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ABSTRACT

In a recent study, O’Neill and co-authors have analysed the divergence of

surface winds above the northwest Atlantic. In the time-mean, a band of con-

vergence is found, overlying the Southern flanck of the Gulf Stream. To quan-

tify the impact of storms, they have averaged divergence conditionally on the

absence of rain, or have averaged divergence excluding extreme values. In

the resulting averages, divergence is found to be positive nearly everywhere,

hence the band of convergence is no longer present as convergence. O’Neill

and coauthors claim that this absence of convergence in these averages al-

lows to draw conclusions about the mechanisms underlying the atmospheric

response to the Gulf Stream. We show that this absence of negative values re-

sults from the correlation between rain and divergence: averaging divergence

conditionally on the absence of rain automatically impliesa positive shift. In

consequence, we argue that these statistics do not allow conclusions on the

underlying mechanisms, but have the merit of highlighting the essential role

of storms in shaping the divergence field in instantaneous fields.
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1. Introduction28

O’Neill et al. (2017) have recently presented a detailed analysis on the relation between sur-29

face divergence and the underlying Sea Surface Temperature(SST) anomalies, drawing from a30

ten-year record of satellite measurements and from a one-year simulation with a regional model.31

Their focus was on the relation between the time-mean surface divergence and the fluctuations32

associated to passing storms. Indeed, the time-mean divergence of surface winds (or of sur-33

face stress on the ocean) has been abundantly studied in the past decade, showing a conspicu-34

ous relation to SST (Small et al. (2008); Bryan et al. (2010) and references therein). In particular,35

Minobe et al. (2008) convincingly showed that there is convergence on the warm flank of the Gulf36

Stream and divergence on the cold flank. Yet, this time-mean divergence is of order 10−5s−1, i.e.37

one order of magnitude weaker than the maximum instantaneous values found in the divergence38

field (of order 10−4s−1). These extreme values of surface divergence are often negative values39

(i.e. convergence) tied to surface fronts and the associated resulting convection (e.g. Figure 4 of40

O’Neill et al. (2017)).41

O’Neill et al. (2017) (hereafter ON17) have used different approaches and filters to isolate42

the contribution of storms to the time-mean signature in divergence. Their systematic analysis43

provides a novel and valuable outlook on an important aspectof the effect of SST on atmo-44

spheric dynamics. Indeed, different mechanisms have been proposed to explain the relation45

between SST and the overlying winds. On the one hand, the vertical-momentum mixing46

mechanism relies on the vertical stability of atmospheric boundary layer over SST anomalies47

(Businger and Shaw 1984; Hayes et al. 1989; Chelton et al. 2004). On the other hand, a pressure48

adjustment mechanism relies on the hypothesis that the boundary layer is in an Ekman-like bal-49

ance (Lindzen and Nigam 1987; Feliks et al. 2004; Minobe et al. 2008; Lambaerts et al. 2013).50
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However the related studies have often focused on the time-mean fields and the interplay of51

different mechanisms in instantaneous complex flow fields remains unclear.52

This problem falls in a broader category of problems common in geophysical fluid dynamics,53

in which a weak time-averaged signal is dwarfed in any instantaneous flow field by temporary54

fluctuations. As other examples, one may think of the Hadley circulation, mean currents in the55

ocean which are often dominated by the mesoscale eddy field, or the Brewer-Dobson circulation56

(Butchart 2014), for which the ascending motion in the Tropics can only be indirectly inferred,57

because the associated vertical velocities are dwarfed by the signatures of equatorial waves in any58

snapshot of the flow field.59

We wish to build on the analysis of ON17 and to point out an aspect of the method used in60

their paper that needs to be emphasized. Indeed, part of the conclusions put forward by ON1761

relies on the computation of conditional averages of different fields. However, part of the inter-62

pretation of these statistics is not justified. Specifically, they claim that, because of the absence63

of convergence in ’rain-free’ conditions (occurring between 80 and 90% of the time, see figure 264

of ON17), an ’Ekman-Balanced mass adjustment’ mechanism (EBMA) cannot be at work. The65

underlying premise is that this mechanism should be ’persistent’, and therefore be present even66

when averaging over a subset of times, especially a large subset.67

The present comment aims merely to point out that conditional averages and other similar fil-68

