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Enhanced convergence rates and asymptotics for a dispersive
Boussinesg-type system with large ill-prepared data

Frédéric Charve*

Abstract

In this article we prove highly improved and flexible Strichartz-type estimates allowing us
to generalize the asymptotics we obtained for a stratified and rotating incompressible Navier-
Stokes system: for large (and less regular) initial data, we obtain global well-posedness,
asymptotics (as the Rossby number ¢ goes to zero) and convergence rates as a power of the
small parameter €. Our approach is lead by the special structure of the limit system: the 3D
quasi-geostrophic system.

1 Introduction

1.1 Geophysical fluids

The Primitive System (also called Primitive Equations, see for example [15, 1]) is a rotating
Boussinesqg-type system used to describe geophysical fluids located at the surface of the Earth (in
a large physical extent) under the assumption that the vertical motion is much smaller than the
horizontal one. Two phenomena exert a crucial influence on geophysical fluids: the Coriolis force
induced by the rotation of the Earth around its axis and the vertical stratification of the density
induced by gravity. The former induces a vertical rigidity in the fluid velocity as described by
the Taylor-Proudman theorem, and the latter induces a horizontal rigidity to the fluid density:
heavier masses lay under lighter ones.

In order to measure the importance of these two concurrent phenomena, physicists defined
two numbers: the Rossby number Ro and the Froude number F'r. We refer to the introduction
of [6, 12, 13] for more details and to [3, 20, 4, 41] for an in-depth presentation.

The smaller are these numbers, the more important become these two phenomena and we will
consider the Primitive Equations in the whole space, under the Boussinesq approximation and
when both phenomena are of the same scale i.-e. Ro = ¢ and Fr = ¢F with F' > 0. In what
follows € will be called the Rossby number and F' the Froude number. The system is then written
as follows (we refer to [15, 1] for the model):

OU. +ve - VU, — LU. + AU, = 1(-V®.,0),
dive. =0, (PE:)
UE|t:O == UO,E-

The unknowns are U = (v, 0:) = (v}, v2,v3,0.) (where v. denotes the velocity of the fluid and 6.

the scalar potential temperature), and ®. which is called the geopotential. The diffusion operator

L is defined by

LU, d:ef (vAve, V' AB),
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where v, V' > 0 are the kinematic viscosity and the thermal diffusivity. The matrix A is defined
by

0 -1 0 0

def[ 1 0 O 0
A= 00 O F-!

0 0 -F1 0

We will also precise later the properties satisfied by the sequence of initial data Uy (as € goes
to zero). Let us now state some remarks about this system (we refer to the introductions of
[6, 10, 12, 13] for more precisions):

e This system generalizes the well-known rotating fluids system (see [16, 17, 18]). The penal-
ized terms, namely AU, and the geopotential (which are are divided by the small parameter
¢), will impose a special structure to the limit when € goes to zero.

e As A is skew-symmetric, and thanks to the incompressibility, any energy method (that is
based on L? or H*/ H* inner products) will not "see” these penalized terms and will work as
for the classical incompressible Navier-Stokes system. Therefore the Leray and Fujita-Kato
theorems provide global in time weak solutions if Uy . € L? and local in time unique strong
solutions if Up. € H? (global for small initial data).

e There are two distinct regimes wether F' # 1 or F' = 1: the first one features very important
dispersive properties. In the second case, the operators are simpler but we cannot rely on
Strichartz estimates and the methods are completely different (see [15, 13]). In the present
article we focus on the case F' # 1.

1.2 Strong solutions

As explained before, thanks to the skew-symmetry of matrix A, any computation involving L?
or Sobolev inner-products will be the same as for the Navier-Stokes system (AU - U = 0). So
given the regularity of the initial data (even if some norms can blow up in ), we can adapt
the Leray and Fujita-Kato theorems as well as the classical weak-strong uniqueness results: for
a fixed € > 0, if Uy, € H%(]Rg), we denote as U, the unique strong solution of System (PE.),
defined on [0,7] for all 0 < T' < T. In addition, if the lifespan T.* is finite then we have (blow
up criterion):

/O VUL dr = 0. (1.1)

[
H?2(R3)

Moreover, if Uy € H* then we also can propagate the regularity as done for the Navier-Stokes
system.

1.3 The limit system, the QG /osc decomposition

We are interested in the asymptotics, as the small parameter ¢ goes to zero. Let us recall that
the limit system is a transport-diffusion system coupled with a Biot-Savart inversion law and is
called the 3D quasi-geostrophic system:

{@ﬁgg + EQg.VS?ZQG — FQQG =0,

- e s QG
Ugc = (Vga,boc) = (—02,01,0, —F05) Az Qqq, (Q6)

where the operator I' is defined by:
I Y AAZ (002 + VD2 + v/ F202),
with Ap = 82 + 03 + F293. Moreover we also have the relation

Qo = 004 — 0:Ubg — FosUSg = 01736 — 2056 — Fdslqa-.



Remark 1 The operator Ap is a simple anisotropic Laplacian but I' is in general a tricky
non-local diffusion operator of order 2 (except in the case F = 1 where Ap = A and T’ =
vd? + v03 + 1V'02, or in the case v = v/ where I' = vA). We refer to [11, 12] for an in-depth
study of T in the general case (then neither its Fourier kernel nor singular integral kernel have a
constant sign and no classical result can be used).

This limit system is first formally derived then rigourously justified (see [15, 6]). Led by the limit
system we introduce the following decomposition: for any 4-dimensional vector field U = (v, 0)
we define its potential vorticity Q(U):

QU) Y 910* — ap0! — Fos0,
then its quasi-geostrophic and oscillating (or oscillatory) parts:

0
Uoe =) | T | APQW). and U =P(O)

—F0s

def U—Uga. (1.2)

As emphasized in [6, 10] this is an orthogonal decomposition of 4-dimensional vector fields (similar
to the Leray orthogonal decomposition into divergence-free and gradient vector fields) and if Q
and P are the associated orthogonal projectors on the quasi-geostrophic or oscillating fields, they
satisfy (see [15, 6, 7]):

Proposition 1 For any function U = (v,6) € H* (for some s) we have:
1. P and Q are pseudo-differential operators of order 0.

For any s € R, (P(U)|Q(U)) . = (AU|P(U)) - = 0 (when defined).

The same is true for nonhomogeneous Sobolev spaces.

PU) =U < QU) =0 < Q(U) = 0.

AR

Q(U) =U <= P(U) = 0 <= there exists a scalar function ® such that U = (-0, 01,0, —F03)®.
Such a vector field is said to be quasi-geostrophic (or QG) and is also divergence-free.

>

If U = (v,0) is a quasi-geostrophic vector field, then v-VQ(U) = Q(v - VU).
7. If U is a quasi-geostrophic vector field, then TU = Q(LU).

8. Denoting by P the Leray orthogonal projector on divergence-free vectorfields, PP = PP and
PO = QP = Q.

Thanks to this, System (QG) can for example be rewritten into one of the equivalent following
velocity formulations:
(%ﬁQG + Q(ﬁQg.VﬁQg) - FGQG =0,
Ugc = QUge), (or equivalently P(Ugg) = 0), (QG)
Uqajt=o0 = Uo,qa,
or
6t[7QG + 5Qg.V[7QG — LﬁQG = P&)Qg,

Uga = QUqa), (QG)
Ugaji=0 = Uo,qa



Remark 2 We recall that Theorem 2 from [7] claims that if Uy o € H' then System (QG) has
a unique global solution Ugg € E°NE" (see below for the space notation). We refer to [7, 9] and
to the next sections for more precisions.

Remark 3 It is natural to investigate the link between the quasi-geostrophic/oscillating parts
decomposition of the initial data and the asymptotics when e goes to zero. This leads to the
notion of well-prepared/ill-prepared initial data depending on the fact that the initial data is
already close or not to the quasi-geostrophic structure, i.-e. when the initial oscillating part is
small/large (or going to zero/blowing up as € goes to zero). In the present article we consider
ill-prepared initial data with very large oscillating parts.

Going back to System (PE.), we introduce 2. = Q(U.), Usgc = Q(U:) and Us o5 = P(Us).
We showed in [6] that for an initial data in L? (independant of ), the oscillating part U, osc
of a weak global Leray solution U., goes to zero in L? (R4, LY(R?)) (¢ €]2,6[), and the quasi-
geostrophic part U gc goes to a solution of System (QG) (with the QG-part of Uy as initial
data). This required the study of System (3.81), and its associated matrix in the Fourier space:
as explained in details in Proposition 11 when v # v/ there are four distinct eigenvalues (it is
necessary to perform frequency truncations to obtain their expression). The first one is discarded
as its associated eigenvectors are gradients, the second one is real and explicit (and linked to the
quasigeostrophic part). The last two ones are non-real and linked to the oscillating part.

