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Abstract

Cyber-attacks have spread all over the world to steal information such as trade

secrets, intellectual property and banking data. Facing the danger of the insecu-

rity of saved data (personal, professional, official, etc), keystroke dynamics was

proposed as an interesting, non-intrusive, inexpensive, permanent and weakly

constrained solution for users. Based on the typing rhythm of users, it improves

logical access security. Nevertheless, it was demonstrated that such an authen-

tication mechanism would need a larger number of samples to enroll the typing

characteristics of users. Moreover, these registered characteristics generally un-

dergo aging effects after a time span. Different solutions have been suggested

to remedy these variability problems, including template adaptation. In this

paper, we propose a double serial adaptation strategy that considers a single-

capture-based enrollment process. When using the authentication system, the

template of users and the decision/adaptation thresholds are updated. Exper-

imental results on three public keystroke dynamics datasets show the benefits

of the proposed method.
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1. Introduction

Authentication systems that provide physical or logical access are currently

a major concern. Physical access control verifies the identities of users based

on what they are (face, fingerprint [1], etc), what they have (badge, key, etc)

and/or what they know (password, pass-code, etc). Logical access control is

generally based on the accuracy and conformity of an introduced password and

its corresponding login, previously defined when creating the account. Nowa-

days, passwords are frequently hacked [2] causing various, often serious, types of

damage. Keystroke dynamics is a behavioral biometric solution used to control

the access of password-based applications [3, 4, 5]. It has the advantage of rein-

forcing the legitimacy of authenticated people. It differentiates between users’

typing manners by extracting characteristics, which are generally composed of

the following:

• Timing patterns: Dwell time, flight time and latencies [6] are obtained

by calculating the time difference between pressure and release instants

corresponding to two or three successive keys, or corresponding to the first

and last keys.

• Pressure patterns: Users’ pressure on keyboard keys is obtained through

an additional instrument (pressure sensor [7]).

However, a major problem of keystroke dynamics characteristics is that the

typing manner changes over time. In fact, the initial biometric reference tem-

plate, created at the enrollment phase, tends to be less representative of a user’s

typing behavior as time elapses. The main cause of the keystroke template aging

is the intra-class variability [8, 9, 10]. This latter may be due to:
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• The acquired habit of typing the password: Through its frequent use,

users’ typing manners vary and cause deviations from the initial reference.

• The state of mind and activeness of users: The behavior of users is highly

affected by their mood (stress, anger, happiness, beginning of the day, end

of the day, etc).

• The keyboard dissimilarity: The interactions of users with the keyboard

change according to its layout (AZERTY or QWERTY), its type (virtual

or physical) and even according to the used device [11] (a computer, a

laptop, a smart phone).

Different solutions have been proposed to mitigate performance degradation

caused by such problems. We mention the presentation of a new query after

a false rejection of the last one. It is a simple method, but it does not allow

properly taking into consideration the variation in the characteristics of users

over time [5]. Multibiometric systems verify the identity of users based on dif-

ferent biometric characteristics. Various modalities have been combined with

keystroke dynamics like voice [12], graphical user interface [13], or face [14]. De-

spite their advantages, multibiometric systems can greatly complicate the con-

figuration of system parameters and may require additional sensors. The use of

”soft biometrics” traits to have additional users’ characteristics facilitates dif-

ferentiating several categories of users or increasing the recognition performance

of existing keystroke authentication systems [15]. Commonly, these additional

characteristics are not unique and not permanent to differentiate between users

(e.g. gender, age, one or two hands, right or left-handed). The update of a

biometric model throughout the use of keystroke dynamics recognition systems

takes into account the variability in the typing manner over time. Each accepted

query is included in the reference based on a specific mechanism to adapt the

modeling of the keystroke dynamics of users.

Update methods generally depend on five parameters [16]: the reference

modeling, the adaptation criteria, the adaptation mechanism, the adaptation

mode, and the adaptation periodicity.
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The majority of studies concerning keystroke adaptation systems only up-

date the corresponding user references [17]. We can mention some studies con-

cerning face adaptation that have updated both the reference and the decision

threshold [18]. In the proposed approach, we are inspired by these studies. Be-

sides, the enrollment phase for keystroke adaptation systems is a hard task to

achieve. It must be efficiently done to differentiate between genuine and impos-

tor users. As a consequence, the number of samples used in the training phase

is generally high.

A couple of contributions are proposed in this paper. First, we put forward

an original adaptation strategy for keystroke dynamics that requires a single

sample during enrollment (called single enrollment process). This solution con-

siderably improves the usability of keystroke dynamics, since all methods in the

state of the art require many samples during the enrollment step. Second, dur-

ing the operational use of the authentication system, the template of users and

their personal decision/adaption thresholds are updated; whereas, in the litera-

ture, only the template of users is generally updated when keystroke dynamics

modality is dealt with. This new solution, compared to other approaches in the

literature, leads to better results on significant and complex datasets used by

the scientific community in the field.

This paper is organized as follows: Section 2 presents the literature review

on keystroke dynamics and its corresponding adaptation strategies. Section 3

describes the proposed methodology and the contributions of this paper. Sec-

tion 4 details the experimental protocol and the used datasets. Section 5 shows

and discusses the obtained experimental results. Section 6 presents the main

conclusions of this work and some perspectives.

2. Background on keystroke dynamics

Official and corporate (e-commerce, e-banking, etc) websites as well as so-

cial network and e-mail accounts are increasingly the target of hackers’ attacks.

According to data collected during September 2017 by Hackmageddon [2], dif-
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ferent breaches were noticed. The most significant attacks concerned personal,

industrial and official data.

Keystroke dynamics is recognized as an interesting solution to enhance the

security of password-based authentication systems. In this section, we recall a

brief description on keystroke dynamics systems. Then we present a selection

of adaptation strategies applied on this biometric modality.

2.1. Keystroke dynamics modality

Keystroke dynamics is a behavioral biometric modality. It combines the

verification of syntactic password accuracy with that of conformity with the

behavior of a genuine user: the typing rhythm on the keyboard. Different

studies have been conducted to highlight this behavioral modality. The two

main coexisting families are defined as follows:

• Static text authentication where the user always types the same text. This

text is usually a pre-defined password. It may be common for all users

(a passphrase), or it may be a user specific password. This is the most

utilized category in the literature [15, 19, 20, 21].

