we assume that the pore geometry is simple enough to ensure that
the fluid motion is incompressible at the pore scale for large wavelengths, it follows that in the Laplace
space the dynamic tortuosity and permeability, α(s) and k(s), are positive strictly decreasing functions of
the Laplace variable s > 0. In Fourier space the consequence is the same as the one seen above. Monotonic
properties of this type, induced by the incompressibility, were also shown in Ref. [6]. Interpretations in terms
of economy-of-nature conditions, as mentioned by Brown [29], can also be given. For instance, the fact that
k0 app(ω) is maximum at zero frequency interprets as a principle of minimum dissipation, requiring that the
direct current flow is that which minimizes the dissipation induced by internal friction. Put another way, the
viscous resistance due to the fluid flowing through the pores is minimized, or alternatively, the permeability
is made maximum. The velocity profiles of the viscous fluid in permanent regime are distributed in such a
way that the ratio

〈
v2
〉
/ (−〈v ·∆v〉) is made maximum. For the apparent permeability defined in Eq. 8

(which can be shown to be 〈v · v∗〉 / (−〈v ·∆v∗〉), see [30, 6]), this means that its value must be maximum
at zero frequency, which leads to the minus sign in front of α2

1. As the apparent permeability decreases as
the frequency increases, the porous material becomes, in appearance, more resistive.

Likewise, the fact that α0 app(ω) is maximum at zero frequency interprets as a principle of added mass
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maximization: the velocity profiles of the viscous fluid in permanent regime are distributed in such a way
that the ratio

〈
v2
〉
/ 〈v〉2 is made maximum. For the dynamic tortuosity defined in Eqs.(6–7) (which can

be shown [30, 6] to be 〈v · v∗〉 / (〈v〉 · 〈v∗〉)), this means that its value must be maximum at zero frequency,
which leads to the plus sign in front of α3

2.

C Theoretical limitation of the modeling

Now that the model in Eq. 2 and the additional terms it contains have been introduced, its corresponding
limitation in terms of frequency must be estimated. We want to specify up to what frequency value, ap-
proximately, the low frequency approximation used still represents accurately the dynamic tortuosity. This
limit is attained when the terms of higher order are not small anymore, compared with the retained terms.
In Appendix A we write the actual Laurent-series for the dynamic tortuosity:

α(ω) =
ωv
jω

+ α0 + α2
1

(
− jω
ωv

)
+ α3

2

(
− jω
ωv

)2

+ α4
3

(
− jω
ωv

)3

+ α5
4

(
− jω
ωv

)4

+O
(
jω
ωv

)5

(10)

and show how the characteristic viscous frequency ωv and dimensionless form-factors parameters αp+1
p ,

p = 0, 1, 2, . . ., are determined in principle from the microgeometry. For Eq. 2 to remain accurate, we may
estimate that the terms with α4

3 and α5
4 in (10) should not exceed 5% of those with α2

1 and α3
2. This yields

the following frequency ranges:

ω <

√
0.05

α2
1

α4
3

ωv for the imaginary part of α(ω),

ω <

√
0.05

α3
2

α5
4

ωv for the real part of α(ω). (11)

If we had asked that the terms with α2
1 and α3

2 should not exceed 5% of the first (ωv/jω) and second (α0)
terms, we would have found the frequency ranges:

ω <

√
0.05

1

α2
1

ωv for the imaginary part of α(ω),

ω <

√
0.05

α0

α3
2

ωv for the real part of α(ω). (12)

If the geometry is simple enough, these should be comparable to the previous ones, while less severe: the
convergence radius being finite, the need to add monomials in the series should accelerate as the frequency
increases, which means that the corrections made by successive monomials remain significant only for smaller
and smaller frequency increases. The conditions (11) are thus a priori more severe than (12). For circular
cylindrical pores, as an example of simple geometry, we find successively for the above frequency ranges
(with the values αp+1

p , p = 0, 1, 2 given in Appendix A): ω < 0.8ωv, ω < 0.76ωv, ω < 0.95ωv, ω < 2.12ωv,
which allows us to appreciate, in this case, how much (11) are more severe than (12).
In the experiments that were performed in this work, an estimation of ωv was first provided. We could not
use the conditions (11) because of our lack of knowledge of the parameters α4

3 and α5
4. An estimation of

α2
1 and α3

2 was nevertheless obtained, retaining in the signals the frequencies ω < 0.8ωv. Then, as we had
no information on α4

3 and α5
4, we only verified, a posteriori, that the conditions (12) were satisfied with the

obtained values of α0, α2
1 and α3

2. In case of failure, the inference process was repeated by adapting the
retained frequencies in the signals, until the criteria (12) were satisfied a posteriori. Here, we have observed
that, starting with ω < 0.8ωv, no iteration was necessary to perform for materials M1 and M3, whereas just

6



one iteration was necessary for M2 to satisfy the criteria (12).

