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Abstract

This work presents a new enriched finite element method dedicated to the vibrations of axially inhomogeneous Timo-
shenko beams. This method relies on the “half-hat” partition of unity and on an enrichment by solutions of the Timo-
shenko system corresponding to simple beams with a homogeneous or an exponentially-varying geometry. Moreover,
the efficiency of the enrichment is considerably increased by introducing a new formulation based on a local rescaling
of the Timoshenko problem. Validations using analytical solutions and comparisons with the classical high-order poly-
nomial FEM, conduced for several inhomogeneous beams, show the efficiency of this approach in the time-harmonic
domain. In particular low error levels are obtained over large ranges of frequencies using fixed coarse meshes. Pos-
sible extensions to the research of natural frequencies of beams and to simulations of transient wave propagation are
highlighted.
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1. Introduction

The Timoshenko model is widely used to describe the bending of beams, especially for vibration or wave propaga-
tion problems, as it approaches the dispersion relations of realistic 3D beams much more accurately than the simpler
Rayleigh or Euler-Bernoulli models for medium and high frequencies [12, 11]. Numerous analytical and numeri-
cal methods based on this model have therefore been designed to address these problems, see e.g. the review by
Hajianmaleki and Qatu [14].

Many of these works focus on homogeneous beams, but attention has also been dedicated to various geometrically
or materially heterogeneous beams. Beams whose cross-section varies along the axial direction were studied from
the 90’ [6, 34, 38], and this direction of research has been recently revived by the interest on periodically varying
structures and the dynamic features (dispersion, band-gaps . . . ) they induce [21, 37]. Moreover, the interest in
composite materials, exhibiting continuously varying effective material parameters at the macroscopic level, lead to
numerous studies of the so-called functionally graded beams (FGBs). These works propose several ways to take into
account a material heterogeneity in the transverse direction [1], in the axial direction [25], or in both directions [35].
Ultimately, beams that are both geometrically and materially heterogeneous are also considered [26, 15, 5].

In this work, we focus on geometrically heterogeneous beams submitted to time-harmonic loads. Indeed, results
in the time-harmonic regime provide a basis for eigenfrequency search, time-domain simulations or modal analysis
of beams [22], and a method dedicated to geometrical heterogeneities in the axial direction can easily be extended
to axially functionally graded beams. Moreover, closed-form time-harmonic solutions of the Timoshenko system are
only available for simple exponential or polynomial variations of the cross-section area and quadratic momentum
[8, 25, 33, 36]. More complex heterogeneities thus require suitable numerical methods.
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Among many available methods [14], the traditional finite element method (FEM) [9, 16] featuring low-order poly-
nomial shape functions is a reliable choice for static or low-frequency problems and slowly varying heterogeneities.
To tackle higher frequencies and sharper inhomogeneities, two improvements are often considered: (i) using higher-
order polynomial shape functions [32], the resulting method being sometimes called the hp-FEM or spectral FEM
[18, 30], or (ii) enriching the finite element basis with problem-related functions chosen to approximate the exact
solution better than polynomials. This second approach is adopted in this paper.

More specifically, we base our work on the partition of unity method (PUM) by Melenk and Babuška [20] and
its descendant the generalized FEM [31] (see also the historical introduction provided by Babuška and Banerjee [3]).
The PUM and related methods have already been applied to Timoshenko beams, e.g. to get rid of the “locking effect”
that occur for very thin beams when using traditional FEM, for static loadings [19, 4, 23] or vibrations [27]. In these
studies, the enrichment functions are often chosen either as particular solutions of the static Timoshenko system for
homogeneous beams, even when the focus is on the vibrations of heterogeneous beams as in [38, 26], or as oscillating
functions whose design relies on numerical considerations rather than physical ones [27].

Based on these works, to increase the efficiency of PUM-base enrichment methods, we develop an approach that
lies on two main components: use of new enrichment functions and new formulation of the Timoshenko problem.

On the one hand, we consider new families of enrichment functions that tackle both the heterogeneity of the
beam and the time-harmonic nature of the motion, developing a procedure introduced in our preliminary work [7]
that addresses the scalar Webster’s equation. This procedure features (i) a flexible “half-hat” partition of unity, and
(ii) enrichment functions chosen as the solutions of the time-harmonic Timoshenko system for homogeneous or expo-
nentially varying beams. Moreover, its implementation is identical to the one of the classical ninth-order polynomial
FEM and therefore it can be incorporated in existing codes with reasonable implementation effort, and the static
condensation procedure [16, 7] can be applied.

On the other hand, an original local rescaling (i.e. a position-dependent change of unknowns) is introduced to
obtain a new formulation of the Timoshenko problem, which can also be discretized using the same enriched FEM.
This formulation partially accounts for the heterogeneity effects, thus the new unknowns are less affected by the
heterogeneity, and therefore are much better approximated by the chosen enrichment functions.

The resulting method is first validated using the analytical solutions available for homogeneous and exponentially
varying beams, and for boundary and distributed loadings. To show the efficiency of our method to handle the inho-
mogeneity of the beam, several numerical experiments and comparisons with the reference ninth-order polynomial
FEM are then conduced on four beams with increasing complexity of inhomogeneity. We display the results obtained
with the following four configurations: (i) standard ninth-order polynomial FEM (ii) enriched FEM, (iii) local rescal-
ing and polynomial FEM and (iv) local rescaling and enriched FEM. They assert the efficiency of combining the two
proposed ingredients (configuration (iv)), especially for medium and high frequencies for which low error levels can
still be obtained with very coarse meshes.

The paper is organized as follows. Section 2 presents the problems we consider, and gathers notations and existing
results used throughout the paper. Section 3 briefly recalls the features of the FEM for Timoshenko beams and
describes our enrichment procedure. We introduce the change of unknowns and the associated problem formulation
in Section 4. The numerical validations and examples are then presented in Section 5. Finally, we conclude and
highlight the perspectives of this work in Section 6.

2. Notations and available exact solutions to the Timoshenko system

Throughout the paper, we consider a beam of length L̄, submitted to in-plane time-harmonic loading at circular
frequency ω̄, i.e. forces and momentums whose time dependency, omitted hereafter, is e−iω̄t̄. Following the Timo-
shenko theory [12], the resulting in-plane motion is described by the time-harmonic transverse displacement of the
mean axis (taken here as the x̄-axis) and the rotation of the cross-section (Figure 1), whose amplitudes ū and θ are
solutions of the system: 

d
dx̄

(
κGA

(
dū
dx̄
− θ

))
+ ρAω̄2ū + q̄ = 0

d
dx̄

(
EI

dθ
dx̄

)
+ κGA

(
dū
dx̄
− θ

)
+ ρIω̄2θ + m̄ = 0,

(1)
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Figure 1: Bending of a geometrically heterogeneous beam: notation.

where ρ, G and E are respectively the density, the shear modulus and Young’s modulus of the constitutive material of
the beam; A and I are the area and quadratic momentum of the cross-section; κ is the shear correction factor, which
depends on the shape of the cross-section [13, 32]; and q̄ and m̄ are the spatial amplitudes of time-harmonic linear
densities of forces and moments, respectively. In these equations, the shear force N̄ and the bending moment M̄ have
been expressed in terms of the kinematic variables (ū, θ) thanks to the classical linear elastic constitutive relations
N̄ = κGA(dū/dx̄ − θ) and M̄ = EI(dθ/dx̄).

Since we consider geometrically heterogeneous beams made of a homogeneous constitutive material, the geomet-
rical parameters A and I depend on x̄, while the material parameters ρ, G and E are uniform. To simplify ensuing
computations, we additionally assume that the shape of the cross-section varies sufficiently slowly so that the correc-
tion factor κ can also be considered uniform.

To complete the system (1), two boundary conditions (BCs) must be imposed at each extremity of the beam, each
pair of conditions corresponding to a kind of support. Classical examples of these supports include the glued extremity
(ū = 0 and θ = 0); the simply supported extremity (ū = 0 and M̄ = 0); the vertical roller connection (N̄ = 0 and
θ = 0); and the free extremity (N̄ = 0 and M̄ = 0).