ters that are considered by ON17 introduce a bias, because the variable used for the condition69

is strongly correlated to the variable that is averaged. In the present case, it is not the sign of70

the averaged divergence that is meaningful, but rather its spatial variations. With that in mind,71

there is no longer a straightforward transition from ON17’sresults to an interpretation in terms72

of mechanisms. Nonetheless, we acknowledge that the study of ON17 has the merit of unveiling73
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the possible role of synoptic storms in shaping the different mechanisms at work in instantaneous74

winds.75

In section 2, a toy model is proposed to illustrate the difficulty in diagnosing the behavior of the76

marine atmospheric boundary layer (MABL) and storms in instantaneous or time-mean winds. An77

idealized simulation of storm tracks carried out with the WRF model is then investigated in section78

3, both to further illustrate and confirm the statements of section 2, but also to explore how the79

time-mean divergence may result from a combination of mechanisms. Implications and directions80

for further research are discussed in section 4.81

2. A toy model for illustrating conditional averages82

In order to clarify the interpretation of the observations and model simulations carried out by83

ON17, we propose to consider a very simplified model.84

a. On the sign of the average divergence85

Many of the conclusions of ON17 come from the fact that the conspicuous band ofconvergence86

on the Southern flank of the Gulf Stream vanishes when divergence is averaged for rain-free con-87

ditions only (their figure 1b), or when other filters retaining rain events are used (figure 5b and88

8b). It is the disappearance of the negative values (in greenwith their colorbar) which they em-89

phasize. ON17 deduce’that the existence of the Gulf Stream Convergence Zone in thetime-mean90

winds owes its existence to extreme storm convergences, sinceremoving a relatively small number91

of data points associated with storms removes the time-mean convergence.’(ON17, end of sec-92

tion 3f, p2397). This line of reasoning bears a fundamental flaw as the conclusions of ON17 are93

mainly based on thesignof the rain-free time-mean convergence. In fact, it can be shown that any94

conditional average (here, rain-free conditions) will systematically introduce a positive or negative95
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(here positive) bias in the variable that is averaged (here divergence) if this variable is statistically96

correlated with the chosen condition. The positive bias arises because rain and surface divergence97

are not dynamically independent. Hence the sign of the conditionally averaged divergence is not98

necessarily meaningful.99

b. Toy model100

A toy model is proposed below with the purpose of illustrating how a conditional average can101

shift the values of divergence towards positive or negativevalues, suggesting a different interpre-102

tation of ON17’s figures. In the present case, our toy model isconstructed such that a stationary,103

weak convergence coexists with random fluctuations that dominate the signal at any time but do104

not impact the long-term average. This toy model mimics two physical properties of the fields that105

are considered:106

1. Rain and surface divergence are not independent variables: convective rain events are associ-107

ated with mesoscale motions which include strong convergence roughly beneath the precipi-108

tating cell.109

2. In the boundary layer, over a sufficiently long time and over a wide enough region, there is110

no net export or import of air. In other terms, strong convergence must be compensated by111

divergence in other locations.112

The toy model describes the divergence spatial field, assuming that it consists of a permanent113

feature and random fluctuations that resemble convective events (rain associated to strong conver-114

gence values). To simplify we consider only one-dimensional signals, notedd(y, t), wherey is a115

spatial dimension (e.g. transverse to a front of Sea SurfaceTemperature) andt is time. We assume116

that the divergence field is the sum of a permanent component,dp(y), and fluctuationsds(y, t)117

6



composed on several individual “storms” at each time, centered at random locationsyc(t), but all118

with the same spatial shape (see Appendix),119

d(y, t) = dp(y)+ds(y, t) . (1)

Note that, no assumption on the physical origin of the permanent signal is required in the following120

development as we only want to stress out difficulties in interpreting conditional averages.121

We also consider that, at any particular time,dp andds integrate to zero over the domain of122

interest and that stormsds occur at random locations with uniform probability so that they cancel123

out in the long run. In this case, the time-averaged divergence yieldsdp(y):124

d(y) =
1
T

∫ T

0
d(y, t ′)dt′ → dp(y) . (2)

Using simple sinusoidal functions, an implementation has been carried out, details are given in the125