• Free text authentication where the user does not always enter the same

text [22, 23, 24]. There may be continuous authentication, which con-

stantly checks the identity of the user. Challenge-based authentication

should be considered in some applications. It asks the user to enter text

he/she does not know in advance. The server needs to verify also whether

the user typed the assigned text.

In both cases, the extracted characteristics describing the user’s typing man-

ner are practically the same. Different classifiers are involved, particularly statis-

tical ones. They are based on calculating statistical characteristics from training

samples (e.g. mean, median and standard deviation) and comparing them to

those of the new introduced query using various distance metrics. Three main

statistical classifiers have been used [25, 26, 27].
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In addition, studies using Neural Networks (NN) have been frequently ap-

plied to keystroke dynamics [28, 29, 30]. NN have the disadvantages of requiring

a huge number of labeled samples (from genuine and impostor users) in order to

create a reference template. Moreover, in this case, parameters setting is rather

complex. The efficiency of Support Vector Machine (SVM) classifiers has been

also tested [31, 21]. They have been used in the context of either one-class or

two-class classification (where impostor attacks were considered). For one-class

classification, the authors proposed in [32] the Genetic Algorithm (GA)-SVM

wrapper approach. They improved the SVM classification by adding the GA to

perform features selection. Accordingly, the created user’s model demonstrated

a better performance, but the number of samples used to create the reference

was large as well (equal to 50).

Many other classifiers have been used in the literature for keystroke dynam-

ics authentication systems, such as the Bayesian classification [26], the Hidden

Markov Model [4] or the K Nearest Neighbor (KNN) classifier. For example,

the authors in [33] opted for the KNN classifier to distinguish genuine samples

from impostor ones, and then to create two galleries: a positive one, to save

samples classified as genuine, and a negative one, to collect samples classified

as an impostor. The positive reference was composed of 40 samples captured

during the enrollment phase.

In the literature, most studies have required more than twenty captures to

create the reference template during the enrollment phase [21], as depicted in

Table 1. However, considering usability, it is not really operational to ask users

to type their password 20 times.

In fact, it has been demonstrated that performances increase with the num-

ber of enrolled samples in the template. In contrast, another study [21] utilized

only five samples per user. The authors considered that ”5” is the maximal

number of samples for usability reasons in industrial conditions. As keystroke

dynamics systems suffer from intra-class variations, reference representativeness

is limited in time duration. Next, subsection 2.2 presents some existing adap-

tation strategies to remedy this lack of representativeness [38, 39].
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Table 1: Reference size in enrollment phase for some systems in literature

Works Reference size in the enrollment phase

Çeker et al. [34] 20-40-60-80-100-120-140-160

Çeker et al. [35] 15

Pisani et al. [33] 40

Yu et al. [32] 50

Obaidat et al. [36] 112

Killourhy et al. [37] 200

2.2. Keystroke dynamics adaptation

Adaptation strategies generally depend on five parameters, as illustrated

in Figure 1.

Reference modeling: It concerns the representation of the biometric reference

in the enrollment phase. First, the user can be modeled by a single sample.

This representation was used in [40] for a secret Personal Identification Number

(PIN) system. It could not be considered as a keystroke dynamics since a

single finger was used to type a PIN code and the approach was tested by only

10 users. Second, the reference can be composed of several samples. This is

the most used representation, generally known as a reference. Third, cluster

representation regroups samples in a hierarchical reference [41].

Adaptation criteria: This parameter corresponds to the criterion chosen

to initiate the adaptation mechanism. Different criteria have been used for

keystroke adaptation systems like the temporal errors distribution [42], the en-

hanced template update [43], and especially the double thresholds [44]. The

latter adds a second threshold stricter than the first one [44] to select the queries

for the adaptation phase.

Adaptation mode: It deals with the method to label the queries. It can

be realized in a supervised (or manual) or semi-supervised way. The semi-

supervised adaptation is based on a classifier decision. It is an automatic and

realistic method that has been used a lot in the literature [45, 46, 47]. The
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Figure 1: General adaptation parameters

supervised mode is processed by a human operator.

Adaptation periodicity: The template adaptation can be applied in an online

or offline process. Indeed, the adaptation can be realized automatically after

query authentication. Otherwise, the adaptation is executed after the collection

of a specified number of accepted queries or after a period of time [48].

Adaptation mechanism: It details how to apply the adaptation to the refer-

ence. There are generally four main mechanisms: additive, replacement, com-

bined and selective. For the additive mechanisms, the most known one is the

growing window [49]. This method progressively adds the accepted samples

to the reference. Concerning the replacement mechanisms, the sliding window

mechanism [49] is the most used approach. It replaces the oldest sample among

the reference by the accepted query. An Enhanced Template Update (ETU)

mechanism was proposed in [33]. It consists in applying the sliding window

mechanism to two references, namely positive and negative galleries containing

samples classified as genuine and impostor ones, respectively. Among the com-

bined mechanisms, we can cite the double parallel approach [17] which uses two

sub-references: The first one is managed with the growing window mechanism
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and the second one is updated with the sliding window. Finally, the selective

mechanisms are applied to minimize the reference size. The most used ones

are the clustering methods [50] and the editing ones [51]. These methods are

generally used for fingerprint and face modalities.

According to [16], there are three major types of adaptive systems:

(1) Update the biometric reference of the user while using the system

(2) Adapt the system parameters depending on the user [52] or the quality of

the capture [53]

(3) Adapt the decision frontier overtime [18].

For keystroke authentication, most studies have focused on the first type

of adaptation. In this case, the used thresholds are generally fixed or user-

dependent [54]. Thereby, the threshold varies for each user, but remains un-

changed during the whole adaptation process. Mhenni et al. [47] suggested an

adaptation mechanism that adapted the reference and the used thresholds, thus

demonstrating competitive performances. In this paper, we propose an exten-

sion of this work that considers the requirements of industrialized applications,

which is detailed in the next section.

3. Proposed method

We put forward a novel adaptive method that considers a limited number

of samples used to create a user’s reference while keeping a good performance.

Indeed, the user introduces the password only once, when creating a new ac-

count. Thus, the reference is composed of a single sample. Afterwards, for each

successful authentication, the reference is updated in a transparent way. Avoid-

ing the enrollment phase, the growing window mechanism serves to increase the

size of the reference to capture more intra-class variations. Once the size of

the reference reaches 10 samples, the sliding window will be considered in order

to limit the number of samples saved in the reference. Moreover, the process

detailed in Figure 2, contains different contributions as follows :

• We consider a preprocessing step which intends to eliminate the noise in
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the captured characteristics (peaks corresponding to hesitation, distur-

bances or workload of the computer).