2.1. Dimensionless Timoshenko system

For further convenience, the system (1) is now reformulated into a dimensionless form, similarly to e.g. [10, 29].
To this end, constant characteristic amplitudes Ac and Ic are introduced. These will be chosen as Ac = A(0) and
Ic = I(0) thereafter, but other choices are possible, e.g. Ac and Ic may be the mean values of A and I along the
beam. Then, the relevant scales of the problem are the gyration radius rc, Timoshenko’s cut-off frequency ωc, and the
shear-compression ratio g defined by:

rc =

√
Ic

Ac
, ωc =

1
rc

√
G
ρ
, g =

E
κG

. (2)

In particular, for most materials, one has 2 . g . 3. Dimensionless counterparts of the coordinate, parameters, fields
and unknowns that appear in the system (1) are defined thanks to these scales as:

x =
x̄
rc
, L =

L̄
rc
, u =

ū
rc
, ω =

ω̄

ωc
, q =

q̄rc

κGAc
and m =

m̄r2
c

κGIc
. (3)

We similarly define the dimensionless and strictly positive functions A and I, that we call profiles of the area and
quadratic momentum, as:

A(x) =
A(x̄)
Ac

and I(x) =
I(x̄)
Ic

. (4)

Combining the definitions (3) and (4) with the original system (1), one founds that the couple of dimensionless
unknowns (u, θ) satisfies: 

(
A(u′ − θ)

)′
+ ω2Au + q = 0

g
(
Iθ′

)′
+A(u′ − θ) + ω2Iθ + m = 0

(5)
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where ′ stands for differentiation with respect to the dimensionless coordinate x. By analogy with the system (1), we
also define the dimensionless shear force N and bending moment M as:

N = A(u′ − θ) and M = gIθ′, (6)

so that N(x) = N̄(x̄)/κGAc and M(x) = rcM̄(x̄)/κGIc. Boundary conditions must finally be applied on the couples
(u, θ), (u,M), (N, θ) or (N,M) at both extremities, x = 0 and x = L, to complete the problem.

Remark 1. The Timoshenko system can often be reduced to only one fourth-order equation. For geometrically
heterogeneous beams and when no linear density of forces is applied (q = 0), it was pointed out by Huang et al. [15]
that the displacement u and rotation θ may be both written in terms of a new unknown function f as:

u =
f ′

A
, θ =

(
f ′

A

)′
+ ω2 f

A
. (7)

Then the shear force is N = A(u′−θ) = −ω2 f and the transverse equilibrium equation N′+ω2Au = 0 is automatically
verified. The rotation equilibrium equation becomes a fourth-order equation in f :(

I

[(
f ′

A

)′
+ ω2 f

A

]′)′
+ ω2

(
I

[(
f ′

A

)′
+ ω2 f

A

]
− f

)
+ m = 0. (8)

However, we prefer to work with the classical system (5), as (i) it enables to consider nonzero density of forces q (ii)
the boundary conditions involving θ or M are more easily expressed and (iii) the corresponding weak formulation of
the problem (see Section 3.1) is posed in the usual functional space H1(0, L) whereas a weak formulation obtained
from the fourth-order equation (8) would be posed in H2(0, L) and the choice of a finite element basis would therefore
be more constrained.

2.2. Available exact solutions for free vibrations
We end this section by providing some exact solutions available in the literature for the free vibrations of Timo-

shenko beams, i.e. solutions of the system (5) with q = 0 and m = 0. These solutions will be used to build enriched
finite element spaces in the next section, and to validate the whole method in Section 5.

Homogeneous beams. For a homogeneous beam,A and I are uniform and the only remaining geometrical parameter
of the problem is the constant α := A/I. The system (5) becomes: (u′ − θ)′ + ω2u = 0

gθ′′ + α(u′ − θ) + ω2θ = 0
(9)

Then, looking for oscillating solutions as classically done [12], with the same wavenumber k for u and θ, i.e. u(x) =

u0eikx and θ(x) = θ0eikx, one obtains the dispersion relation:

gK2 − ω2(g + 1)K + ω2(ω2 − α) = 0, with K := k2, (10)

which admits two real solutions:

K± =
ω2(g + 1) ± ω

√
4gα + ω2(g − 1)2

2g
. (11)

The four values that can be taken by the wavenumber k are therefore:

k1 =
√

K+, k2 = −
√

K+, k3 =
√

K−, k4 = −
√

K−, (12)

These wavenumbers are represented in Figure 2 as ω increases. Note in particular that K+ > 0, so that k1 and k2 are
real, whereas K− has the same sign as ω −

√
α, so that k3 and k4 are imaginary at low frequencies [11]. For high

frequencies, one has K+ ∼ ω
2 and K− ∼ ω2/g as ω→ ∞, regardless of the value of α.

Finally, the basis of solutions for the Timoshenko system (9), parametrized by α, is:

Ψω,α =
{
x 7→ eikm x

}
m=1..4

. (13)
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Figure 2: Dispersion relations for homogeneous and exponentially varying beams: real (left) and imaginary (right) parts of the wavenumbers km(ω)
(solid) and k̂m(ω) (dashed) defined by (12) and (16). The shear-compression ratio is g = 2.5.

Remark 2. If a beam is homogeneous on the whole domain [0, L], by choosing Ac = A and Ic = I in the scaling (4),
one obtains A = I = 1 and α = 1. For piecewise homogeneous beams, if the same scaling is used throughout the
whole beam (by e.g. choosing Ac and Ic as the mean values of A and I), α takes different values in each subdomain
and different bases of solutions Ψω,α should be used throughout the beam.

Exponentially varying beams. Other simple solutions exist for beams whose profiles are exponentially varying at the
same rate: A(x) = A0e2δx and I(x) = I0e2δx, e.g. beams with rectangular cross-sections having a constant thickness
and an exponentially varying width. Then, keeping the notation α = A/I = A0/I0, the system (5) becomes: (u′ − θ)′ + 2δ(u′ − θ) + ω2u = 0

g
(
θ′′ + 2δθ′

)
+ α(u′ − θ) + ω2θ = 0.

(14)

Looking for oscillating solutions eikx for both u and θ, the dispersion relation is found to be:

gK̂2 − ω2(1 + g)K̂ + ω2(ω2 − α) = 0, with K̂ = k2 − 2iδk. (15)

This is exactly the equation (10) obtained for homogeneous beams, except that K = k2 is replaced by K̂. The roots are
K+ and K−, as given by (11), and the associated wavenumbers are:

k̂1 = iδ +
√

K+ − δ2, k̂2 = iδ −
√

K+ − δ2, k̂3 = iδ +
√

K− − δ2, k̂4 = iδ −
√

K− − δ2. (16)

Eventually, the basis of solutions of the system (14), parametrized by α and δ, is:

Ψω,α,δ =

{
x 7→ eîkm x

}
m=1..4

=

{
x 7→ e−δxeism x

√
(km)2−δ2

}
m=1..4

, sm := (−1)m−1. (17)

This solution is also given by other authors [33, 36] with slightly different notations.

Other exact solutions. The paper by Yuan et al. [36] provides other closed-form solutions, for several “complex
exponential” (i.e. exponential of polynomials) and polynomial profiles. These solutions are written in terms of
hypergeometric functions. Exact solutions are also built by Sarkar and Ganguli [25] for geometrically homogeneous
but materially graded beams. An inverse point of view is adopted: a polynomial solution (u, θ) that satisfies prescribed
boundary conditions is chosen, and then one determines the polynomial profiles of material parameters that permit
to recover this solution. Semi-analytical solutions are also available, e.g. Eisenberger [8] considers polynomial
variations of A and I and expands the solution as a power series, whose coefficients are shown to satisfy recurrence
relations, and Sohani and Eipakchi [29] propose a perturbation approach based on the WKB expansion to tackle the
heterogeneity.
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3. Enriched finite elements

In this section, we begin by briefly recalling the principles of the Finite Element Method (FEM) applied to the
Timoshenko system (for further details, we refer to the textbooks [16, 9]). Then, we present an enrichment method
dedicated to the construction of discrete approximation spaces adapted to specific problems, and use it to build
Timoshenko-adapted spaces.

3.1. Weak formulation
The first step to apply the FEM is to write the weak formulation of the problem. First, let us recall some nota-

tions for the functional spaces used thereafter [9, App. B]. As usual, L2(0, L) denotes the space of square-integrable
functions on ]0, L[ and:

H1(0, L) :=
{
f | f ∈ L2(0, L) and f ′ ∈ L2(0, L)

}
,

H1
(0(0, L) :=

{
f ∈ H1(0, L), f (0) = 0

}
,

H1
0(0, L) :=

{
f ∈ H1(0, L), f (0) = 0 and f (L) = 0

}
.