Let us denote by P; (i € {2,3,4}) the associated projectors. In the simpler case v = 1/, the
first two eigenvalues coincide and all eigenvectors are mutually orthogonal (which implies their
norms are bounded by 1) and we have the simplification @ = Py and P = P544. Unfortunately
none of these simplifications are true anymore in general (when v # /) but we are able to bound
their operator norms and prove that the Po-part of an oscillating divergence-free vectorfield is
small (we refer to [6, 8], see also Proposition 11).

Moreover we are able to obtain Strichartz estimates for the last two projections Ps;4. In [6]
we obtained the following Strichartz estimate upon which depended the main result:

1
IP31aPr rfllraree < Cr re®||PrrfollL2-

In [7] we focussed on strong solutions. We first proved that if the initial QG-part Uy o¢ is H!
then the limit system has a unique global solution ing. Then if Up,osc € Hz we proved that
Ue is global if ¢ is small enough. For this we filtered some waves: we constructed a solution
WZI of (3.81) with a particular external force term (constructed from Uge) and proved that
U. — ﬁQG — WZT goes to zero thanks to a generalization of the previous Strichartz estimates
(allowing different regularities for the external force term):

1
IPssaPrrfllLore < Crre® (|Prrfolle> + |PraF’llLize + 1PrrF llLop) -

In [8] we generalized the previous result for initial data depending on e and with large oscillating
part (bounded by |In|Ine|| in the general case and |Ine| when v = V') considering frequency
truncations P,_ . with radii depending on ¢ allowing us to exhibit explicit convergence rates. In
this work we distinguished the case v = v/ for which we were able to produce Strichartz estimates
without frequency truncations:

1
Wolione , < Ce (Lol g +161,, o))

In the second part of [8], inspired by the work of Dutrifoy in the inviscid case (see [22]) we
investigated the case of initial potential vorticity which is a regularized patch, and very large
initial oscillating part (regular but bounded by a negative power of ) when v = »/. This
work was recently generalized in the case v # v/ in [11, 12] where we studied the limit quasi-
geostrophic operator I' which is non-local and non radial. In this setting, the fact that v # v/
highly complicates every computation.



Let us also mention [9] where we obtained global existence when the initial QG-part is only
Hz+1. This required real interpolation methods in order to obtain economic estimates for the
limit system (see (1.12)). In [10] with V.S. Ngo we studied the asymptotics in the case of
evanescent viscosities (as a power of £) and for simplified oscillating initial (as the initial QG part
is zero, the limit is also zero).

Let us now give a survey on other results on this system. First in the setting F' = 1, let us
mention [15, 13] and also [32] in the inviscid case. In [34] the authors distinguish the rotation and
stratification effects, in the case v = v/ for initial data in H 2N H' and for a special condition
Doup — O1ug = 0 (that is the initial potential vorticity only depends on the temperature), they
obtain existence of a unique global solution to (PE.) in C(Ro, H') for strong enough rotation and
stratification. If the initial data is small in H2 they manage to obtain that VU, € L2Hz.

In [37] Lee and Takada studied global wellposedness in the case of stratification only (no
rotationnal effects), when v = v/ and for large initial oscillating part (independant of €). They
first give global existence of a unique mild solution in L*(R, W 23(R?)) for large initial oscillating
part in H* (s E]%, g], there is a kind of smallness condition, see Remark 11) and small QG-part

1

in H2. Then they show global well-posedness in the case s = 5 and for any initial oscillating

part and small QG-part, of a unique mild solution in C(Ry, H2) N L4(Ro, W2-3(R?)).

These results are adaptated to the Primitive system in [33]. Iwabuchi, Mahalov and Takada
focussed on the case v = 1/ and obtain (through stationnary phase methods) the following
Strichartz estimates that we state with our notations:

Proposition 2 ([33] Theorem 1.1 and Corollary 1.2) Assume F # 1. If r €]2,4] and p €
12, 00[0[2(1;_%, 3(1—2_1)], there exists a constant C' = Cp,, p,» such that if f solves the homogeneous
(3.81), ' '

If s €], %], there exists a constant C = C(F, s,v) such that:

11

< Ce27 D] fol .

. 6
LARy W THE)

From this they are able to obtain through a fixed point argument the following global well-
posedness results for initial data with small quasi-geostrophic part:

e Assume v =v and FF # 1. If s E]%, g], there exist 01,02 > 0 such that for any ¢ > 0 and

any initial data Uy = Up.gc + Uo.ese With (Uo.oa, Un.ese) € H2 x H® and

U 1 <9
{H o.0cll ;1 <01, (1.3)

HUO,oscHHs < (526%(57%),

there exists a unique global mild solution in L*(R., W*3 (R3)).

e Under the same assumptions, there exists § > 0 such that for any initial data Uy = Uy ga +
Uo,osc € H? with |\U07Qg||H% < 4, there exists g9 > 0 such that for any 0 < € < g, System
(PE.) has a unique global mild solution in C(Ry, Hz) N L4 (R, W*3 (R?)).

Let us also mention works in the periodic case where resonences have to be studied (see for
example [24, 39, 40, 42]), in the rotating fluids system case (see [16, 17, 18, 26, 28, 35]) or in the
inviscid case (see [22, 23, 36, 46, 47]).

In the present article we wish to generalize our results from [7, 8, 9] and motivated by the
very interesting results in [33] we want to allow (as in [10, 12]) very large ill-prepared initial data
(less regular, depending on & and bounded by a negative power of ¢) and provide convergence



rates. In our work we will provide global well-posedness results but also precise asymptotics as
e goes to zero. We also generalize [33] and consider initial data with large quasi-geostrophic part
and provide solutions in energy spaces E* both in the particular case v = v/ and in the general
case v # V. Let us also mention that our methods closely rely on the special structures and
properties of the quasi-geostrophic flows.

1.3.1 Statement of the results

We consider a general initial data: Uy = U ¢ 0sc +Uo,e,oa With Uy - gc Ho Uy,gc in some norm
E—>

(see below for precisions).

The aim of the present article is to generalize Theorem 3 from [7], Theorems 1.2 and 1.3 from
[8] and Theorem 4 from [9] and consider the biggest possible blowing-up initial oscillatory part
(as a negative power of €) with use of the least possible regularity for the initial data. In terms
of the initial oscillating part, the methods used in [6, 7, 8] would only lead to allowing an initial
blowing-up as | 1n€|%, which means we need to change our point of view and highly improve our
use of the energy and dispersive estimates. We will here state only the new results. Let us define
(in the whole space R?) the family of spaces E% for s € R,

B = Cr(H®) N Ly(H**),

endowed with the following norm (where we define vy = min(v, V'), see the appendix for the other
notations):

def

T
1%, IIfIImeLl/o/0 £ (O Zesndr

When T' = 0o we denote E* and the corresponding norm is over R4 in time. Let us now state
the main result of this article (we do not assume v = v/').

Theorem 1 For any Cy > 0, § €]0 ,10] ag > 0, there exist five constants £q,m,Bg,x,3 > 0
(depending on F,v,v ,Co,ao) such that for all € €]0,e9] and all divergence-free initial data
Uo,e = Uy c,0c + Up,e,0sc satisfying:

1. Up.e,oc converges towards some quasi-geostrophic vectorfield ﬁO,QG € Hz%9 with:

{|U0,E,QG - Uy QG” +6 < Cpe™, (1-4)

HU07QG|| 46 = < Co.

2. HUO,a,oscHFJ < Coe™ " where the space Fj is defined as follows (qg= %):
i H: SN H2t  ify=1/,
Fs=+< .1 C

Bi,NHzt  ify sy,

then System (QG) has a unique global solution UQG € E9N E**%, and System (PE ) has a

unique global solution U, € Es for all s € [— — 775 + nd], which converges towards UQG with
the following estimate: _ .
|U: — Uge|lz2ne < Boe™in(@o:98),

Remark 4 In the general case, k is small (less than 4000) whereas in the case v =1V, k < 3
(and as close to 5 as we want). We refer to the next section for a more precise statement of thls
theorem.

Remark 5 It is interesting to adapt these results to the case with only stratification.



1.4 Precise statement of the main results

This section is devoted to give the precise statement of Theorem 1, which will be split into two
formulations wether we have v = v/ or v # /. This statement requires us to introduce auxilliary
systems, which is the object of the first two subsections, and state additional regularity properties
for the solution of the limit system (we refer to the third subsection). Then we will state the
results we will prove in this article.

1.4.1 Auxiliary systems in the general case v # v/

Remark 6 In what follows, we will systematically write, for f : R3 = R*, f.Vf = Zle fioif.

Following [7] we rewrite the primitive system, projecting onto the divergence-free vectorfields (P
is the classical Leray projector):

{atUg — LU. + 1PAU. = ~P(U..VU,). 1)

U€|t:O = UO,E-

Notice that we can rewrite (QG) as follows (we also refer to [7] where it was first used):

{@ﬁQG ~ LU. + 1PAUqq = ~P(Uqc-VUqa) + G, @e)
Ugali=0 = Uo,qa-
where
—F0,?
G =G +G Y PP(Upe.VUge) — Flv — vV)AAL? F%a?? Qoc.  (16)

(97 + 03)0s

Remark 7 It is important to notice that G is the sum of two terms, both divergence-free and
whose potential vorticity is zero, which is crucial to fully take advantage of (3.86). We refer to
[7, 9] for more detalils.