• We use a single sample to create a user’s reference while avoiding the

tedious step of typing the same password several times in the enrollment

phase.

• We use a GA-KNN verification method : It is based on the optimized

combination of multi-distance metrics for the KNN classifier, which shows

a better performance. This combination is ensured by vote parameters
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that are optimized by GA and updated during the use of the system.

• We propose to adapt the reference and the used thresholds over time.

Hence, our method also considers the decision of the adapted thresholds

criterion (user and time-dependent).

• We resort to a double serial mechanism: This progressive adaptation

mechanism combines the growing-window and sliding-window mechanisms

(respectively before and after reaching the number of required samples,

empirically set at 10).

Thus, a new authentication framework is proposed in addition to the adap-

tation strategy. Indeed, previous works use baseline authentication method to

evaluate their update system. Now, we detail our contributions in each step of

the process.

3.1. Preprocessing phase

To describe the keystroke dynamics of one user, we are interested in temporal

information extracted from digraph transition times:

• PP: time difference between the press events of two successive keys

• RR: latency between the release events of two successive keys

• PR: time duration between a one-key press event and its following key

release event

• RP: time duration between a one-key release event and its following key

press event

Hence, the characteristic vector C is composed of these temporal informa-

tions C = [PP PR RR RP ]. These characteristics undergo preprocessing steps,

as demonstrated in Figure 3. We first apply an aberration correction to the ac-

quired characteristics aiming to detect the peaks where the user takes an ab-

normally longer time to type a password. In fact, these peaks do not describe
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Figure 3: Successive preprocessing steps: (b) Aberration correction and (c) Normalization,

applied to (a) Characteristic vector of PP latencies.

a user’s typing manner. They are generally caused by a disturbance, hesitation

time, etc. For that purpose, we first define the peaks as the ith characteristic

value C(i) three times greater than the ith value of the standard deviation vec-
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tor of the reference σC(i). The peak is then replaced by the ith value of the

mean vector µC of the reference. This correction is applied to two peaks of the

characteristic vector at most. Equation 1 summarizes this preprocessing step,

in case it is applied to the characteristic vector C.

 IF (C(i) ≥ ( 3× σC(i))) THEN

C(i) = µC(i)

(1)

where:

i is the index of the ith character of a vector ;

C is the characteristic vector of each keystroke dynamics acquisition presented

to the preprocessing phase;

σC is the standard deviation vector of the reference. When the reference con-

tains an only one sample, σC is a vector of fixed values (which are the standard

deviation value of the one sample reference).

µC is the mean vector of the reference.

After that, data normalization is carried out by dividing the characteristic

vector by the standard deviation σ of the reference (to ensure a standard devi-

ation of these features to 1). Equation (2) depicts the normalization applied to

the characteristic vactor.

C(i) =
C(i)

σC(i)
(2)

By applying the aberration correction and normalization steps to the 4 con-

sidered characteristics, the erroneous data are almost removed. Thus, we obtain

a sample composed of four characteristic vectors containing the information nec-

essary to model the users’ keystroke dynamics.

3.2. Enrollment phase

Several biometric authentication systems, essentially those based on face and

fingerprint modalities [45, 55], have used a single sample in the enrollment step.
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This is not the case for keystroke dynamics systems, since they are based on a

behavioral modality that quickly changes over time.

According to the literature, the minimal number of samples used during the

enrollment phase to create the reference is 5 samples [21]. In this paper, we use

characteristics extracted from only a single sample to create reference Gj of user

j, in the enrollment phase. Therefore, the proposed method fits the industrial

and operational application conditions, for which a user introduces a password

only once when creating an account.

3.3. Verification phase

This phase aims to decide whether to authorize or deny an access for a

claimed user. We judge KNN to be the most appropriate classifier as it has

proved to be efficient for keystroke dynamics modalities [33], hence the compet-

itive performances. Indeed, a single sample in the reference will not be efficient

for the training phase of the other classifiers like NN or SVM. Since the KNN

classifier can be applied with a variety of distances, several distance metrics are

tested: The Statistical [25], Hamming , Euclidean and Manhattan distances

are considered to obtain four respective partial scores DSTAT , DHAMMING,

DEUCLIDIAN and DMANHATTAN , as represented in Equation (3). Each novel

query is labeled by the KNN classifier using these four distances:

• Statistical distance: It is widely used for classifying keystroke dynamics

data. Based on extracting statistical values from each biometric feature

(mean and standard deviation), it has the advantage of being easy to

calculate and offering competitive performances.

• Hamming distance: It calculates the percentage of coordinates that differ

between the query and the reference. The Hamming distance is calculated

by positive integer values obtained by multiplying the characteristic vector

by 10.

• Euclidean distance: It is a simple distance metric often used with a KNN

classifier. It is defined as the square root of the sum of the squares of the
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differences between the corresponding coordinates of the new query and

the reference samples.

• Manhattan distance: It computes the sum of the differences of the corre-

sponding components of the new query and the reference samples.

DSTAT = 1− 1

n

n∑
i=1

e
−|

qj(i) − µj(i) |
σj(i)

DHAMMING = ( # ( qj(i) 6= Gj(i) ) / n )

DEUCLIDIAN =

√√√√ n∑
i=1

( qj(i)− Gj(i) )2

DMANHATTAN =

n∑
i=1

| qj(i)− Gj(i) |

(3)

In Equation (3), qj is the query that claims to belong to user j. Hence,

it is matched against its biometric reference Gj whose corresponding average

and standard deviation are µj and σj . We use these four metrics because we

have tested different distance metrics separately, and these ones have demon-

strated better performances. The global score Scorej is the weighted sum of

the four partial scores. For each user j, we calculate the global score according

to Equation (4):

Scorej = αs × DSTAT + βs × DHAMMING

+ γs × DEUCLIDIAN + δs × DMANHATTAN

(4)

where αs, βs, γs, δs are the vote parameters calculated on session s. The calcu-

lated score is compared to a previously set verification threshold. As a result,

it is very critical to define the appropriate threshold. Two types of thresholds

have been defined in the literature:

• Global threshold: During the use of the system, a constant and unique

threshold is involved for all users.
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• Individual thresholds: During the use of the system, a user-specific thresh-

old is considered.

