Mohammad Safe

Pedro Neto
email: pedro.neto@dem.uc.pt

Member, IEEE Richard Bearee

Efficient Calculation of Minimum Distance Between Capsules and Its Use in Robotics

Keywords: Minimum distance, line-segments, capsules, robotics

The problem of minimum distance calculation between line-segments/capsules, in 3D space, is an important subject in many engineering applications, spanning CAD design, computer graphics, simulation, and robotics. In the latter, the human-robot minimum distance is the main input for collision avoidance/detection algorithms to measure collision imminence. Capsules can be used to represent humans and objects, including robots, in a given dynamic environment. In this scenario, it is important to calculate the minimum distance between capsules efficiently, especially for scenes (situations) that include a high number of capsules. This paper investigates the utilization of QR factorization for performing efficient minimum distance calculation between capsules. The problem is reformulated as a bounded variable optimization in which an affine transformation, deduced from QR factorization, is applied on the region of feasible solutions. A geometrical approach is proposed to calculate the solution, which is achieved by computing the point closest to the origin from the transferred region of feasible solutions. This paper is concluded with numerical tests, showing that the proposed method compares favorably with the most efficient method reported in the literature.

I. INTRODUCTION

The subject of minimum distance calculation between linesegments/capsules is important in many areas, for example in CAD design, computer graphics/games and in simulation. In such cases, minimum distance calculations are used to detect any overlap or collision between elements. This subject is also important in robotics for the problem of path planning and safety in human-robot interaction, where the minimum distance is used as a measure of collision imminence. In this scenario, calculating the minimum distance on-line is required for time critical applications such as human-robot collision avoidance and the path planning of robots navigating obstacles towards a goal. Most of collision avoidance methods require the calculation of the minimum distance between robot and surrounding environment (including humans), which are commonly represented by geometric primitives (capsules and/or spheres). By using higher number of geometric primitives the accuracy of representation increases. In such a case, the acquisition of more data from sensors is required, resulting in higher computational cost associated with sensor data processing and minimum distance calculation between the robot and the surrounding humans/objects. Outside computer graphics science the number of studies approaching human and object representation in real environment from real sensor data is very limited. In this context, quite a few methods had been proposed in literature. Ellipses have been utilized to represent the links of a robot while obstacles are represented by spheres [START_REF] Choi | Obstacle avoidance control for redundant manipulators using collidability measure[END_REF]. A computationally efficient solution is based on the representation of the robot and obstacles by segments of lines with spheres swept onto them [START_REF] Bosscher | Real-time collision avoidance algorithm for robotic manipulators[END_REF]. In [START_REF] Santis | The skeleton algorithm for self-collision avoidance of a humanoid manipulator[END_REF] and [START_REF] Fang | Efficient self-collision avoidance based on focus of interest for humanoid robots[END_REF] a humanoid robot is represented by capsules, while in [START_REF] Balan | Real-time 3D collision avoidance method for safe human and robot coexistence[END_REF] robot and human are represented by a collection of spheres. In [START_REF] Liu | Algorithmic safety measures for intelligent industrial co-robots[END_REF], an industrial manipulator and a human are represented by capsules. A novel method for evaluating the distances between dynamic obstacles using multiple depth cameras is presented in [START_REF] Fabrizio | Real-time computation of distance to dynamic obstacles with multiple depth sensors[END_REF].

A depth space oriented discretization of the Cartesian space is introduced, including occluded points. Robot and surrounding environment can be precisely described using mesh representation [START_REF] Kaldestad | Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU[END_REF]. This method has the disadvantage of being costly for performing robot-obstacle minimum distance calculations. To speed up the computation, researchers have utilized the power of parallel processing, and GPU processors, to carry out the calculations [START_REF] Kaldestad | Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU[END_REF]. A collision avoidance framework for mechanisms with complex geometries was demonstrated in simulation environment [START_REF] Sagardia | Realtime collision avoidance for mechanisms with complex geometries[END_REF]. Diverse geometries/shapes have been reported in literature for accurate representation of humans and objects, namely in computer graphics science [START_REF] Hu | Functionality representations and applications for shape analysis[END_REF]. However, concerning the application in real environment using real sensors, capsules and spheres continue to be the most common geometry applied. Previous studies in human-robot collision avoidance showed that the error derived from the representation of humans using capsules is relatively small compared to the human-robot minimum distance dimension, so that it can be considered not problematic for the collision avoidance process [START_REF] Safeea | Human-robot collision avoidance for industrial robots: A V-REP based solution[END_REF].

