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ON AN ARITHMETICAL QUESTION RELATED TO PERFECT
NUMBERS

1. Introduction and statement of the problem

For n ≥ 1 an integer, we shall denote by σ(n) the sum of the (positive) divisors
of n.

The line of thought leading to this note started with [3, Exemple III, p. 380],
where two integers k such that σ(k3) is a perfect square are given.

This suggests that we might look for numbers n such that σ(n) be a square. One
rapidly notices that σ(66) = 144 = 122 ; furthermore

σ(66)− 2.66 = 144− 132 = 12,

whence
σ(66) = (σ(66)− 2.66)2.

We were thus led to the following definition :

Definition. An integer n is termed quadratically perfect if

σ(n) = (σ(n)− 2n)2.

As we have just established, 66 is such a number. A quick search yields three
others : 1, 3 and 491536.

As a matter of fact, one has

Lemma 1. The only quadratically perfect primary integers are 1 and 3.

Proof. Let n = pk (p prime) be quadratically perfect ; if k = 0, n = 1. Let us then
assume k ≥ 1 ; we have

σ(n) = 1 + p+ ...+ pk,

whence, setting S :=
∑k−1

l=0 p
l, we find

σ(n)− 2n = S − pk

and

(S − pk)2 = (σ(n)− 2n)2

= σ(n)

= S + pk. (∗)

If k ≥ 2, (∗) gives us, by working modulo p2, that

S2 ≡ S (mod p2);

as S ≡ 1 + p (mod p2), it follows that

(1 + p)2 ≡ 1 + p (mod p2),
1
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i.e. p2 divides p, a contradiction. Therefore k = 1, S = 1 and (∗) becomes

(1− p)2 = 1 + p,

that is p2 = 3p, p = 3 and n = pk = 31 = 3. �

2. The main theorem

On the positive side, one has

Proposition 1. If m is a perfect number such that 2m− 1 is prime, then

n := m(2m− 1)

is quadratically perfect.

Remark. m = 6 (2m− 1 = 11) yields n = 66, and m = 496 (2m− 1 = 991) yields
n = 491536.

Proof. Seeing that m and 2m− 1 are coprime, one has

σ(n) = σ(m(2m− 1))

= σ(m)σ(2m− 1)

= 2m(1 + (2m− 1))

[as m is perfect and 2m− 1 is prime]
= 4m2.

Therefore

σ(n)− 2n = 4m2 − 2m(2m− 1)

= 2m,

and
(σ(n)− 2n)2 = (2m)2 = 4m2 = σ(n) ;

n is quadratically perfect. �

A partial converse holds :

Theorem 1. Let n be an even quadratically perfect number ; then there exists an
even perfect number m such that n = m(2m− 1).

Remark. It is well–known (see e.g. [1,Theorem 277], or [2,pp.33-34]) that m can
then be written as

m = 2p−1(2p − 1)

with 2p − 1 (hence also p) prime ; m = 6 corresponds to p = 2, and m = 496 to
p = 5.
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3. The proof of Theorem 1

For convenience, this will be broken up into four lemmas.
Let us write n = 2ax (a ≥ 1, x odd) ; then

σ(n) = σ(2a)σ(x)

= (2a+1 − 1)σ(x).

Lemma 2. There are integers b, e and f such that σ(x) = be2 and

bce2 − (bc2 + 1)f − e = 0.

Proof. Let us define b as the square–free part of 2a+1 − 1 ; then

2a+1 − 1 = bc2,

for some c ∈ N, c ≥ 1. As 2a+1 − 1 ≡ −1 (mod 4)), 2a+1 − 1 is not a square,
therefore b ≥ 2 ; in fact, b ≥ 3 as b is odd.

As (σ(n)− 2n)2 = σ(n), we have

bc2σ(x) = (2a+1 − 1)σ(x)

= σ(n)

= (σ(n)− 2n)2

whence c divides σ(n)− 2n :

σ(n)− 2n = εcd,

with ε ∈ {−1, 1} and d ≥ 1. It follows that

bc2σ(x) = c2d2,

i.e. bσ(x) = d2, and b divides d2 ; b being square–free, b divides d : d = be(e ≥ 1).
Therefore bσ(x) = b2e2, i.e. σ(x) = be2. It now appears that

b2c2e2 − (bc2 + 1)x = bc2.be2 − 2a+1x

= (2a+1 − 1)σ(x)− 2n

= σ(n)− 2n

= εcd

= εcbe;

therefore, bc divides x.
Let us then set x = bcf(f ≥ 1); as b > 1, bc > 1, be2 = σ(x) ≥ x+ f and

b2c2e2 = bc2σ(x)

≥ bc2x+ bc2f

≥ bc2x+ bcf

= bc2x+ x,

thus ε = 1.
We now get

b2c2e2 − (bc2 + 1)bcf = cbe,

that is
bce2 − (bc2 + 1)f − e = 0.