In [21], the authors compared these two types of thresholds for the keystroke

dynamics modality and showed that the best performances were obtained with

the individual threshold. Thereby, we opt for this type of threshold in our

experiments. In the next section, we show how to make both thresholds (decision

and adaptation) time-dependent.

3.4. Adaptation phase

This subsection presents an innovative adaptation method. It essentially

updates both decision and adaption thresholds.

3.4.1. Thresholds adaptation

For the proposed method, we use the double threshold criterion to make the

adaptation decision [44]. Two thresholds are used to make two successive deci-

sions. The global score Scorej is compared to a first threshold (decision one) to

verify a user’s identity. After acceptance, the same score is again compared to a

second threshold to decide whether to use the query for adaptation. This adap-

tation criterion has been deeply used for adaptive systems concerning different

modalities (face and fingerprint [44], as well as keystroke dynamics [17]).

In this work, we propose to adapt both thresholds. Some studies [18, 48]

have adapted these thresholds and obtained better performances, but threshold

adaptation has been mainly utilized for the face modality. These studies demon-

strated that the variation in the users’ characteristics over time would influence

the scores obtained by the classifiers. Consequently, it is better to update the

thresholds in order to cope with these variations.

It was already demonstrated in [19, 47, 56, 57] that updating the used thresh-

olds would improve the system performance. An individual decision threshold

T s+1
j of session (s+ 1) is adapted by decreasing it with a coefficient calculated

by the average of the mean vector of reference µ and the standard deviation

of the standard deviation vector σ, as indicated in Equation (5). The initial
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thresholds are fixed to an Equal Error Rate (EER) equal to ' 3% which is

defined later in the subsection 4.3. Indeed, this is the best performance we have

obtained.

T s+1
j = T s

j − e
−
µj
σj (5)

Thereby, the thresholds are specific to the user and to the session at the

same time.

3.4.2. Template adaptation

The main contributions of the proposed template adaptation method are:

1) It is initialized with a single sample as a reference

2) A multi-distance classifier is considered with adaptive weights.

In fact, we propose a contribution in each of the five components of the template

update approach, as depicted in Algorithm 1.

• Reference modeling: By initiating the authentication process, users

are supposed to type their passwords only once for the computation of the

reference template. Afterwards, they can test their identity verification.

The main idea is to limit the enrollment phase to a strict minimum and

to allow an adaptation of the biometric reference to fit its aging over time.

Indeed, it is always mentioned that the enrollment phase annoys users [21].

Even if the proposed scheme does not capture any variability during the

enrollment stage, the combination with the proposed adaptation strategy

will allow users to cope with it.

• Adaptation criterion: Different adaptation criteria have been used in

the literature to initiate the adaptation process. Based on the double

threshold mechanism, we put forward our new adaptation criterion called

”adapted thresholds”. As demonstrated in section 3.4.1, it uses individual

thresholds that are decreased over time according to Equation (5). In fact,

after using the password for a long period, the intra-class variation in the

17



user’s keystroke dynamics becomes lower. This is due to the acquisition

of a habit after frequent uses. Therefore, we slightly reduce the threshold

during the use of the system.

• Adaptation mode: Adaptation is dealt with in a semi-supervised mode

through the application of the ”GA-KNN verification method”. Each

query is labeled with the KNN classifier and compared to a computed

ground-truth based on the reference of the previous session.

It will be accepted (i.e. classified as genuine) if the value of the global score

Scorej , calculated according to Equation (4), is lower than the ”adapted

threshold”. Equation (4) permits calculating the weighted sum of the

four partial scores (DSTAT , DHAMMING, DEUCLIDIAN , DMANHATTAN )

which are the nearest neighbor scores obtained by the KNN classification

with four different distance metrics, defined by Equation (3). The weight

parameters (αs, βs, γs, δs) are calculated thanks to GA. Algorithm 1

details the process.

GA is inspired by the natural evolution process following the Darwinian

model [58]. It uses a fitness function to optimize the weight parameters

( αs, βs, γs, δs ) during a number of iterations (or generations). The

content of the initial population is empirically set. We opted for the values

that guarantee the best performances for the first adaptation session. For

our experimentations, the optimization function of GA minimizes the False

Rejection Rate (FRR) and the False Acceptance Rate (FAR) by optimizing

the Half-Total Error Rate (HTER). The computation of the FAR and FRR

values is based on the presented queries for each adaptation session which

are labeled thanks to the GA-KNN. The adopted parameters of the GA

algorithm are summarized in Table 2.

We periodically vary the classification parameters ( αs, βs, γs, δs ) of

Equation (4) to ensure a better performance. Consequently, at the end of

each adaptation session, the GA recalculates new global weights for all the

users to optimize them. In each session, the fitness of all users is evaluated
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Table 2: GA Parameters

Parameter Value

Population size 50 (number of variables ≤ 5)

Crossover fraction 0.8

Generation 400 (100*number of variables)

Elite count 2.5 (0.05*population size)

Selection function Stochastic uniform

Crossover function Crossover scattered

Mutation function Gaussian

and is usually the value of the defined optimization function.

The great advantage of GA is that it succeeds in finding optimal solutions

for very complex problems, so as to take advantage of certain known prop-

erties. Furthermore, they are used in applications where a large number of

parameters are involved and where it is necessary to obtain good solutions

in only few iterations in real-time systems, like in the suggested approach.

• Adaptation periodicity: The proposed adaptation strategy operates

online. Each accepted query that satisfies the adaptation criterion is in-

cluded in the adaptation mechanism.

• Adaptation mechanism: The initial reference is composed of only a sin-

gle keystroke dynamics sample. Therefore, the suggested process enriches

the reference describing the user’s typing manner as shown in Figure 4.

At the beginning, the growing window mechanism is adopted. As a re-

sult, each request accepted by the adaptation criterion is added to the

reference samples. Once the maximal size of the users’ reference (set to

10 samples in our work) is reached, the sliding window mechanism will be

applied. Thereby, the oldest sample in the reference will be replaced by a

new query. Hence, the process is a ”double serial mechanism”.
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Figure 4: User’s reference representation over time: The effects of the double serial mechanism

on the reference. Each circle represents the reference samples in a specific session.

We noticed that the ”double serial mechanism” allows us to obtain a satisfy-

ing model of the users’ typing rhythm evolution over time. In fact, the novelty

is to combine the two considered adaptation mechanisms by applying them se-

quentially to the same reference. At first, the growing window mechanism is

useful for increasing the number of samples representing the users’ reference.

