ON AN ARITHMETICAL QUESTION RELATED TO PERFECT NUMBERS

Introduction and statement of the problem

For n ≥ 1 an integer, we shall denote by σ(n) the sum of the (positive) divisors of n.

The line of thought leading to this note started with [3, Exemple III, p. 380], where two integers k such that σ(k 3 ) is a perfect square are given.

This suggests that we might look for numbers n such that σ(n) be a square. One rapidly notices that σ(66) = 144 = 12 2 ; furthermore σ(66) -2.66 = 144 -132 = 12, whence σ(66) = (σ(66) -2.66) [START_REF] Itard | Arithmétique et Théorie des Nombres[END_REF] .

We were thus led to the following definition :

Definition. An integer n is termed quadratically perfect if

σ(n) = (σ(n) -2n) 2 .
As we have just established, 66 is such a number. A quick search yields three others : 1, 3 and 491536.

As a matter of fact, one has Lemma 1. The only quadratically perfect primary integers are 1 and 3.

Proof. Let n = p k (p prime) be quadratically perfect ; if k = 0, n = 1. Let us then assume k ≥ 1 ; we have

σ(n) = 1 + p + ... + p k , whence, setting S := k-1 l=0 p l , we find σ(n) -2n = S -p k and (S -p k ) 2 = (σ(n) -2n) 2 = σ(n) = S + p k . ( * )
If k ≥ 2, ( * ) gives us, by working modulo p 2 , that S 2 ≡ S (mod p 2 ); as S ≡ 1 + p (mod p 2 ), it follows that

(1 + p) 2 ≡ 1 + p (mod p 2 ),
i.e. p 2 divides p, a contradiction. Therefore k = 1, S = 1 and ( * ) becomes Proof. Seeing that m and 2m -1 are coprime, one has

(1 -p) 2 = 1 + p, that is p 2 = 3p, p = 3 and n = p k = 3 1 = 3.
σ(n) = σ(m(2m -1)) = σ(m)σ(2m -1) = 2m(1 + (2m -1)) [as m is perfect and 2m -1 is prime] = 4m 2 . Therefore σ(n) -2n = 4m 2 -2m(2m -1) = 2m, and 
(σ(n) -2n) 2 = (2m) 2 = 4m 2 = σ(n) ; n is quadratically perfect.
A partial converse holds : Theorem 1. Let n be an even quadratically perfect number ; then there exists an even perfect number m such that n = m(2m -1).

Remark. It is well-known (see e.g. [1,Theorem 277], or [2,pp.33-34]) that m can then be written as m = 2 p-1 (2 p -1) with 2 p -1 (hence also p) prime ; m = 6 corresponds to p = 2, and m = 496 to p = 5.

The proof of Theorem 1

For convenience, this will be broken up into four lemmas. Let us write n = 2 a x (a ≥ 1, x odd) ; then

σ(n) = σ(2 a )σ(x) = (2 a+1 -1)σ(x).
Lemma 2. There are integers b, e and f such that σ(x) = be 2 and bce 2 -(bc 2 + 1)f -e = 0.

Proof. Let us define b as the square-free part of 2 a+1 -1 ; then 

2 a+1 -1 = bc 2 , for some c ∈ N, c ≥ 1. As 2 a+1 -1 ≡ -1 (mod 4)), 2 a+1 -1 is not a square, therefore b ≥ 2 ; in fact, b ≥ 3 as b is odd. As (σ(n) -2n) 2 = σ(n), we have bc 2 σ(x) = (2 a+1 -1)σ(x) = σ(n) = (σ(n) -2n) 2 whence c divides σ(n) -2n : σ(n) -2n = cd, with ∈ {-1, 1} and d ≥ 1. It follows that bc 2 σ(x) = c 2 d 2 , i.e. bσ(x) = d 2 ,
≥ bc 2 x + bc 2 f ≥ bc 2 x + bcf = bc 2 x + x, thus = 1. We now get b 2 c 2 e 2 -(bc 2 + 1)bcf = cbe, that is bce 2 -(bc 2 + 1)f -e = 0.
Lemma 3. c = 1, i.e. 2 a+1 -1 is square-free.