(18)

Then, multiplying the two lines of the system (5) by two test functions v and φ, integrating by parts, summing the
resulting equalities, one obtains the weak formulation of the Timoshenko problem (i.e. of the system (5) associated
with a given set of BCs) as:

Find (u, θ) ∈ V such that
∫ L

0
A(u′ − θ)(v′ − φ) + gIθ′φ′ − ω2(Auv + Iθφ)

=

∫ L

0
(qv + mφ) +

[
Nv + Mφ

]L

0
for all (v, φ) ∈ V0, (19)

where the space of kinematically admissible fields V is a subspace of (H1(0, L))2 that depends on the kinematic
boundary conditions that are imposed on u or θ; V0 is the associated linear space (corresponding to homogeneous
kinematic BCs); and the boundary term [Nv + Mφ]L

0 depends on all BCs. Some examples include:

• the glued-glued beam, for which (u, θ) vanishes at both extremities. In this case, V = V0 = (H1
0(0, L))2, the

boundary term vanishes and the motion is only due to the force density q or the moment density m.

• the cantilever beam, for which (u, θ)(0) = (0, 0) and the shear force and bending moment are imposed at the
right extremity: N(L) = N? and M(L) = M?. In this case, the functional space isV = V0 = (H1

(0(0, L))2, and
the boundary contribution is: [

Nv + Mφ
]L

0
= N?v(L) + M?φ(L). (20)

• the glued-free beam submitted to time-harmonic displacement with amplitude u? at x = 0 (i.e. u(0) = u? and
θ(0) = 0) and free at x = L (i.e. N(L) = 0 and M(L) = 0). Then one has:

V = {(u, θ) ∈ H1(0, L) × H1
(0(0, L), u(0) = u?}, V0 = (H1

(0(0, L))2, (21)

and the boundary term entirely vanishes.

In the third example above, and more generally when non-homogeneous kinematic BCs are imposed, V is an
affine space, i.e. V , V0. However, one easily comes back to the configurationV = V0 by considering a lifting of
a problem, i.e. by defining new unknowns (u`, θ`) := (u, θ) − (û, θ̂) ∈ V0, where (û, θ̂) is an arbitrary element ofV.

For instance, taking (û, θ̂) = (û?, 0), where û? is a chosen function of H1(0, L) such that û?(0) = u?, the lifted
counterpart of the glued-free beam problem (19)–(21) is:

Find (u`, θ`) ∈ V0 such that
∫ L

0
A(u′` − θ`)(v

′ − φ) + gIθ′`φ
′ − ω2(Au`v + Iθ`φ)

=

∫ L

0
(qv + mφ) −

∫ L

0
A

(
û′?(v′ − φ) − ω2û?v

)
for all (v, φ) ∈ V0, (22)

whereV0 is given by (21). Then the solution of the original problem is (u, θ) = (u` + û?, θ`).
Since such a lifting is always possible, it is assumed thatV = V0 in all the considered problems hereafter.
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3.2. Finite element method
The finite element method belongs to the family of Galerkin methods, that rely on an approximation of the trial

spaceV0 by a finite-dimension subspaceVh,0 ⊂ V0. In this work, the same approximation space is used for u and θ,
and therefore we first look for a subspaceVh of H1(0, L), whose dimension is noted Nh, and then defineVh = (Vh)2

the corresponding space of couples (uh, θh). The subspaceVh,0 = V0 ∩Vh is finally built by removing the functions
that does not satisfy the kinematic boundary conditions on u or θ from the basis ofVh.

In practice, this last step is performed at the end of the discretization process described now. First, the displacement
and the rotation angle are approximated using the same basis {ϕ j} j=1..Nh of Vh, i.e. we look for approximations (uh,
θh) of (u, θ) as:

uh =

Nh∑
j=1

u jϕ j and θh =

Nh∑
j=1

θ jϕ j. (23)

By inserting these approximations into the weak formulation (19), and using the couples (v, φ) = (ϕi, 0) and (v, φ) =

(0, ϕi) as test functions, one obtains the 2Nh × 2Nh linear system:

(K − ω2 M) · U = F, (24)

where the vector U contains the discrete unknowns u j and θ j. In this work, we chose to dispose these values alterna-
tively:

U = [u1, θ1, . . . , u j, θ j, . . . uNh θNh ]T, i.e. U2 j−1 = u j and U2 j = θ j, j = 1 . .Nh, (25)

so that the components of the stiffness matrix K are:

K2i−1,2 j−1 =

∫ L

0
Aϕ′iϕ

′
j, K2i−1,2 j = −

∫ L

0
Aϕ′iϕ j,

K2i,2 j−1 = −

∫ L

0
Aϕiϕ

′
j, K2i,2 j =

∫ L

0
Aϕiϕ j + gIϕ′iϕ

′
j,

(26)

and those of the mass matrix M are:

M2i−1,2 j−1 =

∫ L

0
Aϕiϕ j, M2i,2 j =

∫ L

0
Iϕiϕ j, (27)

and M2i−1,2 j = M2i,2 j−1 = 0. The right-hand-side vector F is decomposed into F = Fin + Fbc, where Fin contains the
contribution of the force and moment densities:

F in
2i−1 =

∫ L

0
qϕi, F in

2i =

∫ L

0
mϕi, (28)

and Fbc accounts for the boundary conditions on N or M. For instance, for glued-glued beams one has Fbc = 0, and
for cantilever beams, using (20) one has Fbc = Fbc,ct with:

Fbc,ct
2i−1 = N?ϕi(L), Fbc,ct

2i = M?ϕi(L). (29)

The steps described above only take into account the boundary conditions on N and M. The last step to adapt
the system (24) to a given problem is to impose that uh and θh satisfy the prescribed kinematic BCs. To this end, we
remove from the approximation basis of each variable the functions ϕ j that does not vanish at the extremity where
these conditions are imposed (equivalently, the associated coefficients u j and θ j are set to 0 in (23)). The corresponding
lines and columns are finally removed from the system (24).

The quality of the approximation obtained by solving this system depends on the interpolation properties of the
chosen space Vh, i.e. the minimal distance between the exact solution of the system and a function of Vh. For
many applications, well-documented spaces of piecewise-polynomial functions [16, 9] offer very good performances.
However, for some problems, including medium- or high-frequency vibration problems, polynomials need refined
meshes and therefore high computational cost to catch the fast oscillations of the solution. The alternative we propose
is to build enriched spaces by incorporating oscillating functions into the elementary bases, as presented now.
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Figure 3: “Hat” (left) and “half-hat” (right) functions defined from a mesh {x0, x1, ..., xN }.

3.3. Building enriched spaces using the “half-hat” partition of unity

To incorporate enrichment functions in an approximation space, we follow the partition of unity method introduced
by Melenk and Babuška [20], which is adapted to the Timoshenko problem as follows. One must first define a partition
of unity, i.e. a family of functions {ϕn}n=0..N that satisfies:

N∑
n=0

ϕn(x) = 1, ∀x ∈ [0, L].

Given another family of functions Ψ = {ψm}m=1..Nm that gathers functions that will be added in the approximation
space and that we therefore call the enrichment family, one then builds an enriched function spaceVΨ

h as:

VΨ
h = span{ϕm

n }n=0..N, m=0..Nm with

ϕ0
n = ϕn,

ϕm
n = ϕnψ

m.
(30)

A function uh ∈ V
Ψ
h is defined by its (N + 1) × (Nm + 1) components um

n in the basis {ϕm
n }:

uh =

N∑
n=0

Nm∑
m=0

um
n ϕ

m
n . (31)

The most commonly used PU is the family of “hat” functions, to which the notation ϕn will apply hereafter, defined
from a mesh {0 = x0, x1, ..., xN = L} of [0, L] as plotted in Figure 3. Indeed, these functions form a basis of the
traditional FE space of piecewise-linear functions [9], and this choice allows to retain some convenient properties of
this basis for the enriched space, notably the sparsity of stiffness and mass matrices [20, 31].

