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Abstract

A widespread model of thermal ink-jet actuation prescribes the

pressure of the expanding bubble as a rapidly decreasing func-

tion of time, this being taken as a finite version of a Dirac im-

pulse with only the integral with respect to time mattering. Here

it is shown that the impulse is actually easier to treat numeri-

cally than the bounded approximation and an implementation in

OpenFOAM is described; however, solutions so obtained reveal

that the flow does depend on the timescale over which the pres-

sure is applied, i.e. on first and higher moments of the pressure

function. An asymptotic expansion of a lumped linear model is

derived which predicts the dependence of the induced flow on

these moments for an arbitrarily shaped pressure pulse.

Introduction

A thermal ink-jet is a device for ejecting microscopic droplets,

e.g. for printing [3, 29]. As sketched in figure 1, it is a vessel

filled with ink, open at one end through a nozzle to the air and

at the other to a reservoir. It contains a heater which suddenly

boils ink near it so that the expanding bubble pushes ink for-

wards out through the nozzle. Following the nucleation of the

bubble, the flow consists of three distinct phases: the vapour

bubble, the liquid ink, and the ambient air. The ink and air are

essentially incompressible but the overall dynamics is compli-

cated by strong interaction between the thermodynamics of the

bubble and its heat, mass, and momentum transfer with the ink.

To alleviate the complexity of the bubble, a much simpler de-

coupled model was introduced [3] in which it is replaced with

a pressure which is a prescribed function of time; we also men-

tion a number of precursors [6, 17, 13, 11]. Although more

recent computational models have been developed which in-

clude a coupled bubble [10, 29, 23, 24, 30, 25], the uncoupled

model continues to usefully simulate aspects of ink-jet actuation

[12, 9, 28, 20, 14, 15, 16].

Asai has written much on ink-jet technology [4, 5, 1, 2]; here

‘the Asai model’ is merely used as a concise name for the

‘Method of Calculation’ [3], and more specifically for mod-

elling the bubble by a prescribed history of pressure. Originally

it was suggested that ‘the bubble pressure can be modeled by

an impulsive function’ [3], and this had been done in an earlier

lumped model [2], but then recourse to generalized functions

was avoided by arguing that ‘numerically, such impulsive pres-

sure change can be described by a rapidly decreasing function

of time’ [3] with the same pressure impulse (integral of pressure

over time). While this is asymptotically true, the first purpose

of the present paper is to show that actually the direct use of an

impulsive pressure is by no means difficult.

The second purpose is to see whether the actuating pressure can

indeed be characterized purely in terms of its impulse [11] or its

timing is significant [17]; i.e. how slow the pressure has to be

before its higher moments with respect to time become relevant.

The Asai Ink-Jet Model

The method presented here differs from the original ‘Method

of Calculation’ [3] in which the equations of motion were only

solved in the ink with a constant pressure imposed beyond the

meniscus outside the nozzle and a varying pressure in the bub-

ble. These days, it is more usual to fill out the domain with

a second immiscible incompressible air-like fluid outside the

nozzle and inside the bubble using the ‘one-fluid formulation’

[7, 27] with density ρ= ρ(α) and viscosity µ= µ(α) being func-

tions of the volume-of-fluid α interpolating between the values

for air and water at α = 0 and 1, respectively. The surface ten-

sion, previously part of the boundary condition on the interface,

is represented by a continuous volumetric force [8] . The essen-

tial feature of the model remains the prescription of the pressure

in the bubble; here this is shifted from the interface to the sur-

face of the actuator inside the bubble.

Governing Equations

The system for the evolution of the velocity u in time t is thus

ρ
Du

Dt
= ρF−∇p+∇ ·

{

µ
(

∇u+[∇u]T
)}

(1)

∇ ·u = 0 (2)

Dα

Dt
= 0, (3)

where F includes capillarity.

In the model, the pressure p is prescribed far off in the air as at-

mospheric, at the upstream ink reservoir as some other constant,

and at the surface of the heater as a rapidly decreasing function

of time such as [2, 3]

p(t) = p0e−(t/t0)
λ

(4)

plus a slower varying more bounded part which is of less in-

terest here. Where the velocity crosses the boundary into the

domain, a value for α is prescribed; α = 0 for the heater. On the

other walls, u = 0 and a contact angle is set.

This is a standard set of equations and canned solvers are avail-

able; here interFoam from the free OpenFOAM suite was used

in figure 2 to repeat Asai’s [3] case λ = 1
2 , t0 = 0.17 µs.