As explained in [6, 7, 8, 9, 10, 12], in the case F' # 1 the oscillatory part enjoys dispersive
properties that allow us to obtain Strichartz-type estimates. More precisely the oscillatory part
satisfies System (3.81) (we refer to the appendix for details), and in all the cited articles, we
used that the frequency truncated third and fourth projections of the oscillatory part satisfy
Strichartz-type estimates as given by Proposition 12. As in [7, 9, 10], in the present article we
will consider some particular oscillatory terms whose existence is only devoted to absorb some
constant terms in order to get the desired convergence rate for the asymptotics as & goes to zero.

More precisely, we introduce the following linear system (we refer to the appendix for the
notations r., R, and P,_ g, ):
6th — LWaT + %PAW&T = _PTE,R5P3+4G) (1 7)

Wg‘tzo = PTE,RE]ID3+4UO,E,OSC -

Remark 8 We recall that it would be useless to consider the free system: indeed the system
satisfied by U. — Ugq features G as an external force term which is independant of ¢ and blocks
any convergence. It is then necessary to absorb a large part of this term which is the reason why
we considered such an external force term in System (1.7). In other words, W1 is small due to
dispersive properties, but still it allows us to "eat” a large part of G. We refer to [7] for more
details.



Finally we define 0. = U. —Ugg — W', which satisfies the following system (see [7] for details):

8
00 — Lo + TPAS. = Fi+ f* + £,

— (1.8)
58|t:0 = (UO,E,QG - UO,QG) + (Id - PTE,RE)UO,E,OSC + PTE,REPQUO,E,OSC;
where we define:
de de ~ de ~
RY pe. v, BY 6. V), FY -PUgc- Vi),
Y pe. vwh), BY _pwT.ve.), F POy VWD),
de ~ de
Y _pwT Vo), BY -pwT.vwD), (1.9)

Y (1d— P 5 )G — Py g PGP,
P (1d—P, )G — P, g PG

1.4.2 Auxiliary systems in the special case v =/

In this case, many simplifications arise in the computations of the eigenvalues and eigenvectors
of System (3.81): the eigenvalues are explicit and the eigenvectors become mutually orthogonal
which considerably simplifies the study. Moreover, the second projection (i = 2) exactly corre-
sponds to the quasi-geostrophic projector @ and the last two projections (i = 3,4) correspond
to the projector P. In this case, as used in the first part of [8], we can use the following system
instead of (1.7):

st e l]P) e — — b
{atw W + LPAW. = G, 110)

Wg‘tzo = UO,E,osc
We will be able in the present article to provide for this system much more accurate Strichartz

estimates, without any frequency restrictions (generalizing the ones obtained in [8]). If we denote
0c = U: — Uga — W, it satisfies the following system:

8

00 — Lo. + 1PAS. =Y F,
i=1

dejt=0 = Uo.e,oc — Uo,qa,

(1.11)

Remark 9 We choose here to use the same notations as in the general case, the only difference
is that WX has to be replaced by W-.

1.4.3 The limit system

Let us recall that Theorem 2 from [7] states that when the initial data 1707QG is in the wnho-

mogeneous Sobolev space H' then System (QG) has a unique global solution Ugg € E° N E*,
moreover there exists a constant C' = C(d) > 0 such that for all s € [0,1] and all ¢t € R,:

t
1UQc 7 o . + min(v, V')/O IVUqc (M3, dr < C([1Us,qcllz="1Uo.qcl131)* < CllUo.qc -

In [9] we used real interpolation methods from Gallagher and Planchon in [25] (we also refer
to the work of Calderon in [5]) to obtain a much more accurate estimate, which allowed to bound
the energy in E° N E3+o only with the H?2+9 initial norm instead of the full H' norm (we refer



to Lemma 2.1 in [9], our aim was to consider less regular initial data): for any § > 0 there exists
a constant C' > 0 such that for all t € Ry:

LeeH3te

t
~ . ~ ~ 241
100l 1., +min(, Vf)/o 19006 (I, 4. sdr < Clo.aal’ (112)

Our first result is devoted to the limit system and generalises Theorem 2 from [7] using the precise
estimates obtained in [9]:

Theorem 2 Let 6 > 0 and 1707QG € H=%% a quasigeostrophic vectorfield (that is 1707QG =
QUs.oc). Then System (QG) has a unique global solution in E2t0 = E° N E2+% and the
previous estimates holds true.

1.4.4 Statement in the case v =1/

1

Theorem 3 For any Cy > 0, § €]0, 5], 7 €]0, %[ and any ag > 0, if we define n > 0 such that

§ . 1 27
v=(0-2n5 (thatisn=5(1- 7)),

there exists g, By > 0 (all of them depending on F,v,Cy,d,~, ag) such that for all € €]0,eq] and
all divergence-free initial data Uy . = Upc,qc + Uo,e,0sc Satisfying:

1. There exists a quasi-geostrophic vectorfield ﬁo,QG € H2*% such that

U — U 145 < Coe,
{I 006 — Uo,qall 345 < Co (1.13)

H1707QG||H%+5 < Co.

2. Upe.ose € H2 N H=T0 with |Uoc.osel| -

1 < Coe™7
ihamiee < Coe

then System (PE.) has a unique global solution U, € E* for all s € [3, 3 + 6], and if we define
e Ugq as the unique global solution of (QG) in EO N E2 19,
e W. as the unique global solution of (1.10) in Bz N E3%9,
e 6. =U.—Uga — W.,

then for all s € 3,4 + nd] )

16| e < Boe™inteo-2h), (1.14)
Moreover if we ask for more low frequency regularity for the initial oscillating part, that is
Uo,e,0sc € H379 0 H3%° with ||U0,s,osc||H%,5mH%+5 < Coe™7 then (1.14) is true for all s €
[% —né, % + nd] and we also can get rid of the oscillations W and obtain that:

HUE — ﬁQGHLZLoo S B0€min(a0’%).

Remark 10 This highly generalizes Theorem 1.3 from [8]: we reduced the regularity of the initial
data, only the quasi-geostrophic part lies in a inhomogeneous space and we allow a far greater
blowup in e for the oscillating part, keeping a satisfying convergence rate (Physicists generally
consider that the difference between the primitive equations and the QG-model is a power of ¢)
for any size of the initial quasi-geostrophic part.



Remark 11 Note that in [37, 33] there is a smallness condition for the initial quasi-geostrophic
part and also for the oscillating part. Their result states there exist 61,2 > 0 such that for any
initial data satisfying (1.3), there exists a global unique mild solution for ¢ < eq. This has to be
compared with our formulation, where we prove that for any size Cy and any initial data with
1Uo.c.0cl < Co and ||Upe oscl| < Coe™7, there exists a unique global solution when e < .

Remark 12 Compared to the assumptions in [33] (Theorems 1.3 and 1.5), we reach the same
regularity for the oscillating part, we ask more regularity to the initial QG-part, and we ask more
low frequency regularity for both of them:

Uoeose € H2 NH=T (H249 in [33)),
Uoeqe € H3+0 (H? in [33)),

but we do not ask any smallness to the initial quasi-geostrophic part, and we provide global
strong solutions in the energy spaces E* for any s € [% —nd, % + nd] (compared to mild solutions

in LY(Ry, W=3)).
Remark 13 At first sight our blow-up rate seems slightly less general than the one from [33] (in

[33] they ask % HUO,s,oscHHéw smaller than some ¢ > 0, and in the present work, we choose any

¥
Co and ask 7[|Uo.c,oscll ;1 1 +5
of convergence as powers of €. We refer to Remark 21 for more details.

< Cy for any v < %) but in our result we look for explicit rates

Remark 14 We refer to Remark 25 for a comparision of the Strichartz estimates we use and the
ones from [33].

1.4.5 Statement in the general case v # 1/

Theorem 4 Let § €]0, 3], ¢ = %, ag > 0, m €]0, ﬁ], and M,n > 0 such that

1

0<2n< .
= 540

<

DN | =

RIS

let yo €]0, %]. If we define R. = e M and r. = ™ then for all Co > 0, there exist g9, Bo (all
of them depending on F,v,v',Cy,d,, o) such that for all initial data Up.. = Upe,0sc + Une,0G
satisfying:

1. There exists a quasi-geostrophic vectorfield ﬁO,QG € H21 such that

(1.15)

1Uo.e.06 = Uo.qall, 35 < Coc™,
< Cy.