D The Transmission operator

In the present study, the propagation of waves inside porous media is of main interest and the focus is put
on the transmitted waves. Therefore, we need to determine an expression of the transmission operator T̃ (t),
that describes the relationship between incident (pi (x, t)) and transmitted (pT (x, t)) waves, through the
convolution

pT (L, t) =

∫ t

0

T̃ (τ)pi (0, t− τ) dτ, (13)

where L is the material width and 0 is the origin where the material starts. Experiments are performed in
a guide having a diameter of 5 cm. The experimental set up is given in Fig. 1. Since pulses of frequencies
as low as 70 Hz and as high as 3 kHz are used in the experiments, a length of 3 m of the pipe is used in
the higher frequency range (f > 1 kHz), while a pipe length of 50 m is used otherwise. In the latter case,
the pipe can be rolled to save space without perturbations on experimental signals (the cut-off frequency of
the tube is fc-o = 4 kHz). A sound source driver unit “Brand” made by a Realistic 40-9000 loudspeaker is
used. Bursts are provided by a synthesized function generator (Standford Research Systems, model DS345-
30MHz). The signals are amplified and filtered using a Standford Research Systems SR 650-Dual channel
filter. The incident and transmitted signals are measured using the same microphone (Bruel and Kjaer,
4190) in the same position in the pipe. The incident signal is measured in the absence of any porous sample,
while the transmitted signal is measured in the presence of the porous sample.

x

Dimension x=50m

pi pT

Figure 1: Schematic of the experimental apparatus used to measure the transmitted waves

When the incident pressure wave is normal to the material, one can obtain the transmission coefficient
by solving a system composed of 4 equations (see Appendix B), obtained by considering continuity of pressure
and velocity on each side of the material. Solving the system yields the transmission coefficient T (ω) in the
frequency domain as

T (ω) =
2Ξ

2Ξ cosh(jωLξm) + (1 + Ξ)2 sinh(jωLξm)
, (14)

with L the material width, and

Ξ = φ

√
β(ω)

α(ω)
, ξm =

√
ρf
Kf

α(ω)β(ω). (15)

Now that the transmission coefficient has been worked out, the transmission operator can be obtained through
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Fourier transform. We can thus carry on with the sensitivity analysis of the newly introduced parameters.

E Sensitivity analysis

We show the effect of varying α0, α1, α2, α′0 and k′0 in synthetically generated transmitted signals, to compare
the influence of visco-inertial and thermal parameters of equivalent order in the respective Laurent series of
α(ω) and β(ω). To do so, an experimentally measured incident signal is used as input, with a frequency
band of 1000 − 2500 Hz. The transmission coefficient of a test material is calculated using Eq. 14, and the
transmitted signal is calculated through the convolution described in Eq. 13.

The other intrinsic parameters are arbitrarily fixed as: material width L = 5 cm, φ = 0.99, k0 =

0.93 · 10−9 m−2 (or equivalently, the static flow resistivity σ0 = η/k0 ≈19750 N.s.m−4). The reference values
are α0 = 2.5, α′0 = 2.3, α1 = α2 = 0 and k′0/k0 = 1.41. The reason for this choice of k′0 is to set ωv = ωτ so
that the comparison of the parameters influences remains fair. The general effects of varying the parameters
are displayed on Figs.2–6, and summarized as follows:

� An increase in α0 in Fig. 2 delays the transmitted signal, but increases its amplitude. The signal delay
can be explained through the examination of the effective sound speed cm inside the porous medium

cm =
c0√

α(ω)β(ω)
, (16)

where c0 is the sound celerity in ambient air. Increasing α0 decreases cm, producing the delay. At the
same time, we note that cm is increasing as a function of the frequency (since α(ω) and β(ω) are both
decreasing as a function of the frequency when ω < ωv and ω < ωτ ). An increase in α0 leading to a
decrease in cm is thus seen as a effective decrease in frequency, which results in a higher transmission.
The thermal term having a similar order in the Laurent series of β(ω) is γ, which is not subject to
variation.

� An increase in α1, seen in Fig. 3, decreases the transmitted signal’s amplitude, with a dispersionless
phenomenon. This is coherent with its interpretation as a diminution of the effective permeability, as
seen in Eq. 8: a permeability decrease (resistivity increase) is bound to reduce the wave transmission
in the material. Little to no effect on the transmitted wave phase is perceived, as expected since the
apparent permeability k0 app(ω) of Eq. 8 mostly takes into account diffusive, dispersionless processes.
The thermal term having a similar order in the Laurent series of β(ω) is k′0. The influence of increasing
k′0 is displayed in Fig. 4, where it is seen that increasing values of k′0 increase the amplitude of the
transmitted signal, with almost no influence on the signal phase.

� The influence of α2 is shown in Fig. 5: increasing the value of α2 leads to a decreasing transmitted
wave amplitude. The signal phase is also shifted, resulting in a faster wave inside the porous medium.
As expected from Eq. 9, an increase in α2 results in a faster decrease in the apparent inertial factor
α0 app(ω). It is thus coherent to observe a trend opposite the one shown in Fig. 2 for the influence
of α0, where an increase in α0 leads to a general increase in the transmitted wave amplitude, and its
delay. The thermal term having a similar order in the Laurent series of β(ω) is α′0. An increase in α′0,
while barely seen in Fig. 6, increases the amplitude of the signal, but does not delay it.

The conclusion of this sensitivity analysis is that the influence of the additional parameters α1 and α2

has been shown significant, which motivates the need for an inverse method of identification to retrieve
their values. This study was also conducted on synthetically generated materials of higher and lower static
viscous permeabilities, yielding similar conclusions, provided that the frequency content of the incident waves
is adapted, since ωv and ωτ are functions of k0.
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Figure 2: Influence of α0 on transmitted waves
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Figure 3: Influence of α1 on transmitted waves
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Figure 4: Influence of k′0 on transmitted waves
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Figure 5: Influence of α2 on transmitted waves
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III Inverse problem: statistical inference

In the context of inverse problems for parameter estimation, statistical inference in the Bayesian framework
consists in recasting parameters of interest as random variables associated with probability densities en-
compassing established information or new information collected through measurements [31, Chap. 8]. A
general review on inverse problem theory can be found in [32], while a review on statistical inverse prob-
lems can be found in [33]. Statistical inverse problems use the information contained in both the observed
experimental data de and the prior knowledge of the estimated parameters m. In the present article, de

encompasses all the measured transmitted signals in the time domain being used for the inference, and
m = (φ, α0, α1, α2, α