Impulsively Generated Flow

The form of the pressure equation (4) is a bounded approxima-

tion to a Dirac δ function, approaching Πδ(t) as t0 → 0 with λ
fixed and p0 varying inversely with t0 so that the pressure im-

pulse Π ≡ m0 is constant, where mk is the k-th moment:

mk ≡
∫ ∞

0
tk p(t) dt. (5)

In the Navier–Stokes equation (1), if the energy and therefore

velocity is to remain finite, a Dirac pressure spike can only be



Figure 1: Sketch of Asai’s [3] ‘prototype bubble jet printer’. It is filled with ink from to the left of the inlet through to the nozzle, to the

right of which is air. The top of the heater is 30 µm × 150 µm.

Figure 2: Elevation in the plane of left–right symmetry showing

ink (grey) and airy ‘bubble’ (white) after 30 µs, simulated with

interFoam; cf. [3, figure 3]

balanced by the temporal derivative of the velocity with the lat-

ter having a Heaviside step [18]; thus asymptotically,

ρ
∂{uH(t)}

∂t
=−∇{Πδ(t)} (6)

or

u =−ρ−1∇Π. (7)

An equation for the pressure impulse field Π is obtained by sub-

stituting equation (7) for the impulsive velocity into the conti-

nuity equation (2):

−∇ ·
(

ρ−1∇Π
)

= 0. (8)

Impulsively Generated Flow in Inhomogeneous Fluid

For a single homogeneous fluid, ρ can be taken outside the

divergence in equation (8) and the pressure impulse satisfies

Laplace’s equation [18]; for inhomogeneous fluid, it must be

retained as a spatially varying coefficient.

Equation (8) was previously derived for the impulsive pressure

in a stratified fluid [22]. It also arose in another discussion of

computational multiphase flow in trying to filter out the non-

solenoidal component of an initial condition [7].

Laplace’s equation would suffice for a post-impulse nonzero

initial condition for the velocity in Asai’s [3] liquid-only simu-

lation, but if the air is to be included as well, as it must be with

one-fluid solvers like interFoam, the density must be retained

as a spatially varying coefficient. Although the physical effect

of the air on the ink is indeed essentially limited to its pressure,

difficulties will arise if the initial condition on velocity does not

satisfy the continuity equation (2) [7].

Solving for the Impulsively Generated Flow in OpenFOAM

While none of the standard OpenFOAM solvers can solve equa-

tion (8), little had to be done to generalize potentialFoam; in-

deed, only one line in the main C++ source file was modified,

to include the varying coefficient of equation (8):

fvm::laplacian(1.0/rho, Phi)

although other subsidiary files had to be included from

interFoam in order to set up the spatially varying rho.

The Two Approaches to Initial Impulses

The concept of having two equivalent sets of initial conditions,

before and after an impulse, is common in electrical circuit anal-

ysis [19, pp. 470–480]. Mechanically, consider golf: one might

contrast, on the one hand, simulating a club hitting a ball, the

contact problem and elastic deformation, with, on the other, the

comparatively simple ballistics of the rigid ball after it has re-

ceived its momentum. Similarly in the bubble jet, it is easier

to compute the impulsively generated velocity field by solving

the potential-like equation (8) than to resolve in time the rapidly

varying pressure of equation (4) and the correspondingly rapid

acceleration of ink and air.

The Complex Lamellar Impulsively Generated Flow

Whereas flow impulsively generated in a uniform fluid is po-

tential, equation (7), being the product of one scalar and the

gradient of another is complex lamellar [26]. Thus it is not nec-

essarily irrotational. The vorticity is ∇×u = −∇(1/ρ)×∇Π;

the impulse might set up a vortex sheet at an interface across

which the density jumps. A couple of one-dimensional exam-

ples might be instructive. First consider two fluids in series:

the impulsive pressure drops in proportion to the density and

they set off with the same velocity, the whole being irrotational

since the impulsive pressure gradient is normal to the interface.

Second, two in parallel: the impulsive pressure drops are the

same but the imparted velocities are inversely proportional to

the density, with a vortex sheet along the interface.

Application to Modeling Ink-Jets

With a solver for equation (8) in hand, simulating Asai’s pro-

totype bubble jet becomes simpler: the preliminary solution

provides the initial condition for velocity and the part of the

pressure imposed on the heater corresponding to the impulse

is omitted. Qualitatively the overall results are similar, but a

closer quantitative examination in figure 3 using the flow-rate

through the heater (as done by Deshpande [12, figures 3, 5, 7])

reveals that the flow-rate for Asai’s pressure equation (4) with

t0 = 0.17µs is not the same as that generated impulsively; how-

ever, the theory is asymptotically validated, being approached

as the pressure is delivered more rapidly (t0 → 0).