HU07QG||H%+5

.1 -
L 6 . —
2. UO7E,OSC S Bq%q N H2"° with HUO,E,oscH L1 < Cye v,
Bq;quZ

then System (PE.) has a unique global solution U. € E* for all s € [+ —nd, 3 +nd]. Moreover,
with the same notations as in Theorem 2,

18]l 5 < Boe™in(@o 25, (1.16)
and finally, thanks to the Strichartz estimates, we can get rid of the oscillations W2 and obtain:

M

||U5 — ﬁlele(RJmLoo) < Boamin(ao’T).
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Remark 15 This generalizes the first result from [8]: in the present work we reduced the as-
sumptions on high and low frequencies for the initial oscillating part and the choice for r. and
R. now correctly fits the power of € provided by the Strichartz estimates, which produces a
convergence rate as a power of ¢ without any assumption on the viscosities.

L1
Remark 16 The low-frequencies assumption U ¢ osc € B{ 4 is mainly needed to produce a pos-

\D\) [Ds|

itive power of ¢ when estimating || x(‘7 )X(“73)Uo,c,05cllgs (the other need is to reach regu-

larities less than 2) and the high-frequencies assumption Upc osc € H3+o helps to estimate
D
11 = XUE)) Vo coscll -

.1 . .
Remark 17 The C]assica] Bernstein estimates ensures that B 4 — Hz2"3% 50 that Uoe,osc € H®
for all s € [§ — 36,3 +6].

The rest of this article will be structured as follows: we will first prove Theorem 1, then turn
to the case v = v/ (much easier computations to obtain the eigenvalues and vectors, but needs
careful use for the Strichartz estimates as W is not frequency truncated) and we will finish with
the general case (more complications as the eigenvectors are not mutually orthogonal anymore,
and as it is not true anymore that P, = QP and P34 4 = PP, and care is needed to deal with the
truncated terms). We end the article with an appendix gathering results on Sobolev and Besov
spaces, the process of diagonalization of System (3.81), and the new Strichartz estimates that
allow us to reach this level of precision.

2 Proof of the results

2.1 The limit system

If ﬁO,QG is as described in Theorem 2, we regularize it by introducing, for A > 0 (where y is the
smooth cut-off function introduced in the appendix)

~\  def |D| ~
Upoe = X(T)UO,QG-

Then ﬁOA,QG € H! and applying Theorem 2 from [7] there exists a unique global solution ﬁéG €

E°N E' to System (QG) and thanks to Lemma 2.1 from [9] we apply (1.12) to 6(30 and for all
te RJ’_:

t
03612 3o+ minws) [ 1908y or

|D| 241

< Clix(=- )o.6 |’ 1‘15 < C||To.qall e (217)

Then we prove that (UQg)neN* is a Cauchy sequence in E27% = E0 N E3+%. For n > m, let us
define 5n m= UQG UQg, then it satisfies the following system:
atz):nﬂn - an,m = _Q (ﬁgG : vgn,m + 5in,'m : VﬁgG) )

gn,m|t:0 = (X(@) |D|))U QG-

n (m

(2.18)

11



For any s € [0, % + 4], taking the H s-innerproduct and then using the classical Sobolev product
laws (see Proposition 9), we get ((s1,s2) € {(1,s — 3),(s,3)}):
Ld = 9 52 . = = rrm =
§%H5nMH s T VOHV(Sn,mH s < CHUQG ' V(Sn,m + 5n,m : VUQGHHS*l H(Sn,mHHHl
~ ~ 1~ 3 ~ ~ ~
<C (||U5G||H1H5nm%” e 19 ml froen + UGG 3 ||5n,m||H'sH5n,mHHs+1)
Yoy 2 C\= 2 Frm |2 L =0 g2 2
< - T - T 1 Y =1 -1 . .
<RIl + Bl (19081 + 300861, V03I ) - (219)
Thanks to the Gronwall lemma and using (2.17), we obtain that

_ 1 _ oyl
< . G1oacl®f,, (142 1000e1” )

||6n,mH2E%+5 < ||(5n,m(0)|‘i{%+56'“ nzte 0 u3te

As ||gn,m(0)||H%+5 goes to zero when m = min(n,m) goes to infinity, the sequence is Cauchy and

if we denote l?QG its limit in F %"’5, we immediately get that it solves System (QG) and satisfies
the expected estimates. l

As an immediate consequence we easily bound G*! (introduced with the auxiliary systems)
as follows:

Proposition 3 There exists a constant Cp > 0 such that for all § €]0, 3] and s € [0, 3 + 4],

> Cr,~ 2+1
|16 @ ldr < TGl
0 140 H?2
- (2.20)

00 2
1 77 243
|16 @ < ol a2

)
Remark 18 In [7] the previous terms were estimated for any s € [0,1] with |Up.oc|| m-

Proof of Proposition 3 : G! is estimated as in [7], and for G°, as we wish to use only % +90

derivatives on ﬁoﬁQg, a much better way than in [7] is to write (thanks to the Bony decomposition,
see appendix for details):

1G® [l 5is < CrllUqc - VUGl e < Crlldiv (Uge ® Uga) |l i
< Cr (20T5,,Uac joes + 1R Tac, Uga)l o)
< Cr (200acliz= + 10qal gy, ) 10acllgoss (2:21)

Then using the injection L™ — BSOJ together with the Bernstein lemma and the following result
(whose proof is close to Lemma 5 from [11]):

Lemma 1 For any «, 8 > 0 there exists a constant C g > 0 such that for any u € Hs—onHs+8,
then u € B3 ; and:

_B _a
lull g5, < Capllull 722 Nlull 522 (2.22)
we obtain that:
~ ~ ~ ~ 1 ~ 1
2[Uqalle= +1Vacllsg, . = 3IUaall 3 < CllUqall Ly s1Uqall 4.0 (2.23)

and we end up with (using also (1.12)):

HE+S

(2.24)

NG e < Crl| Vel VUoall? V0ol o < S |00cl M
| NG aedr < CrlVUall s IVVa6l sV U6l e < 22 1T0.6al

12



2.2 The case v =1/
2.2.1 Estimates for W,

Let us first focus on the linear system (1.10). Let us recall that thanks to Proposition 3 we obtain

that (see [7] for details) for any s € [3, 3 + 4],

1/t 1 rtab )
Wl < (10comliy + 5 [ 16905 ) 21O <Dy (Unconclly, +1). (229

with .
Do L %(2C0)2+%6%(2C°)2+3.

2v
One of the main results of the present article is to provide a generalization of the Strichartz
estimates obtained in [8]. Our new Strichartz estimates are much more flexible and we refer to
the appendix for the most general formulation. We also postpone to the next section the precise
statement of the Strichartz estimates that we will use.

2.2.2 Energy estimates

As explained in section 1.3, we already have a local strong solution Ue whose lifespan will be
denoted as 7. As explained in the previous section Uge and W, exist globally, and then &,

is well defined in E2 N E'%H for all T < T and we can perform for any s € [1,1 + nd] the
innerproduct in H* of System (1.11) with d.. We have to bound each term from the right-hand
side.
Let us begin with the easiest terms, namely Fj, F> and F3: thanks to the classical Sobolev
product laws ((s1,s2) = (%, s), see Proposition 9), we obtain that:
(F1182) gy | < 10 - Vel gro-a[10e | ross < Clloel 31104113 (2.26)

Hs+1

Similarly we obtain that

|(Fa18) s | < CIVUQG g 10 i 10e N rovs < T6l10eNeis + —1VUQa 3 1621

Hs>
~ v C ~
|(F5[02) -] < CllUQG 10 o 10l o < T 10N 10 + 51U 1 102 1.

(2.27)

Compared to [7, 8] we cannot use the same methods which would produce (after using the
Gronwall lemma) a coefficient of the form e"ellzs which would ruin our efforts to allow large
initial blow up for the oscilating part (which could only be of size (—In¢)?). We need to estimate
carefully these terms and especially use as much as possible the new Strichartz estimates (giving
positive powers of € thanks to Proposition 13) and the least possible basic energy estimates on
W, (that produce =7 from (2.25)).

The most obvious way would be to use the paraproduct and remainder laws (see appendix).
For example with F%7, as s — 1 < 0, we have:

|(F7102) s | < [IWe - VUQG | o1 19| g+
<C (HTWEVUQGHHH T 1T 7,6 Well -1 + [ldiv (R(WE, UQG))lle—l) [10ell gro+a
<C (HWEHLwHVUQGIIHs—l +IVUqal ot [Well o, + I\Wsl\go&wl\U@GHHs) 10l o+

< ClWellgo, U6 g 10e gross < 1_6H58H12’5f5“ + I Wello 1UoclF. (2:28)
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This result could be also usable for F5 but to deal with ||[Wc|[,, 30 | from Proposition 13 we

would have to use Lemma 1 which would force us to have a slightly smaller range for v. More
important, for Fg this method would force us to ask v < %, which is clearly not optimal.

Finally, the most important problem is that the previous estimates cannot be used to estimate
Fy and Fg: indeed for instance if we wish to estimate Fg the same way:

1Fsllires < C (I VWel s + 1 Tow. Ol s + v (R(@aa, W)l o )

and the first paraproduct (see the appendix for the Bony decomposition) leads to an obstruction
as the only possibilities to estimate it are (for 8 > s):

1Uqc | = IWe | g+

1T ~
v 1Uqcllgre-sWell .