′
0, k0, k

′
0/k0). These two states of information are combined to express our degree of

knowledge about the true values of m, improved thanks to the information contained in the observation de.
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Using Bayes’ theorem, a posterior probability density π(m|de) is defined for the model parameters m, given
a set of observable parameters de. Formally, this writes

π(m|de) =
π(de|m)π(m)

π(de)
, (17)

where L(m) ≡ π(de|m) is the likelihood function, π(m) is the prior density, and π(de) is the Bayesian
evidence. The marginal posterior probability π(m|de) reflects all the information inferred onm, conditional
on the observation de, and is the quantity to be found. The evidence π(de) represents the probability of the
experimental data being generated by the given parameters and models; the evidence is generally a term
difficult to evaluate numerically: its calculation can be conveniently circumvented by means of the MCMC
method detailed in Sec. C. The aforementioned terms are detailed in the following.

A Likelihood

The likelihood function represents the mechanism through which information provided by the observation
is incorporated into the posterior density. The physical correlations between m and de, as predicted by a
physical model (here a convolution between incident signal and transmission operator), are represented by
a deterministic forward operator G, and a noise ε accounting for the uncertainty:

de = G(m∗) + ε, (18)

where m∗ is unknown. The components of ε are assumed to be independent of the model parameters m
and identically distributed random variables of zero mean Gaussian density πε.
The forward operator is represented in a discrete-time manner by notingG(m) = (G1(m), . . . Gj(m), . . . , GNd

(m))

where Nd is the number of time steps observed in the experimental transmitted signal, and with

Gj(m) =

∫ tj

0

T̃ (m, τ)pi(xmeas, tj − (xmeas − L)/cf − τ)dτ, (19)

with xmeas the location of the microphone, where the dependency on the parameters m has been made
explicit in the writing of the transmission kernel and where tj is the jth observed time step. The likelihood
takes the form

L(m) = πε(d
e −G(m)), (20)

which reads, assuming πε follows a zero mean Gaussian distribution,

L(m) =

Nd∏
j=1

1√
2πσ2

j

exp

(
−|d

e −Gj(m)|2

2σ2
j

)
, (21)

where σ2
j denotes the noise variance and is either determined experimentally, set a priori, or taken as a new

variable to identify. The larger the value of σ2
j , the larger the estimated uncertainty on the observation.

The value of the standard deviation σj is taken in this work to 2% of the average of the absolute value of
the considered experimental transmitted signal, to encompass our uncertainty in the acquisition chain, the
material length, the experimental conditions (temperature, pressure, etc.) and the possible presence of gaps
and leaks around the samples or the microphone. For numerical reasons, the logarithm of the likelihood is
used instead of Eq. 21. As is the case for classical inverse problems where a cost function has to be minimized
in order to retrieve the parameters of interest, the likelihood can be viewed as the probabilistic equivalent
of such a quantity, effectively measuring the probability of the experience being observed, for a given set of
parameters.
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Parameter φ α0 α1 α2 α′0 k0(10−9 m2) σ0(103 N.s.m−4) k′0/k0

Prior Min 0.6 1.01 0 0 1.01 0.1 0.92 1
Prior Max 0.99 4 3 3 4 20 183.7 20

Table 1: Prior boundaries

B Prior model

The prior probability π(m) incorporates the information obtained on the model parameters independently of
the observation de used during the inference. It reflects the user’s prior insight into the problem, generalizing
the classical constraints used during deterministic inversion, assigning weights to the more probable values.
When no prior information is available or if prior modeling is of questionable accuracy, a wide-range, non-
informative improper homogeneous density on the parameters supports represents well one’s ignorance and
merely sets boundaries for each parameter, as in classical deterministic inverse problems. In the present
article, prior independence is first assumed among the unknown parameters, setting

π(m) =
8∏
i=1

πi(mi), (22)

where a uniform probability πi(mi) ∼ U(mi,min,mi,max) is assumed for the priors, withmi,min andmi,max the
boundaries, given in Table 1. It is possible to see [7, 29, 5, 34] that, whatever the pore geometry considered,

α0 ≥ α′0 > 1; k0 ≤ k′0. (23)

The equalities are satisfied only for the case of aligned cylindrical pores. As a result, the constraints can
be further integrated into the prior by assigning null probabilities to the parameters not respecting these
conditions.

C MCMC: posterior sampling

As the posterior probability density defined in Eq. 17 is only known up to a normalizing constant, it is still
necessary to devise a technique to draw samples directly from the posterior distribution, without having
to calculate the Bayesian evidence, which is especially arduous in high-dimensional parameter spaces. To
address this issue, a technique called Markov Chain Monte Carlo (MCMC) is exploited. A random-walk
algorithm is designed to explore the posterior density, moving preferentially towards regions of high proba-
bility densities, efficiently exploring the area of interest (usually small compared with the parameter space
generated by the prior support) and creating a Markov chain whose stationary distribution is the distribution
of interest. This is done with a Metropolis-Hasting [35, 36] algorithm for the selection process, consisting in
an acceptance/rejection step that creates the transition kernel of the Markov chain. The reader is referred
to [35, 36, 37, 38] for the specifics, including that of the MCMC strategy used in the present article (coined
MT-DREAM_ZS [38]).