The pure impulse (t0 = 0) provides a nonzero velocity at t = 0

and therefore a jump in flow-rate. The ratio of Π to this jump is

defined as the inertance L. If the flow-rate in figure 3 is fitted to

the log–linear form

q(t)∼
Π

L
e−Rt/L, (9)

the quantity R has the dimensions of hydraulic resistance and

L/R ≈ 6µs is a hydraulic timescale.

This might seem long compared to the 0.17 µs proposed for t0
[3] but unless λ = 1 in equation 4, t0 is a misleading indicator of

the timescale of the pressure input. A more physical value might

be based on the ratio of the first two moments from equation (5);

for equation (4) with λ = 1
2 , this is m1/m0 = 6t0 ≈ 1 µs.
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Figure 3: Bubble expansion, with the same pressure impulse

applied (solid) instantaneously, solving equations (2) and (7)

for the initial velocity and (dashed) over time by equation (4)
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Figure 4: Flow-rate from equation (11) in the linear lumped

model with pressure from (4) and ratios of timescales m1R/m0L

chosen to roughly match figure 3

Impulsive and Phased Pressure

A Lumped Model

Equation (9) solves the lumped hydraulic equation [12]

Lq̇+Rq = p(t) (10)

with impulsive p(t) = Πδ(t) and q(0) = 0. For arbitrary p(t):

q(t) = L−1
∫ t

0
eR(t ′−t)/L p(t ′) dt ′. (11)

This is plotted in figure 4 with pressure equation (4) for values

of the ratio of timescales (L/R)/(m1/m0) roughly correspond-

ing to those of figure 3.

As the lumped equation (11) qualitatively reproduces the full

multiphase three-dimensional dynamics of figure 3, it is used

to investigate the failure of the hypothesis that only the zeroth

moment of p(t) matters at times long after the pressure input

has subsided—as seen there, the flow-rate after the passing of

the pressure is a quarter higher than that due to impulse alone.

Asymptotic Expansion

Rewriting equation (11) with p(t) = p0 f (t/t0) where t0 is a

characteristic timescale for the pressure as in equation (4),

q(t) =
p0

R
e−Rt/L

∫ Rt/L

0
eτ f

(

L

Rt0
τ

)

dτ, (12)

an asymptotic expansion for t0 ≪ L/R can be obtained by re-

peated integration by parts:

q(t)∼
p0t0

L

∞

∑
k=0

(

Rt0

L

)k {

e−Rt/Lik+1 f (0)− ik+1 f

(

t

t0

)}

(13)

where i0 f ≡ f and for k = 1,2, . . . the iterated integrals are

ik f (θ)≡
∫ ∞

θ
ik−1 f (θ) dθ. (14)

The final decay of the flow-rate is

q(t)∼
p0t0

R
e−Rt/L

∞

∑
k=0

(

Rt0

L

)k

ik+1 f (0). (15)

From Cauchy’s formula for iterated integrals [21, p. 5]:

k!p0ik+1 f (0) = p0

∫ ∞

0
θk f (θ) dθ ≡

mk

tk+1
0

(16)

so that

q(t)∼
Π

L
e−Rt/L

∞

∑
k=0

Mk

k!

(

Rm1

Lm0

)k

, (17)

where the dimensionless small parameter Rm1/Lm0 of the

asymptotic expansion is the ratio of the pressure and hydraulic

timescales and the moments are normalized as

Mk ≡
mk/m0

(m1/m0)
k
. (18)

Equation (17) shows that the higher temporal moments of the

pressure input increase the later flow-rate relative to the impul-

sively driven equation (9), exactly as seen in figures 3 and 4.

For Asai’s λ pressure equation (4)

Mk =
Γ
(

k+1
λ

)

Γ
(

1
λ

)

{

Γ
(

1
λ

)

Γ
(

2
λ

)

}k

. (19)

With this, equation (17) is compared with the interFoam sim-

ulations of figure 3 at 10 µs in figure 5.

Conclusions

The impulsively generated incompressible multiphase flow can

be computed by solving a Laplace equation with variable coef-

ficient. This can be used to drive Asai’s thermal ink-jet model

without having to approximate the Dirac-δ pressure impulse

with a bounded drawn-out function; however, it turns out that

these finite pressure functions introduced for supposed numer-

ical convenience are not separated in timescale from the hy-

draulics of typical devices. The flow does approach the impul-

sively generated one as the pressure-time tends to zero but for

typical finite durations, there is an enduring effect. This can

be explained in terms of a linear first-order inertance–resistance

response which shows how the higher moments of the pressure

pulse with respect to time affect the later flow.
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Figure 5: Excess of flow-rate at 10 µs driven by finite pressure

pulse relative to impulsively driven value; comparison with the

first three terms of the asymptotic equation (17)
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