�
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Lemma 3. c = 1, i.e. 2a+1 − 1 is square–free.

Proof. We know that b > 1; then

be2 = σ(x) = σ(bcf) ≥ bcf + cf,

and, using Lemma 3.1 :

0 = bce2 − (bc2 + 1)f − e
≥ c(bcf + cf)− (bc2 + 1)f − e
= (c2 − 1)f − e.

Assuming that c > 1, it would follow that f ≤ e

c2 − 1
, whence that

bce2 = (bc2 + 1)f + e

≤ (bc2 + 1)
e

c2 − 1
+ e

=
e

c2 − 1
(bc2 + c2)

= e(b+ 1)
c2

c2 − 1
.

It would now appear that

e ≤ b+ 1

b

c

c2 − 1

≤ 4

3

3

8
=

1

2
< 1,

a contradiction.
Therefore c = 1. �

Lemma 4. b is prime.

Proof. From Lemmas 3.1 and 3.2 follows that

be2 − e− (b+ 1)f = 0.

As x = bcf = bf , one has σ(bf) = σ(x) = be2.
We know that b ≥ 3 ; let us assume that b is not prime, and let p denote the

smallest prime factor of b. Then

σ(b) ≥ b+ p+ 1 ≥ b+ 4

and
f(b+ 4) ≤ fσ(b) ≤ σ(bf) = be2,

whence
f(b+ 4) ≤ be2 = e+ (b+ 1)f,

and 3f ≤ e. It follows that
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3be2 = 3e+ (3b+ 3)f

≤ 3e+ (b+ 1)e

= e(b+ 4),

hence 3b ≤ 3be ≤ b+ 4, 2b ≤ 4 and b ≤ 2, a contradiction.
Therefore b is prime. �

Lemma 5. b does not divide f .

Proof. Let us assume for a moment that b divides f ; then, as

be2 = e+ bf + f,

b divides e. It follows that

be2 = σ(bf) ≥ bf + f +
f

b
,

whence
f

b
≤ be2 − bf − f = e,

thus f ≤ be.
Now

be2 = e+ bf + f

≤ e+ b2e+ be

and

be ≤ b2 + b+ 1

= b(b+ 1) + 1

< b(b+ 2).

It appears that e < b+ 2, hence e ≤ b+ 1 < 2b ; as b divides e, e = b and

(b+ 1)f = be2 − e = b3 − b,

thus f = b(b− 1).
Now we have

σ(b2(b− 1)) = σ(bf) = be2 = b3 = b2(b− 1) + b2,

an obvious contradiction as

σ(b2(b− 1)) ≥ b2(b− 1) + b2 + b+ 1.

We conclude that b does not divide f . �
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Conclusion
We may now write

(b+ 1)σ(f) = σ(b)σ(f)

[by Lemma 3.3]
= σ(bf)

[as b and f are coprime, by Lemmas 3.3 and 3.4]
= be2

= bf + e+ f ;

thus b+ 1 divides e : e = (b+ 1)g, hence

(b+ 1)f = e(be− 1)

= (b+ 1)g(b(b+ 1)g − 1)

and f = g(b(b+ 1)g − 1). In particular, g divides f , and g 6= f . As

(b+ 1)σ(f) = bf + (b+ 1)g + f,

we obtain σ(f) = f + g ; therefore g = 1 and f is prime.
Furthermore, f = b(b+ 1)− 1.

Now let m := 2a(2a+1−1) = 2ab ; then m is perfect([1,Theorem 276], or [2,p.33])
and even, 2m− 1 = 2a+1b− 1 = (b+ 1)b− 1 = f is prime, and

m(2m− 1) = 2abf = 2ax = n.

4. Final comments

It is reasonable to expect the converse of Proposition 2.1 to still hold for all odd
m ≥ 5 ; combined with the proof of the long–standing conjecture that there is no
odd perfect number, this would imply the nonexistence of odd quadratically perfect
numbers other than 1 and 3.

I wish to express my gratitude to Dr. Numa Lescot for checking with the help
of a computer that there is at least no such number between 5 and 106.
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