(2.29)

oo VWl € {
In the first estimate each term is well defined but the ll{ S-norm of W, produces negative powers of
¢, and in the second one the first term is not defined (Ug¢ is not defined for negative regularities).
It is possible to deal with this term using the same idea as in [7] ( with a,b > 1 so that 1 +1 =1),

t t
/ |Tag - VWe|2, dr < C / |Taq - IW-l|2lTac - VWell jraendr
0 0

< NUqallpoe L2 IVWell o< [Ugqll [Well o rss - (2:30)

LVEt3
and due to the gradient pounding on W,, the most interesting use of Proposition 13 consists in
choosing a as close as possible to 1, which implies that b is very large. As s + % > 1, this forces
us to use (1.12) for regularity index close to 1 (in this case it would be necessary to require that
ﬁonG € H* with s close to 1), which was something we wished to avoid as we only consider
indices s < % -+ d. Moreover it would also produce a clearly non-optimal decrease in .

Finally both of these two methods fail for Fj: the former for the same reason as for Fg, and
the latter as we cannot consider ||dc||z2: there is a lack of derivatives pounding on ..

To overcome this lack of derivatives, we will distribute them differently among the whole
H*-innerproduct. We will do this for all the last five external force terms and the idea will be
to do as in [11, 12] and deal with the non-local operator |D|* applied to a product and dispatch
s derivatives on . and obtain something close to the second line of (2.29). More precisely, we
directly deal with the innerproduct as follows:

’(F4‘55)H'5

- ’(div (6. @ W2)[5.) 1.

_ ’(|D|S(5E . WE)‘|D|SV5E)L2‘. (2.31)

The nonlocal operator |D|® can be written as a singular principal value integral (we refer to
[45, 19, 29, 30, 11, 12]) and when the index s lies in ]0, 1[ (which is the case here as s is close to
1) it is a classical singular integral:

pP s =c. [ TS0y —c, [ SO fa=by,

R3 |y|3+s

Let us recall that an equivalent formulation of the Besov norm involves translations as stated in
the following result:

Theorem 5 ([2], 2.36) Let s €]0,1[ and p,r € [1,00]. There exists a constant C' such that for

any u € By .,
10 [u(- —y) —ul)lrr ,
Ol < IFEE oy < Clull

From this we can prove exactly as in [12] (see section A.3.1 there) the following result:

14



Proposition 4 For any s €]0, 1] and any smooth functions f, g we can write:

|DI*(fg) = (IDI*f)g + fIDI*g + Ms(f, 9),

where the bilinear operator M, is defined for all x € R? as:

Mg o) = [ UEZIEZ ) Zote )

|y|3+s

dy. (2.32)

Moreover there exists a constant Cs such that for all f,g and all p,p1,p2,7m1,72 € [1,00] and
51,82 > 0 satisfying:

1 1 1 1
—=—+— l=—+—, sits2=s5,
p P1 P2 1 T2
then we have
IMs(f;9)llr < Csllfll s N9l s - (2.33)

P1,71 p2,T2

Remark 19 The additional term M, allows us to freely dispatch the derivatives as desired pro-
vided that sy, sy > 0, which will force us to spend a small extra amount of derivative in order to
meet these conditions. So even if it is not possible to use Proposition 4 for (s1,s2) = (s,0), our
method will enable us to do nearly as if we could estimate || Ms(d., We)| L2 by ”55”H% D" We||Ls-

More precisely for a small oy > 0, instead of (2.31), we will write (also using the Sobolev
injections):

|(Filo2) .

= |(div (Te @ W2)|62) 4.

— ‘(|D|s+a1((7@g Wo)|| DI Ve,

< [(IDI"** Uqq) - We + Uqg - IDI"* ™' We + Myta, (Uga: We) | DTV s

L :H»Za

<C <||D|S+MUQG||L2||WE||LC§1 +1Uqalles DI Well | g + 1Uqall s IWell gy )

o’

X DI~ Vel gra

C <|UQG|Hs+a1||We||LC§1 + Ul gy NPT Well s + 10l s Well oy 2) N6ell o
@1’

Hs+l L1+2

v 2(1—oq aq s+
< Telloelln + <|UQG|< 1 Uqal IWel? 5+ ITacll%y 1D e 2

+ Ul 1We e, ) (2.34)

Remark 20 Notice that as 0., W, ﬁQG are divergence-free, we will systematically (thanks to
integration by parts) transfer the divergence as a gradient on the right-hand part of the inner-

product, and as a consequence the computations are the same respectively for Fy and F5, and for
F6 and F7.

Let us continue with F);, by the classical Sobolev interpolation and Young estimates, we can write
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that (for as > 0 small):

|(Falo) | = |(div (6 © W2)[02) RO A2 TR W
< C|[(|D|"**26¢) - We + 0. - |D|S+a2W + Mo, (0, We) | PP Vel g

L S+2a

6
L TF2a2

- (ilDiS*azaanmweiL% 10D Well g 10 [ We | o 2>-|||D|M2vaa||m2
ag’

6
FIs+1 L TF2a3

< Ol NI o +C (IéallellDl”“ZWel 110l W s ) 18l s
ag’

V [e%
< 7610l + Clloel ( g 1We ||1 ’ +—HW ||2a2 2)

Vl g

~ 2 s+as 2
FUSI  NDIF W g (235)

Finally we estimate Fy with the same method, but the term M., (W, W) has to be estimated

differently (otherwise we end up with the same problem as explained in the beginning of this

section): instead of estimating it as for the other terms by ||WaHHs||WeHB“§ (the first term
2

being L>°, and the second L? in time), we will estimate it by
HWEHHS*’QS*BJ ||WEHB2 2)
ag’

for small enough as, 3 > 0 so that the first term keeps L> in time and the second one is L? (we
try to be as close as possible to the forbidden choice 8 = 0). As we will precise below, dealing

with ||W€||2L(;},023)|\W6||2L‘5?1 . W5||2L2L% (for the first term) will only lead to v < £,
IWell?

other term by ||[W. HL?B‘”
,2

whereas

T o frotas || We ||2 . will allow us to reach v < §. For the same reason we will estimate the
L @3

. § . Altough this choice seems very close to
3 2

the other, it allows us to use a smaller p in the Strlchartz estimates, which allows a slightly wider

range for € helping us to reach v < 5 instead of v < 4. Once more, we try to obtain as close as

possible to what we would get if it Proposition 4 could be applied for s; = s + a3 and so = 0.

‘(F8’55)H

(We @ We) L

< <2IIDIS+“3W5|L2|WEIIL;~»S [ Well rovas-ss [ Well gos 2) MDP=* Ve || e
asg’

v C
< 1611% [ <||W HHHQBHWEHQL% + HWEHiIerazfﬂS”WEHQBﬂLg ) . (2.36)
2

asg’

We can now gather all the external force term estimates (2.26), (2.27), (2.35), (2.34), (2.36) and
taking the H*-innerproduct of System (1.11) with &., we obtain that for all s € [$,1 + nd] and
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all t < T2

Q.|g‘

14
0Ll + V190 < (CIGl g + 815 ) 101

DN | =

Vl g

+;II5EIIQ~S{IVUQGIE;(1+—IIUQc|2 )+ = HWHI 7 +|\W|\2a2 }

21—« « s+
||UQG|| LN Tqal e e H2 2 + 1Tqall?, 3 11D W H2 o +HUQG||25||W s

al

,2

1 DI Wl g IVl W2 4 IV g V2 ] (2.37)

as’

In order to perform the boostrap argument (we refer to in [7, 8]), let us now define

T sup{t € 0,72, v <t 6., 3 < %}. (2.38)

1

Due to the assumptions, ||(5€(0)|| 145 < Coe® so that we are sure that 7. > 0 if e < (8CC .

Thanks to the Gronwall and Young estimates, and estimating the first terms in the last block as
follows:

2(1— 2
| 100l [ Gaclig WP 4 dr
0

00 o 0o 2 1—ay
< ([ Weclyadr) ([T 1WA Wealydr) (230

we can now state that for all s € [2, 5 +nd] and all t < T, we have (as W, and UQG are globally
defined, each time integral in the right-hand side is over R ):

v [t c ~ 2(1—a) 177 a
18112 +3 / 195 (D). dr < | 18-+ | 10063 106 3y IWE? 2
1002y DI Well? g+ 10061~ 4

W ||L2BO‘1
alg

FIDPFWR +HW|\M+%HWEH;L%+HWsnimWW||W€||izgg )]
ag’

L (1+ _HUQGH2

LZHG quqz

c =
xexp;{nwgaw P+ W73+ Wl ey }
@ 55’2

pi-as

(2.40)

It is now about to properly use the new Strichartz estimates we proved in the present article (see
the appendix for Proposition 13 and its proof).