Appendix. For simplicity, at each timestep, 5 “storm” centers are defined at random (uniformly126

distributed) locations in the domain (of length 2×D= 5000 km). Each storm consists in a region of127

convergence of maximal magnitudea= 1.0×10−4s−1 and of width 2×l = 100 km, compensated128

by weaker divergence of maximal magnitude 1.0×10−5s−1 and over a widthL = 500 km on both129

sides. The stationary signal has a smaller magnitude, of 0.5× 10−5s−1. Figure 1 illustrates the130

stationary signal (panel a) and a typical instantaneous divergence field (panel b). It confirms that131

the stationary signal is dwarfed at any time by the intermittent signal from the fluctuations with132

much larger amplitude.133

In ON17, the conditional average is taken over rain, which isrelated in some proportion to134

divergence. To represent this we produce an intermediate field r(y, t) =−ds(y, t)+η , whereη is a135

random Gaussian noise (to make the fieldr(y, t) more similar to rain, one could set all its negative136

values to zero). The conditional average is then taken usingthe conditionr > 0 (’rain only’) or137

r ≤ 0 (’rain free’). Figure 2a illustrates the resulting averages obtained for different numbers of138
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timesteps used. In the overall average, the stationary signal dp(y) is recovered (note that a signal139

different fromdp is observed near the boundaries of the domain due to a finite domain effect).140

In the rain-free average, the same signal is recovered but shifted to positive values. The shift is141

sufficient that all values (even in the region of convergencefor dp(y)) become positive. In other142

words, this shift, or positive bias, is larger than the amplitude ofdp(y). The ’rain-only’ signal is143

shifted to strongly negative values; again the spatial structure is unaltered but it is hidden in the144

noise unless a long time average is taken.145

The conclusion from this figure is that the conditional average (in the setting of this toy model)146

shifts the ’rain-free’ average towards positive values, but without altering its spatial structure.147

Moreover, as the rain-free average excludes the intense values (tied to storms), it is less noisy than148

the the overall average. The rain-only average including mainly extreme events is by construction149

very noisy.150

c. The positive bias151

We now take advantage of the simplicity of this toy model to quantify, in this case, the amplitude152

of the positive bias. This can be calculated simply in the case when there is no noise, i.e. we153

average conditionally on the sign ofds(y, t) and we consider only one storm by timestep. The154

storm locations being uniformly distributed and the spatial shape ofds(y, t) being fixed, the ’rain155

frequency’χ = p(rain> 0) is uniform across the domain and is given by the ratio of the width156

of the convergent region (ds < 0) over the width of the domain, 2×D, such thatχ = l/D. The157

form given to the convergence is such that its average value computed over the convergence zone158

is −2a/π. Hence the rain-only average is159

d
RO

(y) = dp(y)−
2a
π
. (3)
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As all times are partitioned into rain-free and rain-only, one necessarily verifiesd = d
RF

(1−χ)+160

d
R0χ and the rain-free average can be calculated as161

d
RF

(y) = dp(y)+
2a
π

l
D− l

. (4)

The above gives an estimate of the systematic biases introduced by the conditional averaging in162

absence of noise, i.e. whenr(y, t)=−ds(y, t). When a random noise is present, rain and divergence163

have a less simple relation but are correlated. As the noise increases, the biases decrease in absolute164

value from their values obtained above, and the asymmetry between rain-free and rain-only means165

decreases, as illustrated from figure 2b. Nonetheless, because the signature in convergence of the166

rain events is much larger than that of the stationary signal, a≫ max(dp(y)), and despite the fact167

that they occupy a small portion of space (l/(D− l)∼ l/D ≪ 1), it is likely that the positive bias168

is sufficient to shift the whole signal ofd
RF

to positive values.169

The point that the above toy model illustrates is that the absence of convergence in the rain-170

free conditional average (d
RF

(y) < 0) does not rule out the presence of a stationary signal in the171

divergence field. It merely reflects that divergence and rainare strongly correlated, as illustrated172

by ON17 (see their figure 4c). We return to this issue below andin section 4.173

3. Idealized atmospheric simulation174

In order to bridge the gap between the maps displayed by ON17 and the one-dimensional illus-175

trations from our toy model, we here take advantage of a simulation carried out for investigating176

the atmospheric response to mesoscale Sea Surface Temperature (SST) anomalies. This simulation177

will be described in a manuscript currently in preparation.It consists of an idealized set-up of a178

midlatitude storm-track using the Weather Research and Forecast (WRF) Model (Skamarock et al.179