The purpose of this phase is to enrich the description of the users’ typing man-

ner. After that, we update the reference to take into account the intra-class

variations over time. Indeed, the sliding window mechanism will start when the

size of the reference reaches 10 samples in order to keep a minimal size of the

reference (no waste in calculation time). Moreover, this adaptation mechanism

is based on the principle that the oldest samples are the least representative of

the actual keystroke dynamics of the user. As demonstrated in Figure 4, the

newest samples are added while the oldest ones are deleted. In the next section,

we demonstrate the efficiency of the proposed method.
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Algorithm 1: Template update strategy during an adaptation session.

Require:
refj(t), q

s
j , N ← maxSize(refj(t)), (α0, β0, γ0, δ0) = EmpiricalV alues

Ensure: refj(t+1)

for j = 1 : NumberOfUsers do

for e = 1 : 8 do

DSTAT ← KNNStatistical(refj(t), q
e
j ,K = 1)

DHAMMING ← KNNHamming(refj(t), q
e
j ,K = 1)

DEUCLIDIAN ← KNNEuclidean(refj(t), q
e
j ,K = 1)

DMANHATTAN ← KNNManhattan(refj(t), q
e
j ,K = 1)

Scorej = αs ×DSTAT + βs ×DHAMMING + γs ×
DEUCLIDIAN + δs × DMANHATTAN

if ( Scorej < adaptatedThreshold ) then
if ( size(refj(t)) < N ) then

refj(t+1) ← GrowingWindow(refj(t), q
e
j )

else
refj(t+1) ← SlidingWindow(refj(t), q

e
j )

end if
end if

end

end

αs+1, βs+1, γs+1, δs+1 ← GeneticAlgorithm((αs, βs, γs, δs); (DSTAT ,
DHAMMING, DEUCLIDIAN , DMANHATTAN ))

4. Experiments

In this section, we put forward the used datasets, the processing description

and the investigated performance metrics. Moreover, we present the evolution

of some parameters of the experiments like the reference size and the weight

parameters over the adaptation sessions.

4.1. Datasets

For our experiments, we chose three datasets, among the most widely used

in the literature, to validate the proposed approach:

• GREYC 2009 [59]: This database was developed within the GREYC Lab-

oratory. One hundred and thirty-three users participated in the creation
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of this database and typed the same password ”greyc laboratory”. Only

100 of them participated in five acquisition sessions during two months

and provided 60 samples per user. These samples were focused on in our

experiments. This database were chosen to compare our results with those

of the experiments in [21].

• CMU [20]: This database includes data of 51 users. They typed the

same password 400 times during eight acquisition sessions. The defined

password was ”.tie5Roanl”. We opted for this database because it was

frequently used in the literature.

• GREYC-Web [60]: For this database, 118 users were involved in its cre-

ation and typed the same password ”SÉSAME”. Only 45 among them

participated in five sessions and provided 60 patterns. These users were

the subject of our experiment.

4.2. Data stream generation

To evaluate the performance of the proposed system and to follow its evolu-

tion, we divided the adaptation process into different sessions. For each session,

we introduced eight new queries to the system. These data were divided into five

genuine samples and three impostor ones for each adaptation session. First, 5

genuine queries are presented to the authentication process.They were presented

according to the chronological order of the database safeguard. Subsequently,

the three imposter queries were randomly introduced.

The biometric data stream was then divided into 37.5% (3/8) of impostor

samples and 62.5% (5/8) of genuine samples. The attack rate was higher than

that generally used in keystroke dynamics studies [33, 61] (70% for genuine

samples and 30% for impostor ones).

For both GREYC-2009 and GREYC-WEB databases, we had 60 samples for

each user. These samples were divided into 12 sessions (5 genuine samples/session).

As we used the first sample as initial reference, we presented in the last session

only four genuine samples. The impostor attacks were randomly generated by
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the samples of other users of the database. For the CMU database, 400 samples

per user are available. The system operates for 80 sessions.

4.3. Performance metrics

In the experimental results, the following performance metrics were adopted

to evaluate the proposed approach:

• False Non Match Rate (FNMR): It measures the ratio of legitimate users

falsely rejected by the system.

• False Match Rate (FMR): It measures the ratio of impostor users accepted

by the system.

• Equal Error Rate (EER): It is the error value at which the FNMR value

equals the FMR value. This metric is computed when the adaptive thresh-

old is not used.

• Area Under Curve (AUC): It is the measure of the area of the surface

below the Detection Error Trade-of (DET) curve (FMR versus FNMR).

• Accuracy: It calculates the proportion of true acceptance and true rejec-

tion in all evaluated cases.

We intend to compare the obtained results with other studies in the literature

based on these performance measures.

4.4. Classification parameters

In this work, we opted for a KNN classifier based on multi-distances. Thus,

to set the values of the vote parameters ( αs, βs, γs, δs ) of Equation (4),

we used GA. It is a widespread algorithm that provides high-quality solutions

for optimization problems. Its advantage is that it can start from a collec-

tion of randomly generated data. This is quite similar to our experimentation

conditions, where the initial reference contains only the first sample.

The initial values of the vote parameters are empirically set. We opted for

the values that guarantee the best performances for the first adaptation session.
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Table 3: Classification parameters obtained with GA during 12 sessions for GREYC 2009

database

Adaptation Parameters

sessions α β γ δ

1 0.0381 0.6295 0.3327 -0.0002

2 0.0289 0.5662 0.3143 0.0906

3 0.0183 0.6298 0.2562 0.0958

4 0.0560 0.6437 0.2854 0.0149

5 0.0404 0.6534 0.2867 0.0196

6 0.0482 0.6024 0.3172 0.0322

7 0.0506 0.6924 0.1904 0.0667

8 0.0327 0.6581 0.2582 0.0511

9 0.0616 0.6684 0.2475 0.0225

10 -0.0593 0.6681 0.3743 0.0170

11 0.0374 0.6936 0.2732 -0.0042

12 0.0468 0.6411 0.2460 0.0661

At the end of each session, after the presentation of 8 new queries, we restart the

GA to update the weight parameters. These new parameters would guarantee

minimal FRR and FAR rates.

This process was repeated for each adaptation session. Table 3 and Table 4

present the weight values obtained at the end of each adaptation session for

GREYC-2009 and GREYC-WEB databases, respectively. We can notice that

the Hamming and Euclidean distances (βs and γs) have in general the highest

vote values. In fact, these two distances demonstrated also better performances

than the others while testing each of them separately with the KNN classifier

[57].