Let us begin with the case (d,p,r,q) = (s + «, 2, 1+2a’ 2), for all 6 €]0, £=%[N]0, 1] =]0, 1].
Thanks to Proposition 10 (for more simplicity we will not track the dependency in v),

DI Wel| s < ClIDIT* Wellgzpo

L2L T+2a

1+2a

t
01—
< Crupoae 50 (1ol oo s + [ 16O gorgoawdr) o 241
0
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and if we choose a €]0, 1, and 0 = w (which is in ]0,1] if § < s — & — 2%, recall that

s ~ 1), then we obtain (thanks to Proposition 3):

DI Wel| o < ClIDI*Wellz2 o

L2L T+2a

1+2a’
t
1 1_
< Crus5ae20T27%) (||UO,E7OSC||H%+5 +/ ||Gb(7)|H%+5d7)
0
< C'Fyl,ﬂsygﬂasé(JJr%fS)Do(HU0751056||H%+5 +1). (242)

Let us continue with the case (d,p,r,q) = (o, 2, 2,2), for all 6 €]0, 1—43;[ if we assume a €]0, 3],

_ _65
and choose § = 5=0—,
HWEHZfBa <CFV50452D0(HU05050H 2+5 +1) (243)
For the case (d, p,r,q) = (0, 13(1’ =,2), for all § €]0, %_T% [, if « €]0, [ and if we choose 0 = 32&,
3
| 2, SC|We || < Crus,0e2Do(l00c 0scll 345 +1)- (2.44)

,2

Then we turn to the last two terms from (2.36), let us begin by the first one: as announced,

due to the first factor (estimated thanks to (2.25)), doing as before will only allow us to get

E%DO(”UO,&‘,OSC”H%+6 + 1)2, which leads to v < 2. In order to reach the announced bound 2,

we will try to take a slightly smaller p which will allow us to widen the range for 6. But taking
p = 2 instead of 12~ requires that [Well grasas is L, that is we need that s + a3 < £ + . More
precisely with (d, p,r,q) = (0,2, =,2), we have

75(17

IIWII s <C|\W|\LZBO <CFV9554< —T)ID)O(HUOEOSCHH Cgiga s, +1). (2.45)
and as we want ) ) 9 A
Qa3
= — 6 — - — 1 - —
ag + s 3 + 3 asg + 2( 3 )
we choose
asg =0+ l — s
0= A,
3

o

1_ag
which is possible (according to the condition from Proposition 13) when 6 < fTL"S, that is if
-

7s —2
) 2.4
<43 (2.46)
which is realized (recall that s € [, 4 4+ 7d]) when § < {5 < 2, then we have
%(26-{-%—8)
||W€HL?L%3 < CHVVEHZ%BUi ) < CF,V,&SE DO(”UO,E,OSCHH%+5 + 1)~ (2~47)

asg’

Now, for the last term, a3 is fixed and we will adjust 6 and 3. For (d,p,r,q) = (36,2, = e 2), we

choose 6 so that 0 A .
as
1 —_—) = 2 — —_ —
=37 =02-8d+5—s,
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which is possible when 60 €]0, [ that is
3
7s —2
) 2.48
365" (2.48)
which is realized when (2.46) is true (when g €]0, 1[). In this case, we end up with
3 ((2fﬂ>6+17s)
||WEHZEB2 ) S CVF,ll,oz,é,s“':2 ’ D0(||UO,87OSC||H%+5 + 1) (249)
g’

Combining (2.40) with all these Strichartz estimates, namely (2. 3), (2.44), (2.47) and
t

42), (24
(2.49), we end-up for all s € [5, 2 +nd], all 8> 0 small and all ¢ < 7. with
v [ 1
100l + 5 [ 196713 < [wg(mna Do (7 4 ) (WUo el s + 1)

+( 26+4— S+5(2 ﬁ)5+275)(||U08056H ks -‘1-1) )

X exp {D0(1+5 (HUOEOSCH E+s +1) )}

1. 1 _ 1
<Dy {52% + ((55+2 sS4 56)||U0,87080||2%+5 + (5264-2 s 4 5(2 B)5+% é)"UO,E,osc|‘ZIl-{%+5:|
S 2
X exp {ID)O (1 + 56||UO,87OSC||2%+5 + (e2 HUQE,OSCH;%M)fM ) } (2.50)

As s €[4, 1+ nd], we can write that:

0.0+ 5 [ 196

-~ - o o o o Do (1-‘1—86727)
<D, [52a0+5<1 mE=2y | (2-m)d—dy | (2-n—p)s 47} e (2.51)

Y

so that we need

6 7.0 B4+mn.d
in (1 1- 12 1f——).
y<min ((1-n3.0- D30 -3
If we fix 8 = 7, the condition is reduced to v < (1 — n)g, so that if 0 < fy < g, we define
=1(1- 2—57—) (or equivalently v = (1 —27)$), then with 8 =1, for all s € [1,1 +7d] and ¢t < T,

we end up with (as soon as ¢ < 1):
t
160 + 5 | 1983 dr < Dpenetmine), (252)
0

We can now conclude the bootstrap argument: there exists €9 > 0 such that for any 0 < ¢ < ¢
the previous quantity is bounded by (L)2, so that (in particular for s = %) if we assume by

contradiction that 7o < T7, then [|6| L i3 < g&, which contradicts the maximality of 7. (in
this case, we would have |[|d.(T. )|| 15)- Then T. = T7 and the previous estimates hold true

for any t < T, so that by the blowup crlterlon T. =T = oo and the previous estimate is true
forallt >0 and all s € [1, 1 +no):

162 5o < Boemin(eo ),

Finally, to prove the last part of the theorem, we only have to remark that the previous argument
is then true for any s € [1 — nd,  + 1] when we ask § < (instead of § < see (2.46)),
and use Proposition 1:

26+14 26’

1 ; ns
[0cll L2 < ||56||L2J§;20’1 < (H(SEHLQH%—MH(SEHLzH%Ma)2 < Boe™n(0 ),
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For (d,p,r,q) = (0,2,00,1) and for all ¢ €]0, %[, from Proposition 13:
o oo
HWE||L2L°0 < Cped (|U0,5,osc| 1 +/ HGb(T)H _%Jr%dT) .
B2,1 0 Bz,l

Using Proposition 1 with (a, 8) = (4, k%), and if 6 = ﬁr—‘sk (for some small k& > 0),

_k_ 1
1Uo.c.0scll 344 < V005l . 1U0,e0scl Coc™. (2.53)
2,1

k
<
B gi+a+ng =
Choosing k = 1—77_?, we get

IWellp2roe < Doef(HE—(1=210) — e

and the conclusion follows from the fact that U, — ﬁQG =06.+W.. 1

Remark 21 Going back to (2.50), in the case s = % if we only seek for global well posedness,
we retrieve here the same condition as in [33], except for the last term because Proposition 4
imposes 8 > 0, so that the condition for global wellposedness is still v < %. If B could reach zero,
the conditions would be:

1U0,c,05ell1 .1 €% < ¢, with ¢ some fixed small constant, if we want global well-posedness,
H2NH?2

)

U 2 ) g% — 0, if we want that 6. goes to zero
H O,E,OSCHH%HH%+5 e O’ e & s

v < g, if we want that d. goes to zero as a positive power of € (which is what we originally searched for).

In our case, due to this 8 > 0 these three conditions coincide.

2.3 The general case
2.3.1 Estimates on W1

As in the previous case let us begin by recalling the energy estimates for W7

Proposition 5 Assume M < %, there exist g = eo(v,v/, M) > 0 and By = Bo(Co,v,V/, F) > 1

such that for any 0 < e < e and s € [ — 26,3 + 8], we have:
HWgHix(R+,H5) + VO||Wg||2L2(R+,Hs+1) S IL%O (5727 + 1) . (254)

Proof : we know from [7] that there exists a constant Cr > 0 such that for any s € [0, 1] and
t € Ry, we have:

IWT | g < eJo I Dlliadr
t

! 1
x <|WET(0)|2~S +Cp(1+eRz|y — V’I)Q/0 UG* () g + V—OIGZ(T)IIH“)dT> - (2:59)
Combined with (3.88), Proposition 3 allows us to obtain that when s € [ — 36,1 4 4]:

~ P
W w5 100cell

£

g < Cr(l+|v— V' |eR%)%e

1 lv—vV)?, ~ o4l
2
X <|7’r€,Ran,e,osc||Hs + (V—O + T)HUOQGHH%&H . (2.56)
We have [v — v/[eR? < 1 as soon as M > % and e < g9 = v — V/|1:21M which leads to (2.54)
choosing
chi+% 1 lv— V]2 241
By >4Cre (14— + ——1)Cot .
140 )
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2.3.2 Estimates on 0.

As explained in the previous section (see also [7, 12]), as Uy € H* for all s € [2—326,2+0],i

particular it lies in H 2 and thanks to the Fujita and Kato theorem there exists a umque 1oca1
strong solution U, € L%OH% N LQTH% for all 0 < T < T7 where T} > 0 denotes the maximal
lifespan. In addition, if T is finite then we have:

P
/O IVU(7IE, b gy 3T = 00
Moreover, as our initial data enjoys additionnal regularity properties, they are transmitted to the
solution: for all s € [ — 26,1 + 6] and T < T7,
U. € LHs N LAH*
As before, with a view to a boostrap argument, let us now define

T sup{t € (0,72, W <t]|6-(t)]

s —

v
— 2.57
2} (257)
Thanks to (2.60), we are sure that ”55(0)”1#% < g& (and then T. > 0) if £ is small enough.