In the present work, 3 Markov chains are used in parallel, on which 105 iterations are performed, with
the first 10% of each chain being discarded as burn-in to allow decorrelation with the initial samples. The
chains are initialized by sampling from the prior’s support. Convergence is checked a posteriori, through a
Gelman-Rubin diagnostic [39] and a visual check of the chain samples.
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IV Identification results

In this section, the inference method is carried on three different porous materials, coined M1, M2 and M3.
For each of them, a dedicated discussion is provided. The Maximum A Posteriori (MAP) estimator is chosen
as the reference probabilistic estimator in this study, since it is closest in meaning to the estimates obtained
through usual deterministic methods, related to a maximum likelihood estimation. The MAP estimate
mMAP is defined as

mMAP = arg max
m

π(m|de). (24)

The conditional mean estimator E(mi|de) is also given in the results summaries. The inference results
are summarized in Tables 2,3 and 4 for inferences of materials M1, M2, and M3, respectively, where the
MAP and the mean are reported. The 95% credibility intervals (CI) are also given, since they carry more
meaning when the identified parameter does not follow a normal distribution. In the Bayesian sense, such an
interval is interpreted as a 95% probability that the true value of a given parameter falls within the credible
region. The waves transmitted by materials M1, M2 and M3 are measured using incident pressure signals
whose frequency spectra are centered in a frequency range of [50 Hz− 2 kHz], depending on the estimated
characteristic angular frequency ωv of the materials, the newly developed acoustical model being dedicated
to the low frequency regime. We illustrate the shape of the reference and transmitted signals (material M2)
in the time domain for two different frequency contents, in Figs. 7-8. As the frequency increases, it becomes
apparent that the transmitted signal is delayed.
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Figure 8: Reference and transmitted signals for a
frequency content centered around 2 kHz

Figures 9,11 and 13 show the probability density functions (pdf, diagonal elements of the matrix plot)
and joint-pdfs (off-diagonal elements) inferred on material M1, M2 and M3, respectively. Obtaining the pdf
is achieved through a Kernel density estimation of the Markov-Chains resulting from the MCMC simulations,
for each parameter. The 2D joint-pdf is calculated by first binning the scatter plot of each parameter pair,
calculating the associated 3D histogram and then applying a surface plot to display the binned areas, with
warmer colors corresponding to higher probability densities. The goal of such a plot is to see the shape of
the densities and the density support range of the sampled MCMC elements. It can also be used to describe
the type of correlations that exist between the parameters for a specific inverse problem.

Finally, the identification is concluded by showing the agreement, both in time– and frequency–domains,
between experimental and MAP signals, in Figures 10, 12 and 14, for materials M1, M2 and M3, respectively.
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A Inference of M1 properties

Material M1 is a melamine-like foam, of high porosity and low resistivity and of thickness L = 5 cm. Previous
experiments, using reference techniques [40, 9, 41, 10, 14], showed a porosity of 0.98±0.02 and a flow resistivity
of 6000± 1000N.s.m−4, which is close to the present results.

We note that the new parameters, α1 and α2, are correctly identified (i.e, they display an informative
posterior probability density). This is further proof of the importance of these parameters for the considered
experiment. If they had not been taken into account, their contribution to the acoustic response would have
been absorbed during the inference by other parameters, which would have in turn biased their identification.

Looking at Fig. 10, we see that the fit between experimental and MAP signals is excellent, even for
signals that were not used during the inference, where the frequency content extends beyond the characteristic
frequency for viscous effects (ωv ≈ 4018 rad.s−1, fv ≈ 639Hz). The purpose of showing a fit between an
experimental signal that was not used during the inference and with a frequency content higher than the
theoretical limit of our model is to test the extended validity of our model.

Parameter φ α0 α1 α2 α′0 k0(10−9 m2) σ0(103 N.s.m−4) k′0/k0

Inverted value (MAP) 0.99 1.27 0.17 0.14 1.16 3.76 4.88 2
Mean 0.98 1.29 0.15 0.13 1.13 3.77 4.88 2.03

Lower 95% CI 0.96 1.22 0.02 0.01 1.01 3.43 4.43 1.36
Upper 95% CI 0.99 1.37 0.25 0.27 1.26 4.15 5.36 2.82

Table 2: Results summary for the inference of M1 parameters.

Figure 9: (Color online) M1 inference pdfs (diagonal elements), scatter and joint pdfs (off-diagonal elements).
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Figure 10: (Color online) Material M1. MAP estimates (dashed line) and experimental signals (solid line).
Left: time signals. Right: frequency spectrum.

B Inference of M2 properties

Material M2 is the tested sample with the lowest static permeability (highest flow resistivity), and consists of
a foam of thickness L = 2.5 cm. Previous experiments, using reference techniques [40, 9, 41, 10, 14], showed
a porosity of about 0.84± 0.05 and a flow resistivity of 36000± 6000N.s.m−4, which is close to the present
results. The inertial factor was estimated in a previous study [17] at α0 = 2.15 ± 0.15, but since α2 had
not been taken into account at the time, it is consistent with obtaining a value of α0 that is higher. Once
again, we immediately note that α1 and α2 present a non-uniform probability density, meaning that some
information has been extracted from the inference signals.

An interesting additional piece of information that can be drawn from the joint-pdfs (off-diagonal
elements on Fig. 11) concerns the correlation between parameters. A joint-pdf of elliptical shape indicates a
correlation between the associated two parameters. The slope sign of the ellipse’s major axis informs on the
correlation sign. These correlations need not be understood as physical correlations between parameters.
They depend on the problem structure and the models used. However, they dispense useful information
since they can help predict the impact of fixing a parameter’s value on the inference of the other parameters.
For instance, consider the static viscous permeability to be fixed during the inversion, without taking any
uncertainty into account. If the value is above the MAP estimate found in Table 3, then the identified values
of α1 would be increased. This is due to the positive correlations between k0 and and α1, as seen in Fig. 11,
line 6, column 3.