In this study, the human and the robot are represented by capsules. Capsules are considered a good geometric primitive to represent a human, as in Figure 1 (A), in which L'Uomo Vitruviano from Leonardo da Vinci is represented by 10 capsules. The human body can be represented roughly by a single capsule, Figure 1 (B). In this scenario the arms can extend out of the capsule volume for some configurations. A robot can roughly be represented by 2 capsules, Figure 1 (E), or by 3 capsules representing the main robot links (KUKA iiwa with 7 DOF), Figure 1 (F). The pose of the capsules covering the robot is obtained from forward kinematics calculation using the measured robot joint angles.

In [START_REF] Ennen | Efficient collision avoidance for industrial manipulators with overlapping workspaces[END_REF], it is proposed an algebraic method for minimum distance computation between two capsules. Another method for computing the minimum distance between cylinders with flat ends was proposed in [START_REF] Biermann | Fast distance computation between cylinders for the design of mold temperature control systems[END_REF]. Nevertheless, the aforementioned methods are lengthy because they consider the different configurations in which two capsules might collide with each other. A method to determine the minimum distance between multiple known (geometry, position, orientation and configuration) and multiple unknown objects within a camera image is presented in [START_REF] Kuhn | Fast vision-based minimum distance determination between known and unkown objects[END_REF]. The distance is estimated by searching for the largest expansion radius where the projected model does not intersect the object areas classified as unknown. A novel approach to approximate the minimum distance between robot links and obstacles is proposed in [START_REF] Tarbouriech | On bisection continuous collision checking method: Spherical joints and minimum distance to obstacles[END_REF]. Obstacles are represented by a bounding box, modeled as cylinders and boxes. Each part of the robot arm is subdivided into an optimal number of spheres that encompass the initial volume. The minimum distance between the robot and the objects is approximated by the minimum distance between the obstacle bounding box and the spheres. An algorithm for computing the minimum translational distance based on the Gilbert-Johnson-Keerthi algorithm between two spherically extended polytopes is introduced in [START_REF] Bernabeu | Hough transform for distance computation and collision avoidance[END_REF]. A wellknown methodology for efficiently computing the segment to segment (capsules) distance which is considered the most efficient method in literature concerning computational efficiency is detailed in [17, pp. 417-418].

In this study, Section II presents the proposed QR-based capsule-capsule minimum distance method. Experiments and results are reported in Section III, both qualitative and quantitative. Finally, the conclusion is in Section IV. The Media materials contain the detailed deduction of the proposed QR method and running code.

II. MINIMUM DISTANCE: CAPSULE-CAPSULE A. FORMULATION

Owing to their geometry, calculating the minimum distance between two capsules can be reduced to the calculation of the minimum distance between two line-segments at the capsules axes. In Figure 2 it is shown two line-segments representing the axes of two capsules and their associated common normal. Each capsule can be defined by two vectors (at the beginning and end of the capsule's axis-segment) and a radius ρ. Let's designate the position vectors defining the end points of the axis-segment of a capsule by p 1 and u 1 (capsule 1), and p 2 and u 2 (capsule 2). Then, we can define two vectors s 1 = u 1 -p 1 and s 2 = u 2 -p 2 .