However, with such a PU the additional functions ϕm
n = ϕnψ

m are supported by two elements. To restrain their
support to one element only, we proposed in a previous work [7] to support the enrichment using the “half-hat” PU
represented in Figure 3. Since on the e-th element the couple {ϕ−e , ϕ

+
e } forms a local partition of unity, one can work

directly on the elementary basis and choose a specific enrichment family Ψe for each element. We additionally impose
that the additional functions cancel at the end of each element, which simplifies the implementation of the resulting
method and allows one to apply the static condensation procedure, as developed in Section 5.1 below.

For each enrichment function ψm
e in Ψe, two additional functions ϕm−

e and ϕm+
e are therefore added to the elementary

basis. Written as functions of the normalized coordinate ξ = (x − xe−1)/he ∈ [0, 1], where he := xe − xe−1 is the length
of the e-th element, they read:

ϕm−
e (ξ) = (1 − ξ)

[
ψm

e (xe−1 + heξ) − ψm
e (xe−1)

]
, ϕm+

e (ξ) = ξ
[
ψm

e (xe−1 + heξ) − ψm
e (xe)

]
. (32)

Remark 3. When the space generated by the enrichment family is invariant by shifting the origin of the x-axis
(typically, when the family embeds only exponential functions e.g. ψm

e (x) = exp(ikmx)), it is convenient to use the
definitions:

ϕm−
e (ξ) = (1 − ξ)

[
ψm

e (heξ) − ψm
e (0)

]
, ϕm+

e (ξ) = ξ
[
ψm

e (he(ξ − 1)) − ψm
e (0)

]
, (33)

instead of (32), in particular for implementation easiness. These alternative definitions are used hereafter.
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Then, we look for approximations (uh, θh) as linear combinations of “hat” functions (to ensure that these approxi-
mations belongs to H1(0, L), see [7]) and those inner additional functions. Hereafter, we use the same number Nm of
enrichment functions for all elements, and such a combination is therefore written:

uh =

N∑
n=0

u0
nϕ

0
n +

N∑
e=1

Nm∑
m=1

[
um+

e ϕm+
e + um−

e ϕm−
e

]
. (34)

In the sum (34), the distinction is made between the nodal values u0
n associated with the “hat” functions, and the inner

values um±
e associated with the additional inner functions. The approximation space embedding all these combinations

is:
P1,2m = span

{{
ϕ0

n

}
n=0..N

⋃{
ϕm+

e , ϕm−
e

}
e=1..N, m=1..Nm

}
, (35)

whose dimension is dimP1,2m = (N + 1) + 2N × Nm.
Finally, specifying kinematic boundary conditions corresponding to a given problem is done by fixing only the

boundary values u0
0 = uh(0) and u0

N = uh(L), and similarly for θh, while boundary conditions on N and M are accounted
for in the weak formulation (19).

Remark 4. Note that the notation was slightly modified compared to our previous work [7]: the “half-hat” functions
ϕ±e and elementary functions ϕm±

e are now associated with a given element (thus the subscript ·e); and the + and −
exponents now indicate the sign of the slope of the functions ϕ±e .

3.4. Enriched spaces dedicated to Timoshenko beams

To conclude this section, we present the spaces obtained by combining the bases of solutions for homogeneous
or exponential beams given in Section (2.2) and the enrichment procedure described above. We also briefly present
spaces that will be used as reference in the numerical illustrations.

Timoshenko-enriched spaces. The first enriched space we consider, noted Pω,α1,8 , is obtained from the solutions Ψω,α

corresponding with a homogeneous beam, given by (13). For arbitrary heterogeneous beams, the function α = A/I
is used to define enrichements to each elementary basis: the e-th basis is enriched with the family Ψω,αe , where
αe := α((xe−1 + xe)/2) is the value of α at the middle point of the e-th element. Following (33), the eight additional
inner functions are:

ϕm−
e (ξ) = (1 − ξ)

[
eikmheξ − 1

]
and ϕm+

e (ξ) = ξ
[
eikmhe(ξ−1) − 1

]
(m = 1 . . 4), (36)

where the wavenumbers km given by (12) depend on αe. These functions are represented in Figure 4. The enriched
space then embeds the exact solution for a piecewise-homogeneous or “step” beam, free from linear excitations.

We then introduce the space Pω,α,δ1,8 , whose elementary bases are enriched with the solutions Ψω,αe,δe corresponding
to exponential beams, defined by (17). For each element, the parameters αe and δe are the values of α and δ := A′/2A
at the middle of the element. The additional inner functions are defined similarly to (36), but with the wavenumbers
{km}m=1..4 replaced by their counterparts {̂km}m=1..4 defined by (16).

In the particular case of beams with constant thickness, α = A/I is constant and therefore all elementary bases
are identical for the sapce Pω,α1,8 : it is then a globally enriched space and does not depend on the inhomogeneity of the
beam. In this case, using the second space Pω,α,δ1,8 , which is still locally enriched when δ is inhomogeneous, is a first
way to take the width variations into account.

Remark 5. The spaces Pω,α1,8 and Pω,α,δ1,8 are the counterparts for Timoshenko beams of the spaces Pk
1,4 and Pk,δ

1,4 built
in [7] from time-harmonic solutions corresponding to homogeneous and exponentially varying bars.

For completeness, some other enriched spaces that produced similar results on the upcoming test-cases are pre-
sented in Appendix A.

9



Reference spaces. To assert the efficiency of the enriched spaces, we will compare their performance with more
classical spaces. As a reference space, we chose the space P9 of piecewise ninth-order polynomials, whose imple-
mentation is identical to the one of the enriched spaces Pω,α1,8 and Pω,α,δ1,8 since it also features two nodal and eight inner
functions per elementary basis. Several elementary bases exist for this space, among them are the hierarchical basis
of Lobatto polynomials (often implicitly associated with the so-called p or hp-FEM [16, Sect. 4.7]) and the “spectral”
basis of Lagrange polynomials with interpolation nodes taken as the Gauss-Lobatto-Legendre points of the reference
element [18, 30]. These two bases were compared by Sprague and Geers [30], and produced nearly identical results
in terms of accuracy. Since the main advantage of spectral bases, namely the diagonal mass matrices they produce, is
irrelevant for time-harmonic problems, we use a hierarchical basis for simplicity, represented in Figure 4.

Finally, to complete the comparison, we will also look at the performance of a “naively” sine-enriched space,
where the simplest family of oscillating functions Ψω := {x 7→ e±iωx} is used to enrich each elementary basis. To
maintain eight inner functions as in the other considered bases, Lobatto polynomials up to the fifth degree are also
added to obtain a polynomial-enriched space denoted by Pω5,4, whose elementary basis is represented in Figure 4.
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Figure 4: Elementary basis functions on an element of length h = 1. From left to right, hierarchical basis of Lobatto polynomials (space P9);
sine-enriched basis for ω = 10 (space Pω5,4); and Timoshenko-enriched basis for ω = 10 and α = 1 (space Pω,α1,8 ).

4. A new formulation based on a local rescaling

For arbitrarily varying profiles A, I, the enrichment functions corresponding to homogeneous or exponentially
varying beams account only partially for the geometry. To improve again the efficiency of the enriched method, we
therefore propose to incorporate geometrical information into the problem unknowns before the discretization.

4.1. Change of unknowns in the Timoshenko system

Let us define the variable coefficients

d =
√
A and a =

√
I, (37)

and new unknowns (ũ, θ̃) obtained by the local (i.e. x-dependent) rescaling:

u =
ũ
d
, θ =

θ̃

a
. (38)

This change of unknowns is inspired by a similar rescaling for Webster’s equation (Au′)′ + k2Au + f = 0, which
models the longitudinal motion of beams [7], or low-frequency acoustic propagation in waveguides [24]. Indeed,
whenA is sufficiently regular, one has:

(Au′)′ + k2Au + f = 0 ⇐⇒ ũ′′ +
(
k2 −

d′′

d

)
ũ +

f
d

= 0, (39)
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with u = ũ/d and d =
√
A, i.e. Webster’s equation can be converted into a Helmholtz equation with variable

wavenumber.
Similarly, introducing the rescaling (38) into the Timoshenko system (5) leads to:

(
dũ′ − d′ũ −

d2

a
θ̃

)′
+ ω2dũ + q = 0

g
(
aθ̃′ − a′θ̃

)′
+

(
dũ′ − d′ũ −

d2

a
θ̃

)
+ ω2aθ̃ + m = 0.