Looking at Fig. 12, we see that the fit between experimental and MAP signals is good, even at frequencies
close to the characteristic frequency for viscous effects (ωv ≈ 23571 rad.s−1, fc ≈ 3751Hz). The characteristic
frequency is larger for resistive materials, where the transition to the inertial regime is attained at higher
frequencies. The discrepancies between signals seem greater than for material M1 for instance, mostly
because the high resistivity of this material made the signal to noise ratio poorer during the experiments.
Note that during the inference, only signals having a frequency content below 1000 Hz were used, to respect
the limit conditions given by relations 12.
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Parameter φ α0 α1 α2 α′0 k0(10−9 m2) σ0(103 N.s.m−4) k′0/k0

Inverted value (MAP) 0.80 2.62 0.85 0.18 2.34 0.52 35.5 3.72
Mean 0.80 2.58 0.68 0.29 2.20 0.52 35.4 3.45

Lower 95% CI 0.70 2.34 0.07 0.01 1.43 0.50 34.2 1.61
Upper 95% CI 0.89 2.72 1.16 0.71 2.60 0.54 36.6 4.6

Table 3: Results summary for the inference of M2 parameters.

Figure 11: (Color online) M2 inference pdfs (diagonal elements), joint pdfs (off-diagonal elements).
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Figure 12: (Color online) Material M2. MAP estimates (dashed line) and experimental signals (solid line).
Left: time signals. Right: frequency spectrum.

C Inference of M3 properties

Material M3, of thickness L = 20.2 cm, is a high porosity, high flow permeability foam material. Its porosity
and flow resistivity have been estimated using reference techniques [40, 9, 41, 10, 14], yielding φ = 0.98±0.02,
σ0 = 7000± 2000N.s.m−4, which is coherent with the inferred values.

The results in Table 4 suggest that the value of α1 is close to 0, but this should be taken cautiously
since it appears that the parameter has a large credibility interval. We also note that the identification
of parameter α2 is unique in this work, since its pdf (shown in Fig. 13) displays a bi-modal probability
density function. This indicates the presence of two likely values for α2, having observed this particular set
of data. From a technical point of view, the inference of multi-modal probability density functions is quite
challenging. It has been made possible here thanks to the MCMC strategy used in this work (see Sec. C).

Looking at Fig. 14, we see that the fit between experimental and MAP signals is excellent. The
characteristic viscous angular frequency is ωv ≈ 5247 rad.s−1 (fc ≈ 835Hz).
When performing the inference, we noted that low flow resistivity materials (high static permeability) could
be more challenging to identify, due to the lower value of their characteristic angular frequency ωv, which in
turn constrained the use of lower frequencies. Increasing the material thickness (as for M3) proved useful,
since it made the beginning of the inertial regime more pronounced even at very low frequencies, while
still displaying correct signal to noise ratios. We thus recommend that any future similar work start by
evaluating the characteristic frequency of the material (through prior knowledge of its resistivity, which is
often a parameter readily available), and that the material thickness be maximized while keeping a good
signal to noise ratio near the maximum frequencies used for the inference, respecting the constraint given in
Eq. 12.
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Parameter φ α0 α1 α2 α′0 k0(10−9 m2) σ0(103 N.s.m−4) k′0/k0

Inverted value (MAP) 0.98 1.76 0.07 0.66 1.62 2.85 6.44 4.34
Mean 0.98 1.77 0.31 0.59 1.57 2.85 6.44 4.39

Lower 95% CI 0.96 1.68 0.01 0.08 1.32 2.82 6.36 3.72
Upper 95% CI 0.99 1.89 0.76 0.99 1.75 2.89 6.51 5.1

Table 4: Results summary for the inference of M3 parameters.

Figure 13: (Color online) M3 inference pdfs (diagonal elements), joint pdfs (off-diagonal elements).
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Figure 14: (Color online) Material M3. MAP estimates (dashed line) and experimental signals (solid line).
Left: time signals. Right: frequency spectrum.

V Conclusion

The modeling of wave propagation inside porous media and the non invasive determination of their micro-
structure are crucial for the diverse research fields in which porous materials are studied. This article
has introduced a model extension for the description of wave propagation in porous media in the low-mid
frequency regime, corresponding to frequencies lower than a certain fraction of the characteristic angular
frequency ωv, which depends on the material properties. Two additional intrinsic parameters have been
introduced, α1 and α2, related to the visco-inertial behavior of the fluid phase. The first result of this work
is that the visco-inertial parameters α1 and α2 have a significant influence on the acoustical response of the
material. Their effects on the transmitted waves have been detailed, and a physical interpretation has been
given:

� Parameter α1 is associated with the transition of the viscous regime as the frequency increases, and
intervenes in the definition of an apparent permeability of decreasing values as the frequency increases
(increasing flow resistivity of the material).

� Parameter α2 is associated with the transition of the inertial regime as the frequency increases, and
intervenes in the definition of an apparent inertial factor of decreasing values as the frequency increases.

The work has also proposed a statistical inference method based on Bayes theorem to identify simultaneously
the 7 parameters intervening in the newly developed modeling, using low-mid frequency range signals in
the time domain, measured in a transmission experiment adapted for low frequency waves. The inference
process was carried out on three different porous materials in the low to high static permeability range (high
to low flow resistivity), showing the capability of first level Bayesian inference to yield one’s knowledge on
the inferred material properties, given a certain set of observations and associated uncertainties. Setting a
suitable limit to the frequencies that must be used during the inference remains a delicate issue. If set too high
the model is insufficient; if set too low, the effect of higher order parameters is very small and the influence
of systematic errors and noise in the signal prevents making accurate identifications. Approximate frequency
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conditions have been developed, and an iterative procedure has been conducted during the inference to
ensure that the prescribed conditions were indeed imposed.
The main result of this work is that in all cases, the parameters α1 and α2 have been successfully identified,
as shown by their informative posterior density. Had they not been taken into account, the inferred values
of the other parameters would have changed, in particular those of the static viscous permeability k0 (or
flow resistivity σ0) and of the inertial factor α0. It is thus recommended that future low frequency acoustic
inverse measurements take α1 and α2 into account.