2008), in a zonally periodic channel and using a gray radiation scheme (Frierson et al. 2006). The180
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domain is 9216 km in both horizontal directions, and extendsup to about 20 km (50 hPa) in height.181

The horizontal resolution (dx= 18 km) allows a good description of atmospheric storms, leading to182

a reasonable storm track. Boundary layer processes are represented by the YSU scheme, convec-183

tion by the Kain and Fritsch scheme, and microphysics by the Kessler scheme. The fixed zonally184

symmetric SST distribution in the simulation presented here consists of a large-scale meridional185

gradient with maximal amplitude of 4 K / 100 km. The simulation has been carried out for 4 years186

and the first 90 days were discarded. Data were recorded every12h.187

a. Conditional averages of surface divergence188

Figure 3 shows the rain frequency and the mean rain rate over the whole domain, clearly in-189

dicating a preferred location for rain which is south and away from the SST front. This may be190

compared to Figure 2 of ON17, the comparison suggesting thatour simulation has a realistic mean191

rain rate but overestimates the maximum rain frequency and the meridional contrast in rain fre-192

quency over the SST front. This does not matter for the present purpose, which is again to illustrate193

the systematic bias introduced by the conditional averagesand by other similar filters.194

Figure 4 shows the time-average and conditional averages ofthe surface divergence, as in Figure195

1 of ON17. The mean surface divergence (panel a) shows a pattern with convergence South of the196

SST front, and divergence over the SST front and to the North of it, analogous to that displayed197

over the Gulf Stream by ON17. Mean values (extremes of about±0.4× 10−5s−1) are quite198

comparable with the values found from observations. For theconditional averages, as expected,199

the rain-free divergence is shifted to positive values in all locations (panel b), whereas the rain-only200

divergence is shifted to only negative values (panel c).201

Now, one advantage of this idealized setting is the zonal symmetry of the underlying SST, allow-202

ing to average easily in the along-front direction. This averaging leads to the same presentation as203
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for the toy model of section 2. Figure 5 shows the zonally averaged time-mean surface divergence,204

along with the rain-free and rain-only conditional averages. In addition, the underlying Laplacian205

of SST is also displayed as an indication of area where surface convergence is expected in the206

EBMA theory. Again, it is clearly seen that the conditional average displaces the rain-free average207

to positive values, the rain-only average to negative values. Both conditional averages retain some208

of the spatial structure present in the all-weather average, but there are also notable differences.209

For example, in the rain-free average the central couplet occurs on shorter spatial scales than in the210

all-weather average. The meaning and interpretation of these differences is not the purpose of the211

present comment, and would anyhow be tied to specificities ofthese idealized simulations. The212

important message is that the conditional average of divergence, conditioned on a variable with213

which divergence is correlated, leads to a bias which makes the convergent values disappear from214

the rain-free average. The disappearance of these convergent values does not allow the interpreta-215

tion made by ON17, i.e. that a stationary (or permanent or persistent) feature be absent from the216

divergence field.217

The same simulation can be used to illustrate another analysis made by ON17, bearing on the218

statistics of divergence. The skewness of the divergence distribution was emphasized as a crucial219

parameter (e.g. section 6 of ON17). As a complement to the conditional averages, ON17 examined220

the average of divergence when extreme values (away from themean by more than twice the221

standard deviation) are excluded, or when only extreme values are retained (ON17, figure 5). This222

was not explored in the toy model because the distribution ofdivergent values in there was not tied223

to a physical description of the processes. In the numericalsimulation with a mesoscale model224

it becomes meaningful to explore this distribution. Figure6 shows maps of the mean divergence225

overall and filtered divergence excluding extreme values orretaining only those. The format for226

the first four panels is the same as that of figure 5 of ON17. As shown by panel d, the 2×σ filter227
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removes a comparable amount of data (4 to 5%) in the area of maximum convergence. Again,228

the maps are very similar to the rain-free and rain-only means. In particular, the mean divergence229

excluding extreme values (Fig. 6b) is positive essentiallyeverywhere, as the rain-free mean (Fig.230