Assuming that 7. < T, the computations from the previous case imply that, for all s € [% -
nd, 3 4+ nd], and all t < T,

t
14
1001 + % [ 1987 ar

C T 2(1— 7 2
18- + - <Vo||fb||L1Hs 12 frems + 100c g 106l IWE NP 2 s
2 s+aq T2 T s+as T2
1006l DI WEIR o 1006 e WS Wy o+ DI W HMW
al

T2(1—as) T 2a: T2
AWl g W e W

2o W W N2 g )]
3L« ,2

a3

T || T-az T
oo H7)+ 205 Wl QZZ 2 +[We ||L2BO‘2 2}'

1—ag

C ~
Xexp V_O{V0||fb||L1HS+||VUQG|iZ 1 (= 2 HUQGH2
0

CV2

(2.58)

Let us precise that compared to (2.40), the only differences are:
e the force terms fb! (dealt as in [7, 8]),
e the simpler estimates for Fg: as precision will be imposed by the truncated terms, we only

write:

| (P16 e | < T2 03

Lo Hs L2Fs+1

O 2(l—« o
—(HWTII( NI IWl? o o Wl Wl ) (259)
-2

3’

2.3.3 Estimates for the truncated quantities

We will now bound much more precisely than in [7, 8] the external force terms and initial data
(see (1.9)):
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Proposition 6 There exists a constant By > 1 such that for all s € [% — 19, % + nd),
b . < B (el72M 4 MA—m)s | B —M(Z410)
1/ pagre < Bo + +
fl e < By gl—2M + EM(lfn)zi + Em(%fmi) ,
L2H (2.60)

8.0l < Bo (s + <1244 o=y Hmaimt) ).

Remark 22 Note that as we want positive powers of ¢, the previous estimates imply the following
conditions:
M, n,n8 €]0, 5],
M . 11
n<i,u< mln(5+6n5a 5 77),

~v < min(1 — 2M, §(M — nm), §((% —

(2.61)
nm — M)).

Proof : let us begin with the terms involving G: thanks to (3.86), and Propositions 7 and 3,
we immediately obtain that there exists a constant By (only depending on Cy,v,v" and F) such
that for all s € [+ — nd, 1 + nd]:

——y ~ 243
IPr . P2GP|| s gy dr < Clv =V |eR2| G| 1 . < Cp e R2Togall )y

PR

< B@ER?,

1Py it PaGl e sdr < Clo — 0| R G gy < BoR2.
(2.62)
Thanks to Lemma 2 (see appendix), Proposition 3 and (2.17), the second term in f; can be
bounded (for all s € [ —nd, 1 + nd]) according to:

|D| |D| | D3|
1(Id = Pro,r )G g < II(Td — X(5- NG|l p1gie + llx (o IX(=—= )Gl 1 s

8 €

1 |D| sior 1Py D3l
< 5 Idd = x( ))Gbl\L1H2+a+Rll ( 8)X( )Gl
€
1 s 2.1

< 5 1G%N s + RE(RZr)S 2| Uqge - VUgell 3

€

s+l 1 R -
G s + B0 [ 10067 s IV Do) odr

< By( FRIE). (2.63)

1+6-s
€

which implies the first estimates in 2.60 for all s € [% —no, % + nd]. Similarly, we have

|D| Bo

ITd = xCENC 2 o7 < —iy
R

(2.64)

and using that the expression of G' (see (1.9)) features some derivative 03, we have for all
s €[5 —nd, 5 +nd),

|ID]. |Ds| |D|, |Ds]
R_a) X(— - )G | 2 <CF|V*V/|HX(RE) X(— . )05V UGG | 2 e

< Cply = v'1r2|057°VUqGl| 2 g1 < Crly =V Ire|Uqcl g (2:65)

[Ix(
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Let us now turn to bound the initial data d.(0):

16:0) 1 7 < Us.c.06 — Uo.qcll e + IPr. . P2Uocooscll g + (Id = Py 2 )Un eoosel i

|D| DI, |Ds]
—))U osc s
7 Wo.sosel g+ IXCE X (S

< (:OEOL0 + ||PTE,R€P2UO,E,OSCHHS + H(Id - X( )UO,E,OSCHHS-

(2.66)

As before, we easily estimate the second and third terms for all s € [% — 9, % + nd] by

_Cr
Rz

1

Crlv — V' [eR2||Uoc.oscll o + ~[|U0,¢,05¢l < Boe "[eRZ + (2.67)

s+t

1
This is here that the BZ,-assumption on the initial data will be specifically used (everywhere else
we only use the fact that this space is embedded in H %’%5). To bound the last term, thanks to
Proposition 10 let us write that (we recall that ¢ = % < 2):

DI\ |Ds| DI\ |Ds]
I U oscll s — — —
X0 el e = XX

|D| |Ds|
) DI2Upe.oscllna < CRe
3 IX(—— - )|DI2Ug e 0cl2

[Ix(

>|D|SUO,€,OSC||L2

11 s—1 S4s—L &
< C(RZre)s 2 Re*|Ix(5- T2 ||[D) UO&O&CHBU

S+s— %

S
< CR& 52 ||UO,a,osc|| L. (268)

2
quq

note that this can be done only if s > % In the case s € [% —no, %[, we simply go back to (2.66)
and write that (taking advantage of the frequency localization):

1
T_g (Id - ,PTE,RE)UO,e,oscHH%

ré

[(Id = Pr. g )Uo.c0scll is <

CF
< <R6|U0505c|H2+5 + R Ts HUOEOSCH q%q) . (269)

Ts

We can sum up as follows: for all s € [+ —nd, 3 + nd]

1 (1+m)8 5 11
—=5 + R r ifsels,5+nd
|(1d — PTE,RE)UO,E,OSCHHS < Coe™7 x ngl )16 ) 2 ) [? j 771]
T?(R—g—i—Rgrg) if s € [5 =79, 3]
eMé(1—n) 4 6073 —(1+n)M) if s €[L,%+nd],
< Coe™ x ) (322 + 0] (2.70)
gO(M—mn) 55((5—77)7”—1”) if s € [2—nd, 1.

{MamqumMme
(22— (1+n)M)—((3—mm—M)=n(m-M),

and as m > M (see (2.61)), we obtain the announced result. B

2.3.4 Strichartz estimates for W7

We will need the following Strichartz estimates to complete our bootstrap argument:
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Proposition 7 There exist g, By > 0 such that for any o > 0 and ¢ < gy, WET satisfies:

HWETszBq < Boei—5-M(E-da=d)-m(3-20) < Boci—5—5(M+m)

H THL1 2 < Boe 1o _M($-3a—68)—m(3—3a) < Boszfgf§(1\/[+m), (2_71)
H|D|s+aWT|| < Bosﬁfng(%fSa)f (3—20) < Boeﬁf%fg(Mer).
L2L1+2a — =
Proof: using Proposition 15 in the case (d,p,r,q) = (o, 2, %, 2), we obtain that
T 1(1-d R~
||W€ ||ZQB§Y2 < 153054( ) s
< €
X HPTE,REUQE,OSCHHQ + HPTE,REGZJ“LlHa + 1—||7DTE,REGZHL21L'I<Y
VG Te
4—3a
1(q_aa) IR 1 1 ——6 N
=Bt 3 )T%E_m s <r%_% HUOEOSCHH%*_ + HG loagee y%r G ”LzH%H
€ IS o Te

< Bogif%fMMfBa)fm(%an) (E,V,m(%,%?,a) + Efme(%76fa)) ) (272)

From (2.61), we know that v < §M so that

36
+_+a)77>05

m+M(%5a)<7+m(13—5Q)>M(%éa)wLm(% 5

2 2

which leads to the first estimate. Similarly, considering Proposition 15 in the case (d,p,r,q) =
(0, +2-, 2.2), we get (thanks to proposition 10):

I—a o

Wl 2

T 1(]_4a
LIEQL% < HWE ||Z2BU%’2 < 18054( 3

m|°‘

1 1 15
X ( 35 ||Uansc||H%—% + HGbHLlL2 + Rz HGl'LZH%”)

1_
re Vg Te

< 30657%71\4(473@7771(;73&) (Eﬂfm(%f%‘) T Efme(%ﬂs)) . (2.73)

which leads to the second estimates. In the case (d,p,r,q) = (s + «, 2
(provided that 0 < a < 0 + 3 — s):

) 1+2a,2), we obtain that

Z—3a
1 (1—gq) F2E
DI eWI L, o < MW lIzapesa | <Boe 751 4@@
T+2a’ Te
1
X <|P7‘57R5U0751050||H5+‘1 + ||7)T51R£Gb|‘L1HS+O‘ + %—|PT£7REGl||L2H5+C‘>
Vg Te