(40)

Equivalently, expanding (40) and dividing the two lines by d and a, respectively, one obtains:
ũ′′ +

(
ω2 −

d′′

d

)
ũ =

daθ̃′ + (2d′a − da′)θ̃
a2 −

q
d

gθ̃′′ +
(
ω2 −

d2

a2 − g
a′′

a

)
θ̃ = −

dũ′ − d′ũ
a

−
m
a
.

(41)

The system (41) models two coupled harmonic oscillators, where the variable geometric parameters d and a intervene
in the wavenumbers and the coupling terms, but not in the second-order terms in ũ and θ̃. We therefore expect ũ
and θ̃ to be less affected by the inhomogeneity than the original solutions (u, θ), and therefore better approximated
by oscillating enrichment functions corresponding to homogeneous beams. Of note, this is the case for exponentially
varying beams withA = I: the solutions given by (17) are written u = ũ/

√
A where ũ is a purely oscillating function.

4.2. Discretization

The weak formulation associated with the system (40) is:

Find (ũ, θ̃) ∈ Ṽ such that
∫ L

0

(
dũ′ − d′ũ −

d2

a
θ̃

)
(v′ − φ) +

∫ L

0
g
(
aθ̃′ − a′θ̃

)
φ′ − ω2(duv + aθ̃φ)

=

∫ L

0
(qv + mφ) +

[
Nv + Mφ

]L

0
for all (v, φ) ∈ V0, (42)

where we still note (v, φ) the test functions, and Ṽ is obtained by modifying the non-homogeneous kinematic boundary
conditions embedded in the definition of V accordingly with the change of unknowns (38). The associated linear
space is Ṽ0 = V0, so that, up to a lifting, the problem (42) may be also written using onlyV0.

After discretization, the associated finite element system is:

(K̃ − D̃ − ω2 M̃) · Ũ = F, (43)

where the components of the stiffness and mass matrices K̃ and M̃ have similar expressions than those of K and M
defined by (26-27), with A and I replaced respectively by d and a, except for the components {K̃2i,2 j}i, j=1..Nh where
A is replaced by d2/a instead. The matrix D̃ embeds the contributions of the derivatives d′ and a′ arising in (42) after
the change of unknowns:

D̃2i−1,2 j−1 =

∫ L

0
d′ϕ′iϕ j, D̃2i−1,2 j = −

∫ L

0
d′ϕiϕ j,

D̃2i,2 j−1 = 0, D̃2i,2 j =

∫ L

0
ga′ϕ′iϕ j,

(44)

and the right-hand side vector F is left unchanged and is defined by (29). Contrary to the system (24), the system (43)
is not symmetric, due to the contribution of D̃.
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4.3. Enriched spaces

Finally, approximations (ũh, θ̃h) of (ũ, θ̃) will be sought in the spaces P9, Pω5,4 and Pω,α1,8 defined in Section 3.4. The

corresponding spaces of solutions (u, θ) embedding the local rescaling are denoted by P̃, e.g. :

P̃9 :=
{(

ũh

d
,
θ̃h

a

)
, (ũh, θ̃h) ∈ (P9)2

}
, d =

√
A, a =

√
I. (45)

We define similary P̃ω5,4 and P̃ω,α1,8 : in the case where d and a are constant, the system (40) degenerates as expected
into the α-dependent system (9) with α = d2/a2, so using the associated solutions is still relevant for the modified
formulation. On the contrary, there is no physically-based counterpart to the space Pω,α,δ1,8 and attempts to define a
similar enriched space were not conclusive, see Appendix A.

5. Numerical validation and illustrations

This part first presents some general peculiarities of the implementation of the enriched FEM. Then, we explain
how we validated the method by comparing its performances with the reference ninth-order FEM on test-cases with
analytical solutions. Finally, we present and discuss the results obtained by simulating the vibrations of four beams
with various heterogeneous geometries.

The result displayed below were obtained with an implementation of the method in a standard Matlab framework.

5.1. Implementation choices

Numerical integration. To compute the matrices’ components (26,27,44), we used a classical Gauss quadrature [9,
Sect. 8] and the following procedure to ensure that the integration of oscillatory basis functions remains accurate even
for large elements supporting several wavelengths.

We first introduce a reference dimensionless wavelength independent of the considered beam:

λ := 2π/ω, (46)

which is the smallest wavelength in homogeneous and exponentially varying beams at the high-frequency limit, as
discussed in Section 2.2. Then, each element is divided into Nse := dh/2λe subelements of equal lengths, where
h = maxn=1...N hn and d·e denotes the ceiling function so that dxe − 1 < x ≤ dxe for any x ∈ R. Then, 10 Legendre-
Gauss points are used in each subelement to compute its contribution to the total integral. In this way, each subelement
covers at most half of a wavelength λ, and there are at least 20 integration points per wavelength.

Static condensation. Since all the elementary bases presented above feature two nodal and eight inner basis functions,
the same static condensation (SC) procedure can be applied to the linear systems (24) and (43). This procedure is
described in details e.g. in the monograph by Ihlenburg [16, Sec. 4.7.3], and is also called dynamic reduction by some
authors [28, Sect. 2.3]. In short, it first intervenes in the matrices assembly process: the inner values are expressed in
terms of the nodal values by inverting each 8 × 8 inner elementary matrix. Then only the nodal values are retained as
unknowns, and the global matrix to be inverted is therefore much smaller than the initial one, e.g. 2N × 2N instead of
10N × 10N for a cantilever beam. This matrix is also better conditioned than the original one, while only the small
8 × 8 elementary matrices inverted at the condensation step suffer from bad conditioning. Finally a post-processing
operation (the decondensation) is needed to retrieve the inner values from the node values.

5.2. Validation of the method

First, the implementation of the polynomial and enriched FE bases are validated by comparison with analytical
solutions. The accuracy of a FE solution (uh, θh) compared to the exact solution (u, θ) is measured by the relative error
EL defined by:

EL(uh, θh) := ‖(uh − u, θh − θ)‖L / ‖(u, θ)‖L, (47)
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where we define the Lagrangian-based norm ‖ · ‖L by:

‖(u, θ)‖L = (−L(u, θ))1/2 =

(∫ L

0
A(u′ − θ)2 + gI(θ′)2 + ω2(Au2 + Iθ2)

)1/2

, (48)

whereL(u, θ) is the Lagrangian of the state (u, θ), i.e. the difference between the associated kinetic and elastic energies.
This norm was also chosen for its similarity with the weighted H1-norm ‖u‖2H1,k := ‖u′‖2L2 + k2‖u‖2L2 that appears in the
analysis of problems modeled by the Helmholtz equation −u′′ − k2u = f , to balance the weight of a function u and
its derivatives for oscillating solutions. In practice, a discrete counterpart of the integral (48) is computed using the
middle-point method and a very thin dedicated mesh (1001 elements) independent of the FE meshes.

The tests are performed on cantilever beams, glued at x = 0, i.e. (u, θ)(0) = (0, 0), and with imposed transverse
force and bending moment at x = L: either (N,M)(L) = (1, 0) or (N,M) = (0, 0) (free extremity) when the loading is
provided by a linear density of forces q. We study the accuracy of the FE solutions for several resolutions λ/h, where
h = maxn hn is the largest element length and λ = 2π/ω is the reference wavelength as above. The resolution is an
indicator of the number of elements per smallest wavelength, that is a relevant criterion to compare several FE spaces
having the same number of basis functions per element when solving time-harmonic problems. The variation of the
resolution is performed in two ways:

• First, the frequency ω is fixed and the error is computed for several regular meshes, i.e. for different element
length h. For piecewise-smooth profiles (A,I), the exact solution is also piecewise-smooth, and therefore the
error (47) should decrease like h9 as the mesh step h decreases when using the space P9, according to the
classical theory for polynomial finite elements [16, 9] and provided that nodes are placed at the singularities of
the profiles or their derivatives. Based on the results we previously proved for similar enriched spaces [7], we
also expect the errors obtained with the enriched spaces (Pω5,4, Pω,α1,8 , ...) to decrease with the same rate.

• Then, we fix the mesh and increase the frequency ω. In this way, we will observe the frequency-dependent
peculiarities of the enriched spaces. Indeed, the accuracy obtained with polynomial spaces depends mainly
on the resolution λ/h, with a pollution error increasing with the frequency [16, Sect. 4.6]. On the contrary,
the accuracy of enriched space is expected to be more stable thanks to the oscillatory enrichment functions
determined from the frequency of each problem.