4b). Yet, as we saw previously it is not the sign of the mean divergence that is meaningful, but231

the spatial variations: in both cases the rain-free divergence did retain conspicuously part of the232

spatial variations present in the overall time-mean. In thelast two panels of figure 6 (bottom233

row), the averaged divergences excluding or retaining extreme values are presented, but removing234

their domain average. It then becomes apparent that the former includes spatial variations very235

similar to those of the mean divergence, but slightly weaker. In contrast, the mean including only236

extreme events consists only of a strong band of convergence, wider than that of the overall mean237

divergence, and without the positive counterpart to the North. These different spatial structures238

and relative amplitudes can be better appreciated from the zonally averaged description of these239

means in figure 7, rather than in maps where the choice of colors guides the eye and interpretation.240

It would be very informative in ON17 if their figures 1 and 5 were complemented with similar241

figures: for example, instead of presenting only the rain-free mean divergence, if a panel was242

included to show the rain-free mean divergence minus the spatial average over the area shown.243

Alternatively, the rain-free divergence could be shown with contours overlaid to the overall mean244

divergence, so one could see if the spatial variations and features coincide (but the comparison of245

the amplitudes would remain difficult).246

b. Statistics of divergence values247

Finally, we use the simulation to explore the overall distribution of the values taken by the di-248

vergence, similar to ON17 in their figure 6. The distributionof divergent values in our simulation249

is shown in figure 8a, showing good qualitative agreement with the distribution displayed from250
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observations by ON17. In particular, we also find that large positive values of divergence are more251

frequent in rain-only conditions than in rain-free conditions, implying that there is not systemat-252

ically convergence below rain. But we emphasize that the large positive values areone order of253

magnitude less likely than negative values. Now it was stressed several times above that divergence254

and rain are not dynamically independent, and that they are statistically correlated. The simulation255

allows to document the joint Probability Distribution Function of divergence and rain, shown in256

figure 8b. The mean divergence, for a given value of rain, is negative and increasingly negative257

as the rain value increases, as shown by the blue line. This gives anothera posteriorijustification258

of the set-up of the toy model, where the intermediate rain field has been built by adding random259

noise to the divergence. This also allows to revisit how the sign of the rain-only mean divergence260

is determined. If we writep(e)de the probability that the divergence takes a value betweene and261

e+de, the overall mean divergence can be written:262

d =
∫ ∞

−∞
e p(e)de, (5)

The rain-only mean divergence (calculating using only values of rain above a thresholdε) is263

then written264

d
RO

=

∫ ∞
−∞ e p(e|rain> ε)de
∫ ∞
−∞ p(e|rain> ε)de

. (6)

In the integrand of the numerator in equation (6), one may decompose the conditional probability265

on rain being larger than the thresholdε, and write it as the sum of the conditional probabilities266

knowing that rain is within interval[r, r +dr[:267

e p(e|rain> ε) =
∫ +∞

ε
e p(e|r ≤ rain< r +dr)q(r)dr . (7)

with q(r) the probability density function for the rain rate. This yields268
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d
RO

=

∫ ∞
−∞ e

∫+∞
ε e p(e|r ≤ rain< r +dr)q(r)drde

∫ ∞
−∞ p(e|rain> ε)de

=

∫+∞
ε q(r)

∫+∞
−∞ e p(e|r ≤ rain< r +dr)dedr

P(rain > ε)

=

∫+∞
ε q(r)⌈(r)dr

P(rain > ε)
(8)

with ⌈(r) =
∫+∞
−∞ e p(e|r ≤ rain< r +dr)de. Up to a normalizing factor,⌈(r) is the average di-269

vergence knowing the rain rate. This is calculated in our simulations and shown in figure 8b as270

the thick blue line. Consistent with the physical expectation that surface convergence and precip-271

itation are highly correlated, the average divergence knowing the rain rate is always negative for272

values of rain larger than about 1 mm/day, and increasingly negative with increasing precipitation.273