Two points of interest, one in each axis segment of a capsule, are considered. Those points are represented relative to the base frame by two vectors, r 1 and r 2 :

r 1 = p 1 + s 1 λ 1 (1) r 2 = p 2 + s 2 λ 2 (2)
where λ 1 and λ 2 are scalar parameters. Each parameter has a value in the range from zero to one when the point it represents is confined in between the two ends of the axissegment of the capsule. The problem of calculating the minimum distance between the two capsules renders to a minimization problem:

min() = min(|p 2 + s 2 λ 2 -(p 1 + s 1 λ 1)| -ρ 1 -ρ 2) (3)
where ρ 1 and ρ 2 are the radii of the capsules. Giving that ρ 1 and ρ 2 are constants, then the minimization problem can be reformulated:

min(| r|) = min(|p 2 + s 2 λ 2 -(p 1 + s 1 λ 1)|) (4)
where r = r 2 -r 1 . We can rewrite the optimization function in the following equivalent quadratic form: where matrix A = s 2 -s 1 and vector y = p 2 -p 1 .

min(f) = min((Ax + y) T (Ax + y)) (5)
The problem can be viewed as minimizing [START_REF] Balan | Real-time 3D collision avoidance method for safe human and robot coexistence[END_REF], subject to the constrains 0 < x 1 < 1 and 0 < x 2 < 1 (x 1 and x 2 are the components of the vector x). Figure 3 shows the level sets and the region of feasible solutions of the optimization problem (5).

B. QR FACTORIZATION

The function f can be reformulated by performing QR factorization on matrix A and fixing. Then, the optimization problem in (5) is equivalent to:

min(f 1) = min((Rx + Q T y) T (Rx + Q T y)) (6
)
where Q is a 3 × 2 matrix whose column vectors are of unit length and mutually orthogonal, and matrix R is a 2×2 upper triangular. By performing a variable change the optimization problem becomes:

min(f 1) = min(u T u) (7
)
where u is given by:

u = (Rx + Q T y) (8)
The modified optimization problem (7) is shown in Figure 4. We notice that after performing the transformation described in [START_REF] Kaldestad | Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU[END_REF] the elliptical level sets of the cost function are transformed into circles and the rectangular end if 14 : end for 15 : end if region of feasible solutions is transformed into a parallelogram. The solution to the modified optimization problem (7) is reduced to finding that point of the parallelogram region closest to the origin, u min , efficiently calculated in 2D space, Algorithm 1. Finally, the minimum distance between two capsules is calculated from:

d min = u T min u min + y T y -y T QQ T y -ρ 1 -ρ 2 (9)
For a set of n line-segments/capsules it can be noticed that: 1) Minimum distance calculations shall be performed mutually between any two capsules of the set, resulting in O n 2 complexity; 2) QR factorization of matrix A i associated with a subset i of two capsules can be enhanced for efficiency since different A i have shared columns in their structure; 3) The vector u min is calculated in two dimensional space, while other algorithms calculate x min in the three dimensional space; 4) Vector operations in 2 are less costly than operations in 3 ; 5) We propose u min in 2 and take advantage of the fact that the area of feasible solutions is a parallelogram. A document with the full detail of the proposed QR method, including comparison with the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] and C++ running code is in Media materials.

III. EXPERIMENTS AND RESULTS

Performance was evaluated by comparing the proposed QR method with the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] to compute the segment to segment minimum distance. Three comparison criteria were considered: (1) computational complexity, (2) execution time using C++ and (3) numerical precision. The results for the computational complexity of the algorithms (number of floating point operations -addition, multiplication, division FIGURE 5. Execution time comparison for the proposed QR method, the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] and the modified method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] as a function of of line-segments/capsules of the set. Algorithms implemented in C++.

Execution time ratio (Method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]/QR), (Modified method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]/QR) and (Method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]/Modified method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]) as a function of number of line-segments/capsules of the set. Algorithms implemented in C++.

and square root for QR) are in Table 1. For the second comparison criteria, a set of line-segments was randomly generated and the minimum distance (squared) between each two line-segments of the set was calculated using the proposed QR method and the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]. By implementing the algorithms in C++, results indicate that in terms of execution time the proposed QR method performed about 10% faster than the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF], Figure 5 and Figure 6.

We noticed that method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] can be modified by promoting some of the operations from O(n 2) to O(n). The results of those operations can be stored in memory and used later in the O(n 2) part of the algorithm. In such a case, the O(n 2) computational complexity of method [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] is reduced as shown in Table 1. Nevertheless, the proposed QR method is still more efficient in terms of execution time as shown in Figure 5 and Figure 6. The modified method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] is detailed in the Media materials.