24



Table 4: Classification parameters obtained with GA during 12 sessions for GREYC-WEB

database

Adaptation Parameters

sessions α β γ δ

1 0.1611 0.4291 0.4201 -0.0103

2 0.1127 0.4612 0.3666 0.0595

3 0.1424 0.4427 0.3603 0.0546

4 0.1694 0.4669 0.3963 -0.0326

5 0.1325 0.4219 0.3754 0.0702

6 0.1425 0.4333 0.3368 0.0874

7 0.1369 0.3822 0.4118 0.0691

8 0.1191 0.4675 0.3841 0.0293

9 0.1453 0.3993 0.3875 0.0679

10 0.1078 0.4995 0.4102 -0.0175

11 0.1114 0.4926 0.03203 0.0757

12 0.1239 0.4366 0.3851 0.0544

4.5. Reference size

As previously mentioned, the initial reference contains only one sample of

the genuine user introduced during the enrollment phase. Throughout the adap-

tation strategy, the reference size increases over time by adding each accepted

query to the user’s reference. Once the maximal size (ten samples) is reached,

the reference size will remain stable.

Since the number of accepted queries is not the same for all users, the size

of the reference differs from one user to another at the end of the session. We

followed the reference size variation during all adaptation sessions to separate

between sessions belonging to the growing window phase and those belonging

to the sliding window one.

As depicted in Table 5, 6 and 7, the growing window phase operates over a
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Table 5: Size of references in the beginning of each adaptation session for GREYC 2009

Reference size 1 2 3 4 5 6 7 8 9 10

Session 1 100% - - - - - - - - -

Session 2 - 22% 43% 33% 2% - - - - -

Session 3 - - - 2% 5% 18% 25% 30% 14% 6%

Session 4 - - - - - - 1% 2% 5% 92%

Session 5-10 - - - - - - - - - 100%

Table 6: Size of references in the beginning of each adaptation session for GREYC-WEB

Reference size 1 2 3 4 5 6 7 8 9 10

Session 1 100% - - - - - - - - -

Session 2 - 20% 51.1% 28.9% - - - - - -

Session 3 - - - - 4.5% 22.2% 33.3% 20% 6.7% 13.3%

Session 4 - - - - - 2.2% - - 4.4% 93.4%

Session 5-10 - - - - - - - - - 100%

Table 7: Size of references in the beginning of each adaptation session for CMU

Reference size 1 2 3 4 5 6 7 8 9 10

Session 1 100% - - - - - - - - -

Session 2 - - 46% 54% - - - - - -

Session 3 - - - - - - 8% 40% 38% 14%

Session 4-80 - - - - - - - - - 100%

limited number of sessions. Its duration does not exceed three sessions for some

users and 5 sessions for all users. This implies that the number of false rejections

is not high since the beginning. Our experimentations demonstrate that despite
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the lack of samples in the initial reference, the classifier can distinguish between

novel queries. Few users have a reference size equal to 5 at the end of the

first session (only 2 users for the GREYC-2009 database). For the following

sessions, the number of genuine accepted queries goes up quickly especially for

the CMU database.

5. Experimental results and discussion

In this section we detail the obtained results for each adaptation session.

Different performances have been considered to validate the proposed approach.

We tested the proposed approach while considering two scenarios: with and

without adaptive thresholds.

5.1. Performance without adaptive thresholds

We chose to draw the DET curve and calculate the EER as well as the AUC

to show the system performance in relation to the reference without considering

the adapted threshold criterion.

Figure 5 depicts the EER and AUC values of each adaptation session for

the three considered databases. Concerning the CMU database, as the number

of sessions is quite high (80 sessions), we illustrate only the performances of

every ten sessions. We can conclude that the results are slightly improved in

each session. The performance improvements during the sliding window phase

are much clearer than those of the growing window one. These performances

are expected since the reference is not entirely defined at the beginning.

The final result of the last session illustrates a statistically significant im-

provement. The obtained performances (EER, AUC) in the last session are

much improved compared to those of the first one, as shown in Figure 5.

We compared the proposed method to different mechanisms of previous

work. For GREYC-2009 database, the proposed method was compared to the

average mechanism [21], which was applied to a reference initially composed of

five samples and not exceeding 15. For that, we investigated various threshold
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Figure 5: DET curves and associated performance results (EER, AUC) for all adaptation

sessions.
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types: global, individual. Once again, the proposed adaptation mechanism led

to better performances. Table 8 shows the comparison of the obtained results

on the GREYC-2009 database. In this paper, the considered performances of

the average mechanism are those obtainned by [21].

Table 8: Comparison of obtained results with different thresholds for GREYC-2009 database

Double serial mechanism Average mechanism [21]

Threshold Reference size EER % Reference size EER %

Global 1-10 4.5% 5-15 6.96%

Individual 1-10 6.5% 5-15 6.95%

To highlight the impact of the proposed adaptation mechanism, we imple-

mented the proposed method with different threshold types. As depicted in

Table 9, we show the performance on the three datasets with different thresh-

olds.

Table 9: Comparison of the EER performances with different thresholds

Threshold GREYC 2009 GREYC-WEB CMU

Global 4.5% 5.3% 2.3%

Individual 6.5% 8.7% 5.2%

To illustrate the advantages of the proposed adaptation approach, we ap-

plied other algorithms of the literature to the GREYC-WEB database. We

firstly tested the growing window mechanism with a reference containing a sin-

gle sample initially. The size of the reference increases up to 43 owing to the

adaptation mechanism. Secondly, we applied the sliding window mechanism

based on a 10-sized reference. Thirdly, we also tested the proposed double se-

rial mechanism while the reference was initialized to 5 samples and its maximum

size was fixed to 10. Finally, the double parallel mechanism was conducted us-
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Figure 6: Minimum and maximum reference size for compared mechanisms.

ing two sub-references. One of them initially contained a single sample and

it was adapted with the growing window mechanism. The other one initially

comprised 10 samples and it was adapted with the sliding window mechanism.

Figure 6 depicts the size variations for each adaptation mechanism.

All of these mechanisms were implemented by the GA-KNN method based on

the weighted vote of 4 distance metrics. The obtained results are summarized

in Figure 7. With a reference size approximately equal to the proposed ap-

proach, the double serial mechanism was the best performing among the tested

mechanisms. While increasing the initial size of the reference by five samples,

we obtained better performances. This was due to the larger description of the

keystroke dynamics of users. However, the performance difference at the final

session was not very large. Thus, we chose an approach based on a single sample

in the learning phase in order to familiarize it with the industrial application

environment.