Proof. We know that b > 1; then be 2 = σ(x) = σ(bcf ) ≥ bcf + cf, and, using Lemma 3.1 :

0 = bce 2 -(bc 2 + 1)f -e ≥ c(bcf + cf ) -(bc 2 + 1)f -e = (c 2 -1)f -e.
Assuming that c > 1, it would follow that f ≤ e c 2 -1 , whence that bce 2 = (bc 2 + 1)f + e

≤ (bc 2 + 1) e c 2 -1 + e = e c 2 -1 (bc 2 + c 2 ) = e(b + 1) c 2 c 2 -1 .
It would now appear that

e ≤ b + 1 b c c 2 -1 ≤ 4 3 3 8 = 1 2 < 1, a contradiction. Therefore c = 1.
Lemma 4. b is prime.

Proof. From Lemmas 3.1 and 3.2 follows that be 2 -e -(b + 1)f = 0.

As x = bcf = bf , one has σ(bf ) = σ(x) = be 2 .
We know that b ≥ 3 ; let us assume that b is not prime, and let p denote the smallest prime factor of b. Then We conclude that b does not divide f .

σ(b) ≥ b + p + 1 ≥ b + 4 and f (b + 4) ≤ f σ(b) ≤ σ(bf ) = be

Conclusion

We may now write and f = g(b(b + 1)g -1). In particular, g divides f , and g = f . As 

(b + 1)σ(f ) = bf + (b + 1)g + f, we obtain σ(f ) = f + g ; therefore g = 1 and f is prime. Furthermore, f = b(b + 1) -1.

Final comments

It is reasonable to expect the converse of Proposition 2.1 to still hold for all odd m ≥ 5 ; combined with the proof of the long-standing conjecture that there is no odd perfect number, this would imply the nonexistence of odd quadratically perfect numbers other than 1 and 3.

I wish to express my gratitude to Dr. Numa Lescot for checking with the help of a computer that there is at least no such number between 5 and 10 6 .

2 .

 2 The main theorem On the positive side, one has Proposition 1. If m is a perfect number such that 2m -1 is prime, then n := m(2m -1) is quadratically perfect. Remark. m = 6 (2m -1 = 11) yields n = 66, and m = 496 (2m -1 = 991) yields n = 491536.

and b divides d 2 ;

 2 b being square-free, b divides d : d = be(e ≥ 1). Therefore bσ(x) = b 2 e 2 , i.e. σ(x) = be 2 . It now appears that b 2 c 2 e 2 -(bc 2 + 1)x = bc 2 .be 2 -2 a+1 x = (2 a+1 -1)σ(x) -2n = σ(n) -2n = cd = cbe; therefore, bc divides x. Let us then set x = bcf (f ≥ 1); as b > 1, bc > 1, be 2 = σ(x) ≥ x + f and b 2 c 2 e 2 = bc 2 σ(x)

, whence f b ≤ be 2 -

 2 2 , whence f (b + 4) ≤ be 2 = e + (b + 1)f, and 3f ≤ e. It follows that 3be 2 = 3e + (3b + 3)f ≤ 3e + (b + 1)e = e(b + 4), hence 3b ≤ 3be ≤ b + 4, 2b ≤ 4 and b ≤ 2, a contradiction. Therefore b is prime. Lemma 5. b does not divide f . Proof. Let us assume for a moment that b divides f ; then, as be 2 = e + bf + f, b divides e. It follows that be 2 = σ(bf ) ≥ bf + f + f b bf -f = e, thus f ≤ be. Now be 2 = e + bf + f ≤ e + b 2 e + be and be ≤ b 2 + b + 1 = b(b + 1) + 1 < b(b + 2). It appears that e < b + 2, hence e ≤ b + 1 < 2b ; as b divides e, e = b and (b + 1)f = be 2 -e = b 3 -b, thus f = b(b -1). Now we have σ(b 2 (b -1)) = σ(bf ) = be 2 = b 3 = b 2 (b -1) + b 2 , an obvious contradiction as σ(b 2 (b -1)) ≥ b 2 (b -1) + b 2 + b + 1.

(b + 1 2 =

 12 )σ(f ) = σ(b)σ(f ) [by Lemma 3.3] = σ(bf ) [as b and f are coprime, by Lemmas 3.3 and 3.4] = be bf + e + f ; thus b + 1 divides e : e = (b + 1)g, hence (b + 1)f = e(be -1) = (b + 1)g(b(b + 1)g -1)

Now let m := 2 a

 2 (2 a+1 -1) = 2 a b ; then m is perfect([1,Theorem 276], or [2,p.33]) and even, 2m -1 = 2 a+1 b -1 = (b + 1)b -1 = f is prime, and m(2m -1) = 2 a bf = 2 a x = n.
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