Considering the third comparison criteria, numerical precision, a group of 5000 line-segments/capsules has been generated randomly in 3D space. The (x, y, z) coordinates of the start and end point of each segment are in the TABLE 1. Computational complexity for the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF], the modified method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] and the proposed QR method.

FIGURE 7.

Average relative error between the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] and the proposed QR method as a function of the number of line-segments/capsules of the set. range [-100, 100]. The proposed QR method and the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF] are used to calculate the minimum distance between each couple of segments from the set. For each couple of segments, the relative error is defined as the ratio of the absolute value of difference between calculations using the two methods: [START_REF] Hu | Functionality representations and applications for shape analysis[END_REF] where d qr min is the minimum distance calculated using the proposed QR method and d s min is the minimum distance calculated using the method in [START_REF] Schneider | Geometric Tools for Computer Graphics[END_REF]. Experimental tests resulted in a maximum value of the relative error of 1.059e -8 , a minimum value of the relative error of 1.11e -16 and an average error of 4.87e -10 . These values demonstrate that the error is negligible. The same test has been repeated for different groups of line-segments/capsules with different number of elements, Figure 7.

IV. CONCLUSION

In this study we proposed a novel method based on QR factorization for performing minimum distance calculations for a set of line-segments/capsules. Capsules demonstrated to be good solution to represent humans and objects in real environment having data from real sensors as input. Experimental results indicate that the proposed solution is more efficient than the existing most efficient method in literature. Such efficiency was measured in computationally complex-ity (reduced number of floating point operations), execution time (about 10% better) and numerical precision (the error is negligible).

 Figure 1 (C) shows a human represented by 3 capsules. In Figure 1 (D) the human is represented by 5 capsules, 2 capsules in each arm and 1 single capsule for the torso and head. A relatively precise representation of the human hand and forearm by 21 capsules is shown in Figure 1 (G).

FIGURE 1 .

 1 FIGURE 1. (A) L'Uomo Vitruviano from Leonardo da Vinci and its representation by 10 capsules, (B) human represented by 1 capsule, (C) human represented by 3 capsules, (D) human represented by 5 capsules, (E) robot represented by 2 capsules, (F) robot represented by 3 capsules and (G) human hand and forearm are represented by 21 capsules.

FIGURE 2 .

 2 FIGURE 2. Minimum distance between two capsules.

FIGURE 3 .

 3 FIGURE 3. Region of feasible solutions of optimization problem (5).

FIGURE 4 .

 4 FIGURE 4. Modified optimization problem (7).

Algorithm 1 :else 10 :

 110 Minimum distance calculation Input : R region of feasible solutions (Q, R) facorization matrices of A Output : u min vector of coefficients 01 : Transform R using the function f (x) = (Rx + Q T y) 02 : If Origin is inside R then 03 : u min ← [0, 0] T 04 : else 05 : for each boundary segment of R do 06 : c ← point of segment closest to origin 07 : If first iteration then 08 : u min ← c 09 : If norm(u min) > norm(c) then 11 : u min ← c 12 : end if 13 :

This work was supported in part by the European Union's Horizon 2020 Research and Innovation Programme through the ColRobot project under Grant 688807, in part by the Portugal 2020 project DM4Manufacturing funded by UE/FEDER through the program COMPETE2020 under Grant POCI-01-0145-FEDER-016418, in part by the Portuguese Foundation for Science and Technology under Grant SFRH/BD/131091/2017, and in part by the Project COBOTIS under Grant PTDC/EME-EME/32595/2017.

MOHAMMAD SAFEEA received the M.S. degree in mechanical engineering from the University of Coimbra, Portugal, in 2016. He is currently pursuing the Ph.D. degree in robotics with the University of Coimbra and ENSAM ParisTech, Lille, France.

During his career, he has been involved in several projects, where he developed several software solutions for robotics, control, and interfacing with hardware and sensors. His main research topics are robot dynamics, robot control, and the issues of safety for human-robot collaboration.