5.2.1. Homogeneous beams
For homogeneous beams, we do not display simulation results for brevity and refer instead to the similar results

displayed below for an exponentially varying beam, but we checked that the following key properties are verified:

• The Timoshenko-enriched space Pω,α1,8 embeds the analytical solution, and therefore produces errors close to
machine precision.

• The other spaces (P9 and P5,4) produced errors that decrease with the same O(h9) rate at fixed frequency.

Moreover, the initial and modified formulations are identical, thus the effect of the local rescaling cannot be observed.

5.2.2. Exponentially varying beams
We now present in details the tests performed on an exponentially varying beam of length L = 10, whose profiles

are:
A(x) = I(x) = e2δx, (49)

with δ chosen such that A(L) = 1/8. For these profiles, the space Pω,α1,8 does not contain the exact solution for
free vibrations (17), but its “exponentially” enriched companion Pω,α,δ1,8 does. Moreover, the initial and modified
formulations differ. Both the effects of the various enrichments and of the modified formulation can therefore be
observed.
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Point-like loading. We first consider a cantilever beam whose motion is only due to a time-harmonic transverse force
applied at its right extremity, with amplitude N(L) = 1. In this case the exact solution is a combination of the free
vibrations solutions given by (17).

In Figure 5 are plotted the displacement and rotation fields (u, θ) obtained with the various enriched spaces at
medium frequency ω = 5 and with a coarse mesh made of only N = 2 elements, so that the resolution is λ/h ≈ 1/4
(one element for four wavelengths). We already observe qualitatively that, in this case, the sine-enriched space Pω5,4
outperforms the polynomial space P9 in the approximation of the displacement u (i.e. replacing four polynomials
by oscillating functions already improves the quality of the results) and is outperformed by the spaces enriched by
Timoshenko solutions, which are the only ones able to capture the oscillations of the rotation θ.
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Figure 5: Exact and approached solutions u (top) and θ (bottom) for a cantilever beam with exponential profiles, for a circular frequency ω = 5 and
N = 2 elements. The Timoshenko-enriched solutions (red and pink) are superposed with the exact one (solid black).

Then, the relative errors obtained at the same fixed frequency ω = 5 with several meshes are plotted in the left
panel of Figure 6. Additional observations may be made:

• For coarse meshes, the exponential-enriched space Pω,α,δ1,8 that embeds the analytical solution reaches the ma-
chine precision (see below for refined meshes).

• In the convergence regime, all the other curves follow the expected O(h9) rate.

• The local rescaling does not affect the precision obtained with the polynomial space P9 and the sine-enriched
space Pω5,4. On the other hand, it improves drastically (by several orders of magnitude) the precision obtained
with Pω,α1,8 (as expected in this particular case, because the amplitude factor e−δx of the solution is exactly
embedded in the local rescaling).

• For each enriched spaces, there is a threshold above which the conditioning of the discrete system obtained with
the enriched spaces penalizes the solution and the error begins to grow (see the discussion below). However,
this threshold appears for small relative errors (lower than 10−8 for all the spaces in this example), and very
acceptable errors can be obtained by choosing a medium-sized mesh. For instance, fixing h = λ leads to relative
errors varying between 10−4 (P9 and P̃9) to 10−10 (P̃ω,α1,8 ).

In the right panel of Figure 6, we represented the errors obtained with a fixed mesh size h = 1 and increasing
frequencies. For this test-case, the error evolution depends on the FE space. The errors associated with polynomial
solutions increase regularly with ω as ω9 (i.e. as (h/λ)9 as expected), until they reach a plateau. On the contrary,
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errors associated with enriched solutions (i) increase as ω → 0 (i.e. as the resolution increases) due again to bad
conditioning, (ii) reach a minimum value for medium resolution and frequency and (iii) increase slower than ω9 and
finally seem to reach a plateau at low error levels. The local rescaling has a much more remarkable and frequency-
dependent effect that leads to a high gain for high frequencies.
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Figure 6: Relative errors for a cantilever beam with exponential profiles and g = 2.5. Left: the frequency is fixed to ω = 5, and the resolution λ/h
increases as the mesh is refined from 1 to 25 elements. Right: the mesh is fixed to N = 10 elements of length h = 1, and the frequency increases.

Distributed loading. As a second validation test, we consider the same exponentially varying cantilever beam, free
at the right extremity, i.e. (N,M)(L) = (0, 0), but submitted to a distributed loading. A linear density of forces with
amplitude qp corresponding to a particular solution (up, θp) with up(x) = (x/L)2 and linear θp is designed (see Appendix
B for details), so that the exact solution is (u, θ) = (up, θp) + (uh, θh), where the “homogeneous” part (uh, θh) satisfies
the system (14) and therefore is a combination of the free vibration solutions (17). This example is chosen so that
none of the FE spaces contains the full solution: P9 and Pω5,4 contain the particular solution but not the homogeneous
part, and Pω,α,δ1,8 contains the homogeneous part but not the particular solution.

Remark 6. For this particular case, it would be easy to build a tenth-order space Pω,α,δ2,8 by adding an additional
second-order polynomial shape function to the elementary bases of Pω,α,δ1,8 , and therefore recover a space that contains
the exact solution. More generally, when a particular solution is known exactly or approximately, higher-order FE
spaces can be designed by incorporating relevant additional shape functions to the bases of existing spaces, either
polynomials or other functions, using the half-hat PU.

This solution (u, θ) is plotted in figure 7 for ω = 5, along with the approximations obtained with the various spaces
and for N = 3 elements. Again, for this configuration the enriched spaces clearly outperforms the polynomial space,
especially for the approximation of the rotation θ. In figure 8, contrarily to the previous example, we observe that all
the enriched spaces present similar performances, due to the additional force density. The local rescaling, which was
designed by studying the Timoshenko system without source terms, always provides a slight error decrease.

Conditioning and static condensation. Finally, to better understand the conditioning effects, we plotted in Figure 9
the conditioning number of the matrices K − ω2 M (for the original formulation) and K̃ − D̃ − ω2 M̃ (for the modified
formulation) for the frequency ω = 5 and the various meshes used in the two examples above (left panels of figures
6 and 8). On the left panel are plotted the average conditioning numbers of the 8 × 8 inner elementary matrices that
gather the contributions of the inner functions for each element. As the definition of the elementary polynomial basis
does not depend on the element size, the conditioning of the resulting matrices is almost insensitive to the resolution.
On the contrary, the inner functions ϕm±

e incorporated in the enriched bases become nearly linearly dependent as the
resolution increases, and the conditioning number of the matrices explodes. This bad conditioning is reflected on the
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Figure 7: Exact and approached solutions u (top) and θ (bottom) for a cantilever beam with exponential profiles submitted to a distributed loading
q , 0, for a circular frequency ω = 5 and N = 3 elements. The Timoshenko-enriched solutions (red and pink) are superposed with the exact one
(solid black).
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Figure 8: Relative errors for a cantilever beam with exponential profiles and g = 2.5, submitted to a distributed loading q , 0. Left: the frequency
is fixed to ω = 5, and the resolution λ/h increases as the mesh is refined from 1 to 25 elements. Right: the mesh is fixed to N = 10 elements of
length h = 1, and the frequency increases.

global matrices (middle panel) and penalizes the accuracy of the solution for thin meshes (h < λ), as noticed above in
Figures 6 and 8.

This bad conditioning is partially addressed by applying the static condensation method presented in Section 5.1:
the condensed global matrices are not only smaller, but also well conditioned for all FE bases, as seen in the right
panel of Figure 9. However, in this case the bad conditioning of elementary matrices still affects the accuracy of
the solution, and results nearly identical to those of Figures 6 and 8 (not plotted for brevity) were obtained with the
equivalent condensed system. Since the systems we solve are sufficiently small-sized to be solved rapidly without
condensation, we therefore use the full uncondensed matrices in the upcoming examples for simplicity.
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Figure 9: Conditioning numbers of the FE matrices corresponding to the results of Figure 6 obtained for an exponentially varying beam, for fixed
frequency ω = 5 and decreasing meshsize. Left: elementary 8 × 8 matrices corresponding to inner shape functions (the conditioning number is
averaged over all the elements). Middle: matrices of the systems (24) and (43), without condensation. Right: condensed matrices.