This clearly demonstrates that the correlation of convergence and precipitation leads tod
RO

being274

negative. In consequenced
RF

will systematically have a positive shift relative tōd. Note that,275

because strong convergence corresponds to rain-only regions (see Fig. 8a), an analysis based on276

the 2σ filter would lead to the same conclusion. The reason is that the condition still is strongly277

correlated to the divergence itself.278

4. Discussion and perspectives279

ON17 conclude from their analysis’that the existence of the GSCZ in the time-mean winds owes280

its existence to extreme storm convergences, since removing a relatively small number of data281

points associated with storms removes the time-mean convergence’ (section 3f, p2397). In the282

conclusion again they state that’strong convergences associated with storms explains the existence283

of the GSCZ in the time-mean winds’(section 6, p2409). They explain that the skewness of the284

surface divergence distribution, due to the strong convergence signatures of mid-latitude cyclones,285

’is sufficient to change the sign of the time mean and the interpretation of the SST influence on286
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divergence. Removing fewer than 4% of the strongest divergence events, or removing fewer than287

20% of values in raining conditions, effectively eliminates the GSCZ from the time-mean surface288

winds’ (section 6, p2409). The underlying premise is that, if the convergence band vanishes when289

only a small portion of values are removed, this feature cannot be’a persistent feature anchored290

to the Gulf Stream’(section 4d, p2404).291

We disagree with this premise, but this does not invalidate the entire analysis of ON17 and their292

conclusions. Our disagreement stems from the too strong emphasis on the sign of the rain-free293

divergence. Our study has put in evidence the bias in this sign because of a dynamical link between294

surface divergence and precipitation that statistically correlates the two fields. As a consequence,295

the conditional average shifts the rain-free divergence towards positive values and the rain-only296

divergence towards strongly negative values. The correlation between precipitation and surface297

divergence is especially true for the most intense values ascan be seen in their figures 4b and298

4c. The joint PDF of convergence and precipitation, as shownin figure 8b for our simulations,299

illustrates clearly this correlation. It would be very interesting to estimate this joint PDF from300

observations. Yet, as far as the color bars in their Figure 1,5, and 13 allow to judge, much of the301

spatial variations between the rain-free and all weather divergence coincide. Rather than showing302

the absolute values of the rain-free and rain-only divergence, showing anomalies (relative either to303

the mean over the domain, or to the field smoothed on large scales) would be less misleading. In304

the case of the toy-model, the same spatial structure came out in the three averages, but the rain-305

only average is noisier. In the idealized simulations, the spatial structures of the rain-free average306

has strong resemblance to those of the overall average, whereas those of the rain-only average307

display some differences.308

In the comparisons of their different figures, ON17 emphasize absolute values and discard the309

similarity that is often found between the spatial variations. For example, the claim of ON17 that310
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the rain-free divergence in their figure 13b’bears no resemblance’(p2401) with the SST Laplacian311

(figure 13h) is at the very least misleading. The spatial variations of both fields, as far as eye can312

tell, seem very correlated. The colors differ because the rain-free divergence is shifted everywhere313

to positive values because of the conditional average. Similarly, in the interpretation of their figure314

11, the strong similarity at spatial scales less than 1000 km(panels 11a and 11b) is perhaps more315

significant than the difference in the worth emphasizing than the difference (again a positive shift)316

in the spatially lowpass-filtered fields (panels 11c and 11d).317

it is worth emphasizing that on spatial scales less than 1000km (panels 11a and 11b), there is a318

strong similarity between the time-mean divergence (colors) and the SST Laplacian (contours).319

Now, to make progress we suggest to make the line of reasoningof ON17 more explicit, and to320

formulate two different hypotheses:321

1. H1. The divergence at any time results from two signals: a stationary signal (related to322

EBMA), and random fluctuations from storms whose positions vary in time. The signal due323

to these fluctuations should diminish when averaging over longer times.324

2. H2. The divergence at any time only results from storms. The spatial variations of these325

storms are such that in the time-average they produce the signature that is observed.326