5.2. Performance with adaptive thresholds

The overall results of FMR, FNMR and accuracy concerning the three con-

sidered databases are shown in Table 10. These results are calculated over all

adaptation sessions while considering the whole data of the databases. The best
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Figure 7: DET curves of last adaptation sessions and associated performances (EER, AUC)

of different adaptation mechanisms applied to GREYC-WEB database

achieved results are those obtained with the GREYC-2009 database. While con-

sidering the EER and AUC performances, the CMU database presents the best

obtained results.

Table 10: Overall performances for three considered databases

GREYC-2009 GREYC-WEB CMU

FMR 0.0833 0.1375 0.1406

FNMR 0.0463 0.0516 0.0647

Accuracy 0.828 0.810 0.794

We also compared the proposed method with some other work from the

literature to analyze the impact of the number of samples used in the reference,

especially in the training phase (See Table 11). For the CMU database, the best

obtained result in [33] was 0.670 accuracy, although the reference was obtained

by 40 samples. The results achieved with the suggested method were much

better with a unique sample as an initial reference template. We obtained 0.794

31



accuracy.

Table 11: Performance comparison

Database Adaptation mechanism Reference size Threshold FNMR FMR Accuracy

CMU Double serial mechanism 1-10 Variable 0.064 0.140 0.794

CMU Enhanced template update [33] 40 Global 0.088 0.573 0.670

WEB-GREYC Double serial mechanism 1-10 Variable 0.051 0.137 0.810

WEB-GREYC Enhanced template update [33] 40 Global 0.042 0.355 0.802

5.3. Computation time

As the proposed method is processing online, we are interested in the compu-

tation time of each phase. Table 12 presents the computation time of each phase

for a single user and for all considered users of the GREYC 2009 database. Con-

cerning the computation time of a unique user, the average computation time

is considered. Timing is calculated on CPU with an Intel i7 processor with

a speed of 2.5 GHz and 8-Gb RAM. The adaptation phase is faster than the

other steps of the process. All phases have a fast computing time except GA

which operates in an offline way, so it does not affect the operating time of the

proposed approach.

The proposed method had the advantage of minimizing the computation

time to create the reference that was very important for the online adaptation

mechanism. The experimental results showed that the obtained performance

outperformed the other methods in the state of the art for the same databases

and under the same test protocol conditions. Furthermore, the proposed method

satisfied the suggested conditions in an industrial context. Indeed, a single sam-

ple was necessary during the enrollment step. It was a great advantage instead

of asking users to type their password multiple times. Moreover, the experiment

includes a novel authentication system based on the GA-KNN in addition to

the adaptation strategy, thus it demonstrates competitive performances.
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Table 12: Computation time in seconds involved in each phase of process for only one user

and for all users (ε means negligible)

Phase One user All users Relative time for all users

Feature extraction 0.035 4.53 17.70%

Pre-processing: aberration 0.012 0.98 3.82%

Pre-processing: normalization 0.000015 0.00162 ε

Enrollment 0.00009 0.0015 ε

Verification: Statistical 0.006 0.63 2.46%

Verification: Hamming 0.002 0.187 0.73%

Verification: Euclidean 0.0015 0.158 0.61%

Verification: Manhattan 0.0017 0.176 0.68%

Genetic algorithm - 18.93 73.97%

Adaptation 3.2395e-05 0.0012 ε

6. Conclusion and perspectives

Adaptive biometric strategies provide an important solution to remedy the

intrinsic intra-class variations in behavioral biometric authentication systems.

As the keystroke dynamics is a biometric modality that suffers from continuous

variations over time, adaptive methods are a good solution to compensate for

this trouble. Most of the existing studies have used a huge number of samples

to create the reference describing the users’ typing rhythm in the enrollment

phase.

This paper has investigated a solution that enables modeling an individual’s

keystroke dynamics while minimizing the used samples for the definition of the

reference template. For this purpose, we proposed a single enrollment process

(the password was typed only once during the enrollment step). The size of

each user reference would increase while using the system, to reach a maximum

size equal to 10 thanks to the double serial mechanism. Actually, the growing

window first serves to enlarge the users’ galleries so as to capture more intra-

class variability. When the maximum size of the reference is attained, the sliding

window will take place and allow following the temporal variation in the users’
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keystroke dynamics. The proposed contribution is an interesting solution as it

satisfies industrial needs (usable enrollment and good efficiency).

We also evolved a GA-KNN verification method to achieve better perfor-

mances during the whole adaptation session. Indeed, the weights from different

distances for the KNN classifier, in addition to the GA optimization, are useful

to minimize recognition errors. With regards to previous work, the suggested

method shows a great performance improvement. As it has been applied on sev-

eral databases, it has demonstrated competitive performances in each database.

As perspectives, we are involved in a novel approach that may improve the

performances of the first sessions so as to make the keystroke dynamics modality

more compatible with industrialization conditions. Thus, preliminary experi-

ments of a user specific adaptive mechanism are being conducted. Besides, it

will be worth applying and comparing the proposed method to other devices like

mobile phones and to other modalities like voice and touch screen interactions.
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[30] H. Çeker, S. Upadhyaya, Sensitivity analysis in keystroke dynamics us-

ing convolutional neural networks, in: Information Forensics and Security

(WIFS), 2017 IEEE Workshop on, IEEE, 2017, pp. 1–6.

37



[31] Y. Sang, H. Shen, P. Fan, Novel impostors detection in keystroke dynamics

by support vector machine, in: Parallel and distributed computing: appli-

cations and technologies, Springer, 2004, pp. 666–669.

[32] E. Yu, S. Cho, Keystroke dynamics identity verification???its problems

and practical solutions, Computers & Security 23 (5) (2004) 428 – 440.

doi:http://doi.org/10.1016/j.cose.2004.02.004.

[33] P. H. Pisani, R. Giot, A. C. De Carvalho, A. C. Lorena, Enhanced tem-

plate update: Application to keystroke dynamics, Computers & Security

60 (2016) 134–153.

[34] H. Ceker, S. Upadhyaya, Transfer learning in long-text keystroke dynamics,

in: 2017 IEEE International Conference on Identity, Security and Behavior

Analysis (ISBA), 2017, pp. 1–6. doi:10.1109/ISBA.2017.7947710.