5.3. Examples on heterogeneous beams

To show the efficiency of our method to handle the inhomogeneity of the beam, we now present the results
obtained for four cantilever beams with boundary conditions (u, θ)(0) = (0, 0) and (N,M)(L) = (1, 0), featuring various
geometries for which no analytical solution is available. These test-cases are ordered by increasing complexity of the
inhomogeneity: we study successively

1. a beam with constant thickness and quadratically varying width (so thatA = I),
2. a conical beam with circular cross-section and linearly decreasing radius (so thatA , I but the profiles are still

smoothly and simultaneously decreasing),
3. a beam with oscillating thickness and width (so that the profiles oscillate with different periods),
4. a periodically notched beam with non-smooth profiles (so that the mesh needs to be adapted to the singularities).

For each of these beams and each considered given circular frequency ω, a reference solution (uref , θref) is com-
puted using the polynomial space P9 and a very thin mesh made of d4ωe elements per unit length, i.e. elements of
length h = λ/8π for integer values of ω. For instance, for the computations performed on beams of length L = 10
at frequency ω = 5, the reference solution is computed with N = 200 elements. Indeed, this refinement produced
errors close to machine precision for tests performed with homogeneous and exponentially varying beams. Then, in
the Lagrangian-based error EL given by (47), the exact solution (u, θ) is replaced by this reference solution (uref , θref).

5.3.1. Beam with constant thickness and quadratically varying width
Our first example concerns a beam with rectangular cross-section and constant thickness and quadratically varying

width, so that, with the scaling Ac = A(0) and Ic = I(0),

A(x) = I(x) = (1 + bx/L)2, (50)

with b =
√
A(L) − 1. We choose L = 10 andA(L) = 1/8, to obtain the beam and profiles represented in Figure 10.

This beam is very similar to the exponentially varying beam, and the results discussed above are retrieved in
Figure 11, with the following differences. First, using the space Pω,α,δ1,8 instead of Pω,α1,8 , i.e. enrichment functions
corresponding to exponentially varying beams instead of homogeneous beams, brings a stable improvement: the error
is divided by a factor ≈ 2. A similar improvement was already observed for bars in our previous work [7]. On the other
hand, the local rescaling improves a bit less the precision obtained with Pω,α1,8 , but still by several orders of magnitude
even if the amplitude factor may not be exactly 1/

√
A.
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Figure 10: Beam with constant thickness and quadratic width: representation (left) and profiles (right).
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Figure 11: Relative errors for a cantilever beam with quadratic profiles represented in Figure 10 and g = 2.5. Left: the frequency is fixed to ω = 5,
and the resolution λ/h increases as the mesh is refined from 1 to 25 elements. Right: the mesh is fixed to N = 10 elements of length h = 1 and ω
varies.

5.3.2. Conical beam
For the second example, we choose a conical beam with circular cross-section, whose radius r̄(x̄) varies linearly:

r̄(x̄) = r̄0 + (r̄L − r̄0)x̄/L̄ for some (r̄0, r̄L, L̄). Recalling that in this case A = πr̄2 and I = πr̄4/4, using again the scaling
Ac = A(0) and Ic = I(0) (so that rc = r̄0/2), one obtains:

A(x) = (1 + bx/L)2 and I(x) = (1 + bx/L)4, (51)

with b = (r̄L − r̄0)/r̄0. We chose L = 10 and b such that A(L) = 1/8 as in the previous example. The resulting beam
and profiles are represented in Figure 12. Similar “tapered” beams are studied in [26, 15].

Again, we see in Figure 13 that enriched spaces perform better than the polynomial space, but for this example the
gap is thinner between the Timoshenko-enriched and the sine-enriched basis spaces. The change of unknowns still
does not affect the performances of the polynomial and sine-enriched spaces, but enables to gain an additional stable
factor on the error (between 2 and 3) while using Timoshenko-enriched spaces.

The gap between the various errors becomes wider as the frequency increases (right panel of Figure 13), and the
same remarks than for the previous example can be done: the errors obtained with enriched spaces increase more
slowly than with the polynomial space, and reach a plateau for values inferior to 1% for Timoshenko-enriched space.
The gain coming from the modified formulation stays noticeable but not as significant as it was for the previous
example.
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Figure 12: Conical beam with linearly varying radius: representation (left) and profiles (right).
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Figure 13: Relative errors for the conical cantilever beam represented in Figure 12 and g = 2.5. Left: the frequency is fixed to ω = 5, and the
resolution λ/h increases as the mesh is refined from 1 to 25 elements. Right: the mesh is fixed to N = 10 elements and ω varies.

5.3.3. Beam with oscillating thickness and width
We consider again a beam with rectangular cross-sections, whose profiles A and I are defined in terms of the

dimensionless width b2 and thickness b3 as:

A(x) = b2(x)b3(x) and I(x) = b2(x)(b3(x))3. (52)

More specifically, we choose b2(x) = 1 − 0.5 sin(2πx/`) and b3(x) = 1 + 0.5 sin(2πx/`). In this way,A remains close
to 1, while I oscillates with a wider amplitude as represented in Figure 14 for L = 10 and ` = 6.

As seen in Figure 15, for the fixed low-frequency simulation the improvement brought by the enriched spaces
is lower than in the previous examples. On the other hand, for this example the local rescaling improves the results
obtained with all spaces: in the convergence regime the error obtained using the polynomial space (resp. enriched
spaces) is reduced by a factor ≈ 2 (resp. ≈ 10).

When the mesh is fixed and the frequency increases (right panel of Figure 15), this general improvement progres-
sively disappears and the Timoshenko-enriched space remains the only one to benefit from its association with the
modified formulation, as observed on the previous examples.

5.3.4. Periodically notched beam
Our last example is a periodically notched beam represented in Figure 17, made of six straight segments and

five notches with constant width and varying thickness as represented in Figure 16. This test-case in inspired by the
work [37]. In this case, before the mesh definition, the beam is divided into subdomains whose boundaries match the
singularities of the profiles, i.e. there is one subdomain per straight segment and two per notch. Then each subdomain
is meshed independently.

The figure 18 illustrates the convergence rate obtained as the resolution increases for a fixed frequency ω = 50
and regular meshes. A high frequency was chosen to avoid the high-resolution and badly-conditioned configurations,
since regular meshes must have at least 34 elements. The expected O(h9) rate is again observed for all spaces, along
with the stable improvements brought by the enrichment strategy and the rescaling.
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Figure 14: Beam with rectangular cross-sections and oscillating thickness and width: representation (left) and profiles (right).
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Figure 15: Relative errors for the cantilever beam with oscillating profiles represented in Figure 14 and g = 2.5. Left: the frequency is fixed to
ω = 5, and the resolution λ/h increases as the mesh is refined from 1 to 25 elements. Right: the mesh is fixed to N = 10 elements of length h = 1
and the frequency increases.

For the second example, we chose the coarsest possible mesh to demonstrate the capabilities of our method:
each subdomain contains only one element, for a total of only N = 16 elements. Note that this coarse mesh is
particularly justified for the straight subdomains since the exact local solution is then embedded in the Timoshenko-
enriched basis of the space Pω,α1,8 . As seen in the right panel of Figure 18, the polynomial and sine-enriched spaces are
largely outperformed by the Timoshenko-enriched spaces for high frequencies. Moreover, combining the modified
formulation with Timoshenko-enriched bases results in a very acceptable relative error (less than 0.05%) on the whole
interval of frequencies ω ∈ [2, 64].
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Figure 16: Variations of the thickness throughout the unit cell of the periodically notched beam.
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Figure 17: Periodically notched beam: representation (left) and profiles (right).

0.5 1
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

2 4 8 16 32 64

10 -6

10 -4

10 -2

10 0

Figure 18: Relative errors for the periodically notched beam represented in Figure 17, with g = 2.5. Left: convergence of the error at ω = 50,
computed for regular meshes composed of 4n elements per straight subdomain and 2n elements per notch, i.e. N = 34n and h = 0.3/n, with
n = 1..4. Right: error obtained at several frequencies with the coarsest irregular mesh: one element of length h1 = 1.2 per straight subdomain and
two elements of length h2 = 0.3 per notch, for a total of N = 16 elements.