Set in the above terms, ON17 claims that the absence of convergence (negative values) in the327

rain-free average divergence rules out hypothesisH1. The toy model of section 2 merely served328

to illustrate that this conclusion is not justified: it ispossibleto have a rain-free divergence every-329

where positive and yet to have a stationary signal which is responsible for all of the time-averaged330

signal. In other words, the absence ofconvergencein the rain-free divergence (or after filtering out331

extreme values) does not rule outH1, i.e. the existence of a permanent signal in the divergence.332
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Now, in our toy model, the shift is uniform in space as the storms were uniformly distributed333

in space. In contrast to this, in our idealized simulation (see section 3) and in the observations334

(see panel c of figure 1 of ON17) the shift is not uniform. Introducing spatial variations in the335

probability of occurrence of the storms in our toy model (seeAppendix for description of the336

modifications of the toy model), one observes that storms still leave a residual signal that is related337

to the stationary divergence term (Fig. 9). Of course, this is on top on another signal due to the338

localization in space of storms in relation withH2.339

Spelling out explicitly the two hypotheses provides two extreme pictures, and reality is likely,340

as often, in between. The links between the conditional averages analyzed by ON17 and the341

underlying mechanisms of the atmospheric response to the SST anomalies are not so simple, as342

illustrated by the present comment. Now, the detailed and extensive analysis carried out by ON17343

does emphasize several important points: the instantaneous fluctuations in the divergence field344

overwhelms the time-mean, and understanding this responserequires to consider how the SST345

influences storms, in particular in setting their preferredlocation. We believe that detailed investi-346

gations of the instantaneous signature of different mechanisms through which the SST influences347

the marine atmospheric boundary layer, as sketched in section 5 of ON17, are necessary to properly348

evaluate the relevance of these different mechanisms. These issues are complex as they depend on349

the variables and approach considered to quantify one or other mechanism, as will be discussed350

based on the simulations used in section 3 (Foussard et al, manuscript in preparation).351
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Implementation of the toy model356

The toy model we constructed only depends on the divergence fieldsdp andds. We here describe357

the choices used to implement it. The permanent divergence signal was chosen as358

dp(y) = A sin
(π y

2L

)

, for −2L < y< 2L ,

= 0 , for |y|> 2L , (A1)

The divergence field is constructed as a sum ofdp and of 5 ’storms’, each centered at a random359

(uniformly distributed) location within the domain[−D, D]. Each event, relative to its central360

location, has the following spatial structure:361

g(y) =
al
L

sin

(

(y+ l)π
L

)

, for − (L+ l)< y<−l ,

= −acos
(yπ

2l

)

, for − l < y< l ,

=
al
L

sin

(

(y− l)π
L

)

, for l < y< L+ l ,

= 0 , for |y|> L+ l , (A2)

where−a describes the peak intensity of the convergence (a> 0), wherel describes the width of362

the convergent region, andL describes the width of the surrounding regions where compensating363

divergence occurs. This definition is consistent with our idea that the net divergence would be zero364

(i.e.
∫

g(y)dy= 0). Thends takes the form of365

ds(y, t) =
5

∑
i=1

g(y−yi
c(t)) (A3)

whereyi
c(t) is the location of one of the storm centers at timet.366

In order to obtain the ’rain’ fieldr(y, t) = −ds+η , a random noiseη is added. This noise has367

normal distribution with zero mean and a standard deviationof σnoise.368
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The values chosen for the parameters in order to generate thefigures were:A= 0.5×10−5s−1,369

a= 1×10−4s−1, l = 50km,L= 500km, andD= 2500km. The number of points in theydirection370

is ny= 200. Different values for the parameters have been explored. As the noise is increased, the371

positive bias of the rain-free mean divergence decreases. Nonetheless, as long as the noise is not372

much larger thana, the positive bias is robust and significant (i.e. sufficientfor the rain-free mean373

to be positive nearly everywhere).374

The model was also modified to show that the same results can beobtain when storms are located375

on the convergence zone. To this end we introduce a parameter0<C< 1. For each event, we take376

two random numbers,r uniformly distributed in[0, 1[ andswith a Gaussian distribution (centered377

at 0, and with variance 1). The storm positionyc is then defined as378

yp = (1−s)L if r <C,

=

(

2
r −C
1−C

−1

)

D if r ≥C (A4)

Figure 9 was produced with this scheme, still using 5 storms by time step, but without noise379

(σnoise= 0) and with 10000 timesteps. ParameterC was set toC= 0.4. The other parameters were380

the same as before.381
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