[35] H. Ceker, S. Upadhyaya, Adaptive techniques for intra-user variability

in keystroke dynamics, in: 2016 IEEE 8th International Conference on

Biometrics Theory, Applications and Systems (BTAS), 2016, pp. 1–6.

doi:10.1109/BTAS.2016.7791156.

[36] M. S. Obaidat, B. Sadoun, Verification of computer users using keystroke

dynamics, IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 27 (2) (1997) 261–269.

[37] K. S. Killourhy, R. Maxion, et al., Comparing anomaly-detection algo-

rithms for keystroke dynamics, in: Dependable Systems & Networks, 2009.

DSN’09. IEEE/IFIP International Conference on, IEEE, 2009, pp. 125–134.

[38] A. Rattani, B. Freni, G. L. Marcialis, F. Roli, Template update methods in

adaptive biometric systems: A critical review, in: International Conference

on Biometrics, Springer, 2009, pp. 847–856.

[39] N. Poh, A. Rattani, F. Roli, Critical analysis of adaptive biometric systems,

IET biometrics 1 (4) (2012) 179–187.

38



[40] N. Grabham, N. White, Use of a novel keypad biometric for enhanced

user identity verification, in: Instrumentation and Measurement Technol-

ogy Conference Proceedings, 2008. IMTC 2008. IEEE, IEEE, 2008, pp.

12–16.

[41] A. Lumini, L. Nanni, A clustering method for automatic biometric template

selection, Pattern Recognition 39 (3) (2006) 495–497.

[42] A. Serwadda, Z. Wang, P. Koch, S. Govindarajan, R. Pokala, A. Good-

kind, D.-G. Brizan, A. Rosenberg, V. V. Phoha, K. Balagani, Scan-based

evaluation of continuous keystroke authentication systems, IT Professional

15 (4) (2013) 20–23.

[43] P. H. Pisani, A. C. Lorena, A. C. de Carvalho, Adaptive approaches for

keystroke dynamics, in: Neural Networks (IJCNN), 2015 International

Joint Conference on, IEEE, 2015, pp. 1–8.

[44] A. Rattani, Adaptive biometric system based on template update proce-

dures, Dept. of Elect. and Comp. Eng., University of Cagliari, PhD Thesis.

[45] C. Ryu, H. Kim, A. K. Jain, Template adaptation based fingerprint ver-

ification, in: Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, Vol. 4, IEEE, 2006, pp. 582–585.

[46] N. Poh, J. Kittler, A. Rattani, Handling session mismatch by semi-

supervised-based co-training scheme, in: Adaptive Biometric Systems,

Springer, 2015, pp. 35–49.

[47] A. Mhenni, C. Rosenberger, E. Cherrier, N. Essoukri Ben Amara,

Keystroke template update with adapted thresholds, in: Advanced Tech-

nologies for Signal and Image Processing (ATSIP), 2016 2nd International

Conference on, IEEE, 2016, pp. 483–488.

[48] A. Rattani, G. L. Marcialis, F. Roli, Self adaptive systems: An experimen-

tal analysis of the performance over time, in: Computational Intelligence

39



in Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop

on, IEEE, 2011, pp. 36–43.

[49] P. Kang, S.-s. Hwang, S. Cho, Continual retraining of keystroke dynamics

based authenticator, Advances in biometrics (2007) 1203–1211.

[50] U. Uludag, A. Ross, A. Jain, Biometric template selection and update: a

case study in fingerprints, Pattern Recognition 37 (7) (2004) 1533–1542.

[51] B. Freni, G. Marcialis, F. Roli, Template selection by editing algorithms: A

case study in face recognition, Structural, Syntactic, and Statistical Pattern

Recognition (2008) 745–754.

[52] S. Hocquet, J.-Y. Ramel, H. Carbot, Estimation of user specific parameters

in one-class problems, in: Pattern Recognition, 2006. ICPR 2006. 18th

International Conference on, Vol. 4, IEEE, 2006, pp. 449–452.

[53] N. Poh, J. Kittler, S. Marcel, D. Matrouf, J.-F. Bonastre, Model and score

adaptation for biometric systems: Coping with device interoperability and

changing acquisition conditions, in: Pattern Recognition (ICPR), 2010 20th

International Conference on, IEEE, 2010, pp. 1229–1232.

[54] M. M. Seeger, P. Bours, How to comprehensively describe a biometric up-

date mechanisms for keystroke dynamics, in: Security and Communication

Networks (IWSCN), 2011 Third International Workshop on, IEEE, 2011,

pp. 59–65.

[55] A. Rattani, D. Kisku, A. Lagorio, M. Tistarelli, Facial template synthesis

based on sift features, in: Automatic Identification Advanced Technologies,

2007 IEEE Workshop on, IEEE, 2007, pp. 69–73.

[56] A. Mhenni, E. Cherrier, C. Rosenberger, N. Essoukri Ben Amara, User

dependent template update for keystroke dynamics recognition, in: 2018

International Conference on Cyberworlds (CW), IEEE, 2018, pp. 324–330.

40



[57] A. Mhenni, E. Cherrier, C. Rosenberger, N. Essoukri Ben Amara, Towards

a secured authentication based on an online double serial adaptive mecha-

nism of users’ keystroke dynamics, in: International Conference on Digital

Society and eGovernments (ICDS), 2018, pp. 73–80.

[58] K. Deb, An introduction to genetic algorithms, Sadhana 24 (4) (1999) 293–

315. doi:10.1007/BF02823145.

URL https://doi.org/10.1007/BF02823145

[59] R. Giot, M. El-Abed, C. Rosenberger, Greyc keystroke: a benchmark for

keystroke dynamics biometric systems, in: Biometrics: Theory, Applica-

tions, and Systems, 2009. BTAS’09. IEEE 3rd International Conference

on, IEEE, 2009, pp. 1–6.

[60] R. Giot, M. El-Abed, R. Christophe, Web-based benchmark for keystroke

dynamics biometric systems: A statistical analysis, in: Intelligent Infor-

mation Hiding and Multimedia Signal Processing (IIH-MSP), 2012 Eighth

International Conference on, IEEE, 2012, pp. 11–15.

[61] R. Giot, C. Rosenberger, B. Dorizzi, Hybrid template update system for

unimodal biometric systems, in: 2012 IEEE Fifth International Conference

on Biometrics: Theory, Applications and Systems (BTAS), 2012, pp. 1–7.

doi:10.1109/BTAS.2012.6374539.

41