6. Conclusions and perspectives

In this paper, we presented a finite element approach dedicated to the computation of vibrations of heteroge-
neous beams. More precisely, we combined (i) an enrichment method incorporating Timoshenko solutions into the
approximation space and (ii) a local rescaling that accounts for the heterogeneous geometry. The resulting discrete
solutions were compared with solutions obtained using classical polynomial FE spaces on several examples. With
the same implementation easiness and similar computational costs, our proposal outperforms the polynomial FEM on
the tested configurations. On the one hand, for a fixed frequency, all errors converge with the same rate as the mesh
is refined, but using the enriched FEM improves the precision by a factor ranging from about one to several orders
of magnitude depending on the considered geometry. On the other hand, our method enables to use the same coarse
mesh to solve time-harmonic problems in a wide range of frequencies (several octaves), while keeping the error level
at very acceptable levels (typically less than 0.1%), whereas the polynomial FEM fails to follow the fast oscillations
of the solutions at high frequencies without mesh refinement.

On the theoretical side, an analysis of the method might be conduced, notably to better understand the contribution
of its two components, and to predict its performances given the geometrical variations of a beam. This analysis could
also reveal ways to account more precisely for this heterogeneity by building other enrichment functions, and complete
our first attempts in this direction presented in Appendix A.

In parallel with these developments, the method seems robust enough already to be applied to other Timoshenko-
related problems. In particular, computing natural frequencies of beams or modeling the wave propagation in the
transient domain are of major interest in engineering applications. Therefore, we conclude this article by providing
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some insights on the relevance of our method to tackle these problems.

Computing natural frequencies of beams. Many papers on Timoshenko beams focus on the computations of their nat-
ural frequencies. Numerous methods are proposed [14] to build stiffness and mass matrices and obtain approximations
ωh of these frequencies as the solutions of the generalized eigenvalue problem:

Find (ωh,U) such that (K − ω2
h M) · U = 0. (53)

The enriched bases presented in this work are adapted to solve vibration problems at a specific frequency ω, and
therefore a priori seem poorly adapted to the search of natural frequencies. However, a procedure similar to the one
developed for bars by Arndt et al. [2] could be investigated. Such procedure aims at determining precisely natural
frequencies by (i) running an eigenfrequency search with a traditional piecewise-polynomial FE basis, and (ii) enrich
the FE basis with functions corresponding to a frequency determined at step (i), to include functions close to the
mode shape in the approximation space and improve the accuracy of the eigenvalue approximation for this particular
frequency. Finally, the step (ii) can be repeated with the newly computed eigenfrequencies to improve the precision.

Time-domain wave propagation in Timoshenko beams. Time-domain computation can be achieved in two ways. On
the one hand, a numerical scheme can be used to discretize the considered time interval. In this case, the mass matrix
should be inverted at every time step. The spectral finite element method, which produces diagonal mass matrices,
is particularly adapted in this case [18, 30]. Our enriched FE method, on the contrary, produces non-diagonal mass
matrices; moreover it is built to be efficient for one particular frequency, thus we don’t expect it to be very efficient to
retrieve solutions of a time-domain problem with a wide frequency spectrum.

On the other hand, one can apply a discrete Laplace transform [1, 5] or a Fourier transform [11, 28] to the time-
domain problem, then solve the resulting time-harmonic problems in the Laplace or Fourier domain for a relevant
range of frequencies, and finally come back to the time-domain by an inverse transform. For this approach, the
proposed enriched bases may be useful: at each frequency the computation could be accelerated by coarsening the
mesh and using an appropriate enrichment, at the cost of computing the ω-dependent stiffness and mass matrices. In
view of the results obtained in Section 5 for fixed meshes and increasing frequencies, one may even use the same
mesh for a wide range of frequencies while keeping reasonable error levels, which could facilitate the parallelisation
of the time-harmonic computations and the post-processing operations.
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Appendix A. Other enriched spaces

This appendix presents other attempts made to define relevant enrichment families, that produced no noticeable
improvement compared to the spaces presented in Sections 3.4 and 4.3, for the examples of Section 5.

Enrichment family resulting from the Taylor expansion of Timoshenko system for arbitrary profiles. To build relevant
enrichment functions for a given equation with varying coefficients, an idea proposed by Imbert-Gérard and Després
[17] (who study Helmholtz equations with variable wavenumbers) is to replace these coefficients by their Taylor
expansions about the middle xe of an element and look for the solutions of the obtained equations, called generalized
plane waves [17]. In our case, we note (α, 2δ, 2β) the values of the coefficients of the system (5) at the middle-point
xe (i.e. their 0-th order Taylor expansion):

α =
A

I
(xe), 2δ =

A′

A
(xe), and 2β =

I′

I
(xe), (A.1)

and keeping only these leading-order contributions in the equations (5), the resulting system is:−ω2u = 2δ(u′ − θ) + (u′ − θ)′

−ω2θ = α(u′ − θ) + g
(
2βθ′ + θ′′

)
.

(A.2)
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Note that this system does not correspond to an actual beam when δ , β and therefore its relevance is hard to
determine using physical insights. The dispersion relation is found to be:

(ω2 − (k2 − 2iδk))(ω2 − g(k2 − 2iβk) − α) − α(k2 − 2iδk) = 0, (A.3)

or:
gk4 − 2gi(δ + β)k3 − (ω2(1 + g) + 4gδβ)k2 + 2iω2(δ + gβ)k + ω2(ω2 − α) = 0. (A.4)

We found no closed-form expression of the roots {k̄m}m=1...4 of this equation, but they may be computed numerically
for each set of parameters (ω, α, δ, β), and the basis of solutions is then given by:

Ψω,α,δ,β =
{
x 7→ eik̄m x

}
m=1..4

. (A.5)

This family was used to build a space Pω,α,δ,β1,8 similar to Pω,α1,8 and Pω,α,δ1,8 , for which the e-th elementary basis is
determined from the values of (α, δ, β) computed with (A.1). However, no significant improvement was observed
compared to the simpler space Pω,α1,8 , and compared to Pω,α,δ1,8 for beams with constant thickness.

We applied the same idea to the system (41) obtained after the change of unknowns (u, θ) → (ũ, θ̃). By retaining
only the middle-point values of all the variable coefficients (d′′/d, d′/a, . . . ), writing the dispersion relation of the
resulting system and computing its roots, one may define a new family Ψω,d,a of enrichment functions and build
the corresponding space P̃ω,d,a1,8 similarly than above. This space was used instead of P̃ω,α1,8 to discretize the modified
formulation (42), but again, no clear improvement was observed.

Enrichments inspired by the Stable generalized FEM. Given an enrichment family {ψm}, there are alternative ways
to add inner functions (i.e. functions that vanish at both nodes of the element) to an elementary basis. In particular,
we borrowed one of the ideas of the Stable GFEM [3] for which the linear interpolant of the enrichment functions is
subtracted from these functions on each element. We built alternative Timoshenko-enriched spaces Pω,α5,4 , for which
only four additional inner functions are added to a fifth-order polynomial basis. These functions read:

ϕm
e (ξ) = eikmheξ − 1 − ξ(eikmhe − 1), m = 1 . . 4, (A.6)

where the wavenumbers km are defined by (12). In particular, we expected such bases to produce better-conditioned
systems (as each enrichment function appears only once in the elementary basis). However, on the examples presented
in Section 5, these spaces were found to perform poorly compared to the spaces Pω,α1,8 , that uses the same enrichment
functions but multiplied by the “half-hat” local PU.

Appendix B. An exact solution for nonzero density of forces

For an exponential beam, a particular solution of the Timoshenko system (5) is sought by imposing up(x) = (x/L)2

and m(x) = 0. Then the unknown rotation θp and density of forces qp(x) = A(x)q̄p(x) are the solutions of the system: 2 − θ′p + 2δ(u′p − θp) + ω2up + q̄p = 0

g
(
θ′′p + 2δθ′p

)
+ α(u′p − θp) + ω2θp = 0.

(B.1)

The rotation θp and the force density qp are determined successively thanks to the second and the first equation. Finally,
the particular solution

up(x) =
x2

L2 , θp(x) =
1
L2

2α
α − ω2

(
x +

2gδ
α − ω2

)
(B.2)

is obtained by imposing the linear density of forces:

qp(x) = A(x)q̄p(x) =
e2δx

L2

[
−ω2x2 +

2
α − ω2

(
2δω2x + ω2 +

4gαδ2

α − ω2

)]
. (B.3)
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