The present work is the first, to the authors’ knowledge, to provide a range of values for the newly
defined parameters α1 and α2, as well as an identification framework that can simultaneously yield the
porosity, static viscous and thermal tortuosities and static viscous and thermal permeabilities.

A Definition of the model parameters from microstructure and ap-
plication to the case of cylindrical circular pores

Based on the idealization that the fluid flow is incompressible at the pore scale, we wish to find the macro-
scopic level dynamic permeability and dynamic tortuosity response factors k(ω) and α(ω), such that:

φ 〈v〉 = −k(ω)

η
∇〈p〉 , ρfα(ω)

∂ 〈v〉
∂t

= −∇〈p〉 , (25)

where 〈〉 denotes volume average in the fluid domain Vf , v and p are the fluid velocity and excess pressure,
φ is the porosity, and ρf and η are the fluid ambient density and viscosity. At the microscopic level (with
∂V the pore walls) the idealization of incompressible flow motion allows us to write:

ρf jωv = −∇p+ η∆v, in Vf (26)

∇ · v = 0, in Vf (27)

v = 0, on ∂V. (28)

The compatibility between the macroscopic description (25) and the microscopic description (26-28) then
immediately gives the following prescription for calculating k(ω) and α(ω):

1. Solve the following microscopic problem: (to write this problem, substitute in (26-28), ηv = ∆p
∆Lw

and −∇p = ∆p
∆L (e − ∇π), with e a unit vector in the direction of macroscopic flow and ∆p the

macroscopic pressure drop over a distance ∆L; π, therefore, is a fluctuating scaled pressure part with
no macroscopic gradient, that is, a stationary random field in stationary random geometries, or a
periodic field in periodic geometries)

− jω
ν
w −∇π + ∆w + e = 0, in Vf (29)

∇ ·w = 0, in Vf (30)

π stationary (periodic in periodic geometries), in Vf (31)

w = 0, on ∂V. (32)

2. Perform the average 〈w〉 of the solution w. Then k(ω) and α(ω) satisying (25) are given by

k(ω)/φ = 〈w〉 · e, α(ω) = νφ/jωk(ω). (33)

The solution w to the problem (29-32) is a unique stationary field thanks to the important condition (31).
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The stationary solution π is unique if taken of zero mean (i.e. 〈π〉 = 0 or also 〈πw〉 = 0).
At low-enough frequencies the scaled velocity solution w and the associated fluctuating scaled pressure

π will be power series expansions (we explicitly justify it later)

w = w0 +
−jω
ν
w1 +

(
−jω
ν

)2

w2 + . . . (34)

π = π0 +
−jω
ν
π1 +

(
−jω
ν

)2

π2 + . . . (35)

Substituting (34) in (33) we find

k(ω)/φ = 〈w〉 · e = 〈w0〉 · e+
−jω
ν
〈w1〉 · e+

(
−jω
ν

)2

〈w2〉 · e+

(
−jω
ν

)3

〈w3〉 · e+ . . . (36)

and by (35), after straightforward calculations, we obtain the following low-frequency Laurent series expan-
sion:

α(ω) =
νφ

jωk(ω)
=

(
ωv
jω
≡ ν

jω (〈w0〉 · e)

)
+

[
α0 ≡

〈w1〉 · e
(〈w0〉 · e)

2

]

+

[
α2

1 ≡
〈w2〉 · e 〈w0〉 · e− (〈w1〉 · e)

2

(〈w0〉 · e)
4

](
−jω
ωv

)

+

[
α3

2 ≡
〈w3〉 · e (〈w0〉 · e)

2 − 2 〈w2〉 · e 〈w1〉 · e 〈w0〉 · e+ (〈w1〉 · e)
3

(〈w0〉 · e)
6

](
−jω
ωv

)2

+ . . . (37)

where the sign ≡ stands for ’identically equal to’. Each partial solution field wn of order n = 1, 2, 3, . . .

can be computed from the preceding wn−1 by solving the following recursive problem that results from the
substitution of the expansions (34-35) in (29-32) and the identification of terms of same (−jω/ν) power (for
shortness, the mentions “in Vf ” or “on ∂V ” are omitted):

∆wn = ∇πn −wn−1 (38)

∇ ·wn = 0 (39)

πn stationary (periodic in periodic geometries) (40)

wn = 0 (41)

The initialization of the calculation is the determination of the first partial field solution w0:

−∆w0 = −∇π0 + e (42)

∇ ·w0 = 0 (43)

π0 stationary (periodic in periodic geometries) (44)

w0 = 0 (45)

In this manner the wanted model parameters (and all next ones if necessary) can in principle be obtained
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successively from the microstructure as

k0/φ ≡ 〈w0〉 · e, α0 ≡
〈w1〉 · e

(〈w0〉 · e)
2 , α2

1 ≡
〈w2〉 · e 〈w0〉 · e− (〈w1〉 · e)

2

(〈w0〉 · e)
4 , (46)

α3
2 ≡
〈w3〉 · e (〈w0〉 · e)

2 − 2 〈w2〉 · e 〈w1〉 · e 〈w0〉 · e+ (〈w1〉 · e)
3

(〈w0〉 · e)
6 . (47)

Note that α0 also writes 〈w0 ·w0〉 / (〈w0〉 · e)
2. Indeed, the identity 〈w0 ·w0〉 = 〈w1〉 · e is obtained substi-

tuting one times w0 = −∆w1 +∇π1, making integrations by parts, using (42), and cancelling some terms
using the incompressibility, or the stationary character of the fields and the no-slip boundary condition (see
[5, Appendix B]).

In an alternative point of view which can be convenient to use, instead of working with the harmonic
regime problem (26-28), we consider the impulse problem [42]

∂v

∂t
= −∇ (p/ρf ) + ν∆v + v0eδ(t) (48)

∇ · v = 0 (49)

p/ρf stationary (50)

v = 0 (51)

whose solution can be expressed as a sum of normal modes:

v(r, t)

v0
=

∞∑
n=1

bne
−tν/σnΨn(r), (52)

where the eigenfunctions satisfy

∆Ψn −∇Qn = −σ−1
n Ψn (53)

∇ ·Ψn = 0 (54)

Qn stationary (55)

Ψn = 0 (56)

Note that the above discrete labelling and summation (as opposed to a continuous and integral one) intro-
duces the assumption that the microgeometry is periodic (or has finite dimensions, such as for cylindrical
pores). The inverse eigenvalues σn, n = 1, 2, . . ., sorted in descending order, are purely geometrical quanti-
ties having dimension of surface. They accumulate in zero with fractal dimension 1/2 when n→∞ (this is
the expression of the asymptotic Johnson et al. [4] high-frequency behavior conditioned by the viscous skin
depth parameter δ = (2ν/ω)1/2, see [42, Appendix C]) and determine viscous relaxation times through the
relation Θn = σn/ν. The quantities Qn are fluctuating pressures having no macroscopic gradient, that is,
stationary fields (periodic fields in periodic geometries). The eigenfunctions are orthonormal

〈Ψm(r) ·Ψn(r)〉 = δmn, (57)

and the eigenfunctions coefficients are
bn = 〈Ψn(r)〉 · e. (58)
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Noting v(r, s) = L [v(r, t)] the Laplace transform in time, we get, taking the transform of (52)

v(r, s)

v0
=

∞∑
n=1

bn
s+ ν/σn

Ψn(r), (59)

and the transform of the problem (48-51)

sv = −∇ (p/ρf ) + ν∆v + v0e (60)

∇ · v = 0 (61)

p/ρf stationary (62)

v = 0 (63)

which gives by comparison with (29-32) and (33), and by setting s = jω, w = νv/v0, π = p/ρfv0,

k(ω)/φ = 〈w〉 · e =

∞∑
n=1

bn
jω
ν + σ−1

n

〈Ψn(r)〉 · e =

∞∑
n=1

b2n
jω
ν + σ−1

n

(64)

This distribution of relaxation times representation explicitly shows that for ω below the convergence radius
ωc = νσ−1

1 the dynamic permeability expands in a power series of −jω/ν:

k(ω)/φ =

∞∑
n=1

b2nσn

1−
(
− jω

ν σn
) =

∞∑
n=1

b2nσn

[
1 +

(
− jω
ν
σn

)
+

(
− jω
ν
σn

)2

+ . . .

]
. (65)

Writing by definition

k(ω)/φ = S1 +

(
−jω
ν

)
S2 + . . .+

(
−jω
ν

)m
Sm+1 + . . . , (66)

the comparison with (36) and (65) gives

Sm = 〈wm−1〉 · e =

∞∑
n=1

b2nσ
m
n . (67)

Recall that in (37) we defined the characteristic viscous angular frequency

ωv =
ν

〈w0〉 · e
=
νφ

k0
≡ ν

S1
.

The above “distribution of relaxation times” representation, joined to the relation (33), now allows us to
conclude that the dynamic tortuosity has the following Laurent-series expansion, of convergence radius
ωc = νσ−1

1 , starting with power −1:

α(ω) =
ωv
jω

+ α0 + α2
1

(
−jω
ωv

)
+ α3

2

(
−jω
ωv

)2

+ α4
3

(
−jω
ωv

)3

+ α5
4

(
−jω
ωv

)4

+ . . . (68)

and with alpha coefficients αp+1
p (dimensionless form-factors) given in terms of the Sm as follows, after
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straightforward calculations:

α0 =
S2

S2
1

, α2
1 =

S3S1 − S2
2

S4
1

, α3
2 =

S4S
2
1 − 2S3S2S1 + S3

2

S6
1

, α4
3 =

S5S
3
1 − 2S4S2S

2
1 − S2

3S
2
1 + 3S3S

2
2S1 − S4

2

S8
1

,

(69)

α5
4 =

S6S
4
1 − 2S5S2S

3
1 − 2S4S3S

3
1 + 3S4S

2
2S

2
1 + 3S2

3S2S
2
1 − 4S3S

3
2S1 + S5

2

S10
1

.

(70)

This formulation leads to easy evaluations of the αp for the case of cylindrical circular pores of radius a.
Following [42, Appendix B], we have b2n = 4σn/a

2, σn = a2/z2
n, where zn, n = 1, 2, 3, . . . are the zeros of the

Bessel function J0. This gives

Sm = a2m
+∞∑
n=1

4

z
2(1+m)
n

(71)

which can be readily evaluated. In this manner we find the following reference values for the first successive
αp in cylindrical circular pores:

α0 = 1.333333

α2
1 = 0.0555555→ α1 = 0.235702

α3
2 = 0.0148148→ α2 = 0.245602

α4
3 = 0.0043209→ α3 = 0.256387

α5
4 = 0.0012933→ α4 = 0.264450 (72)

The successive αp, p = 1, 2, 3, . . . are pretty close, which reflects the absence of different pores sizes, however
they have a trend to steadily increase. This increase can be interpreted in terms of the fact anticipated in
Section C, that, because the convergence radius ωc is finite, the addition of monomials in the series must
accelerate as the frequency increases, or in other words, the corrections made by successive monomials remain
significant in themselves only for smaller and smaller frequency increases as the frequency goes closer to ωc.

B Determination of the transmission operator

The direct scattering problem requires finding the pressure field transmitted by the porous material. Let us
consider here a rigid-frame, air-filled isotropic porous medium inside a finite region 0 ≤ x ≤ L, as depicted
in Fig. 15. We consider the general case where a sound pulse impinges on the medium from the left with an
incident angle θi. To derive the required operator, continuity of pressure and velocity on the two interfaces
of the material is assumed, resulting in the interface conditions [43]p(0−, t) = p(0+, t), p(L−, t) = p(L+, t)

v(0−, t) = φv(0+, t), φv(L−, t) = v(L+, t)
(73)

where a porosity of 1 has been taken for the ambient fluid (x < 0, x > L), and where the − superscript
stands for the left side of an interface, and the + superscript stands for its right side. We note P (x, ω) (resp.
V (x, ω)) the Fourier transform of p(x, t) (resp. v(x, t)) defined by

P (x, ω) = F [p(x, t)] =

∫ ∞
−∞

exp (−jωt) p(x, t)dt, (74)
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Figure 15: Schematic of the scattering problem

and the inverse Fourier transform by p(x, t) = F−1 [P (x, ω)]. The expression of the pressure field in the
region on the left side of the material is the sum of the incident and reflected fields

p1(x, t) = pi
(
t− x

cf
cos θi − y

cf
sin θi

)
+ pr

(
t+

x

cf
cos θi − y

cf
sin θi

)
, (75)

where cf =
√
Kf/ρf ≈ 340 m.s−1 is the sound speed in air. In the Fourier domain, the fields on the left side

of the material become, for x < 0 [44]
P1(x, ω) =

(
e
−jω x

cf
cos θi

+R(ω, θi)e
jω x

cf
cos θi

)
e
−jω y

cf
sin θi

V1(x, ω) = cos θi

Zf

(
e
−jω x

cf
cos θi −R(ω, θi)e

jω x
cf

cos θi
)
e
−jω y

cf
sin θi

(76)

whereR(ω, θi) is the Fourier transform of a reflection kernel, Zf = ρfcf ≈ 418 kg.m−2.s−1 is the characteristic
impedance of the material, and V1(x, ω) is the x component of the velocity. Inside the material, the fields
are expressed, for 0 ≤ x ≤ L, asP2(x, ω) =

(
A(ω)e−jω x

cm
cos θm +B(ω)ejω

x
cm

cos θm
)
e−jω y

cm
sin θm

V2(x, ω) = cos θ1
Zm

(
A(ω)e−jω x

cm
cos θm −B(ω)ejω

x
cm

cos θm
)
e−jω y

cm
sin θm

(77)

where A(ω) and B(ω) are unknown parameters (the angle dependency is omitted for clarity), θm is the
refracted wave angle in the porous material, relative to its normal, and V2(x, ω) is the x component of
the velocity. The phase velocity in the equivalent fluid material is defined as cm = cf/

√
α(ω)β(ω), while

the characteristic impedance of the material is given by Zm = Zf

√
α(ω)
β(ω) . Finally, on the right side of the

material, the transmitted fields are expressed, for L ≤ x < +∞, asP3(x, ω) = T (ω, θi)e
−jω x−L

cf
cos θi

e
−jω y

cf
sin θi

V3(x, ω) = cos θi

Zf
T (ω, θi)e

−jω x−L
cf

cos θi

e
−jω y

cf
sin θi

(78)

where T (ω, θi) is the Fourier transform of the transmission kernel.
Using the boundary conditions of Eq. 73, one obtains the set of 4 equations and 4 unknowns
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1 +R(ω, θi) = A(ω) +B(ω)

T (ω, θi) = A(ω)e−jω L
cm

cos θm +B(ω)ejω
L

cm
cos θm

1− T (ω, θi) = φ
Zf cos θm

Zm cos θi (A(ω)−B(ω))

T (ω, θi) = φ
Zf cos θm

Zm cos θi

(
A(ω)e−jω L

cm
cos θm −B(ω)ejω

L
cm

cos θm
) (79)

Solving the system 79 yields the reflection coefficient R(ω, θi) and transmission coefficient T (ω, θi), as

R(ω, θi) =
(1− Ξ2)

(1 + Ξ2) + 2Ξ coth(jωLξm)
, T (ω, θi) =

2Ξ

2Ξ cosh(jωLξm) + (1 + Ξ)2 sinh(jωLξm)
, (80)

with

Ξ = φ

√
β(ω)

α(ω)
, ξm =

√
ρf
Kf

α(ω)β(ω), cos θm =

√
1− sin2 θi

α(ω)β(ω)
. (81)

A particular relation that was used is the Snell-Descartes law of refraction, relating the angles of refraction
in the two domains to the speed of sound as

sin θi

cf
=

sin θm

cm
, (82)

which yields

sin θm =
sin θi√
α(ω)β(ω)

, (83)

and thus,

cos θm =
√

1− sin2 θm =

√
1− sin2 θi

α(ω)β(ω)
. (84)

The expression in Eq. 14 is then obtained by setting θi = 0 in Eqs. 80,81.
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