77304

L(1-40) B2 - 1 sta+i-s ~

< Byeiz(1—42) f_2 X (5 ’Y+1+T—R§ aty ||PTE,REUQG|L2H%+5)
Té

1>
< Boetz~§MGE=3)=m(3=20) (;=7 4 gmm=M) (9 74)

which concludes the proof. B
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2.3.5 Bootstrap

We are now able to conclude the boostrap argument (see previous section and [7, 8]). Gathering
(2.75), (2.60) and (2.71), we obtain that for all ¢ < T,

t
1801+ [ 198 () < Dy e2en 4 207200 ¢ 250 )

N EQ(&((é—n)m—M) —7) GoelmeM L M(1-m)d B -M(34nd) 4 2(1-2M) | 2M(1-n)3

+ €2m(%7776) + Eif%fg(Mer)f'y + Eﬁ%%(M+m)‘| X exp 9{1 + E1721\/[ + EI\/[(1777)5
Vo

For more simplicity we will ask, instead of the second condition from (2.61), that:

1 1

< = min( )
—minl—————, - — .
= M e 2

M
2n < —
m

This obviously implies that n < %, so we will finally ask that:

1 (2.76)

I(M+m)<d and $<i(E—I(M+m)).
As M < 5, this is realized when
me]O,Wlo],
R S
When
. M6 méd m 1 Mo
v < min(— ) =

47167127327 4
we obtain that all power of € in the exponential is positive son that for small enough e, we get
that for all s € [1 —nd, 2 +nd] and t < T.:

),

t
1% .
16013 + % [ IV8()ydr < DoePoeminten (278)

so that we finally end-up with (for small enough ¢), §.(7:) < g& which clearly contradicts the
maximality of T;. We can conclude that 7. = T and then the previous estimate is valid for all
t < TZ, which implies for s = 1 that the integral in (1.1) is finite. Therefore T, = oo and (2.78)
is then valid for all ¢ > 0. The rest of the theorem is done as for the case v =1v'. R
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3 Appendix

3.1 Notations and Sobolev spaces

For s € R, H* and H*® are the classical homogeneous/inhomogeneous Sobolev spaces in R?
endowed with the norms:

lullF. = / E1*[a(¢)lde, and ullf. = / (1+[€1*)°[a(é)lde.
R3 R3
We also use the following notations: if E is a Banach space and T > 0,
CrE=C([0,T],E), and LL.E=LP(0,T],E).

Let us recall the Sobolev injections, and product laws:

Proposition 8 There exists a constant C' > 0 such that if s < 3, then for any u € H5(R?),

2
u € LP(R?) with p = 3% and

ullze < Cllull .-

Proposition 9 (2], chapter 2) There exists a constant C such that for any (u,v) € H*' (R?) x
H*2(R3), if 51,52 €] — 3,3[ and s1 + s3 > 0 then uv € H#52=3(R3) and we have:

wvll oy en-g < Cllull gro [10]] o -

3.2 Besov spaces

We refer to Chapter 2 from [2] for an in-depth presentation of the classical homogeneous and
inhomogeneous Besov and Sobolev spaces. We also refer to the appendix of [12] for a quick
presentation.

Let us just recall that ¢ a smooth radial function supported in the ball B(0, %), equal to 1
in a neighborhood of B(0, %) and such that r — (r.e,) is nonincreasing over Ry. If we set
(&) = ¥(&/2) — (), then ¢ is compactly supported in the annulus C = {{ € R, ¢ = 2 < |¢] <
Cy= %} and we define the homogeneous dyadic blocks: for all j € Z,

Aju:= o277 D)u = 21h(27.) xu, with h =F lo.

—

We recall that ¢(D)u(§) = ¢(€)u(§) and we can define the homogeneous Besov norms and spaces:

Definition 1 For s € R and 1 < p,r < oo, we set

1

By, = (ZQ”SHAWHEP) if r<oo and |ul
I€Z

[[u] 5o o= sup 2| Agul| 1o
P, 1

The homogeneous Besov space B;T is the subset of tempered distributions such that lim;_, _ || SjUHLoc =
0 and ||u|| 5, is finite (where S;u = Z Ay = (277 D)u).
o
1<j—1

S

> is complete whenever s < d/p, or s <d/p and r = 1.

e The space B

e For any p € [1, 0], we have the continuous embedding BS; — LP < BY .

o—d(L L

oIfUER,1§p1gpggooandlgrlgrggoo,thenB" — Bpory 78 T

p1,71
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. d
e The space B}, is continuously embedded in the set of bounded continuous functions (going
to 0 at infinity if p < o).

o HS= 3572.
e Interpolation: if 1 < p,rq,7r9,7 <00, 01 # 09 and 6 € (0,1):

£l gaeara-om S N5 1150 - (3.79)

Proposition 10 [2] We have the following continuous injections:

For any p > 1, 32,1 — LP,
For any p € [2, o0, Bg,Q — LP,
For any p € [1, 2], Bg,p — LP.

Let us then define the spaces ZPTB;T from the following norm:

Definition 2 For T >0,s€R and 1 < r, p < 0o, we set

llzg e = 127 1A gl g 2ol ey

Any product of two distributions v and v may be formally written through the Bony decompo-
sition:
wv = Tyv + Tyu + R(u,v), where
Tuv := Z Si_1ulw,  Tyu:= Z S;_1vAu and R(u,v) := Z Z A Apv.
1 1

L=<t

(3.80)

The above operator T is called a “paraproduct” whereas R is called a “remainder”. We refer to
[2] for general properties and for paraproduct and remainder estimates but we can recall that (if

1 1 1 1 1 1
~=—=+-—and - = -+ —):
r T1+T2adp :D1+:D2)

e For any s € ]R, ||TuU||B;,T 5 ||u||LOOH’U||BZ§,Ta

e For any (s,t) € R* xR, ||T,v]|

gy Slullg, lells,

e For any s,t € R with s +¢ > 0, ||R(U,’U)||B;,tt < HuHBgL HUHB{»wZ

1

3.3 Dispersion and Strichartz estimates

Consider the following system:

{atf - (L - %PA)JC = Fezta (381)

Jit=0 = fo.

If we apply the Fourier transform, the equation becomes (see [6] for precisions):

atf*B(f,E)f: F/le-;fv

where
s & £+ 63 §183

_u|§|2 + 5£§|2 EEE 0 aTE

/1\ _51 +§3 —l/|€|2 o 51522 0 52532
B(¢,e) =L - -PA= ;Igfl ‘ gsl«sl Z@Eg?
2683 _S1683 - 2 S 2

CJeP N

0 0 = —v/'|¢]?
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For 0 < r < R we will denote by C, r the following set:
Cror={6€R’, [¢{|<Rand &> 7).
We also introduce the following frequency truncation operator on C, g:

D]

Prr=x(B (1~ x(2

), (3.82)

where x is the smooth cut-off function introduced before and (F~! is the inverse Fourier trans-
form):

D]

o~

(= 7 (i) ana ((2ohy = 7 (2 7)),

and |D|* the classical derivation operator: |D|*f = F=1(|€|* f(€)).

In what follows we will use it for particular radii r. = ™ and R. = ¢, where m and M
will be precised later. Let us end with the following anisotropic Bernstein-type result (we refer
to [6], and to [31] for more general anisotropic estimates):

Lemma 2 There exists a constant C' > 0 such that for all function f, a > 0,1 < ¢ <p <
and all 0 < r < R, we have

(225 f)s, < i,
DI, 1Dy vy DL 1Dy (359
225 1 < omry s Bl 22l gy

Moreover if f has its frequencies located in C, g, then

D1 fller < CRY[| | z0o.10

3.3.1 Eigenvalues, projectors

We begin with the eigenvalues and eigenvectors of matrix B(,e). We refer to [6, 7, 8, 10, 12] for
details abut the following proposition. We will only state the results and skip details as the proof
is an adaptation of Proposition 3.1 from [10] (there in the anisotropic case).

Proposition 11 If v # 1/ there exists g > 0 such that for all ¢ < eq, for all . = €™ and

R. =M with M < 1/4 and 3M +m < 1, and for all £ € C,_ g_, the matrix B(¢,e) = L — 1PA
is diagonalizable and its eigenvalues have the following asymptotic expansions with respect to e:

Ho = *V|§|2
b= — (1/51 +l/§2 +I//F2§2> 5% (57 )7
, (3.84)
A= —7(€)I¢l g eB(& e),
X =T — il + < B¢ ¢),

where |£|% = £2 + &3 + F?&3, and D, E denote remainder terms satisfying for all € € C,_ p_:

e2|D(¢ )| < Crplv — V' Pe2[¢]® < Cplv — v/ [Pe2M « 1,
e|E(&,¢)| < Cplv — V%€ < Crlv — V|2 =M « 1,
el0e, E(€,2)| < Crlv —v'[Pel¢]* < Crly — v/ 73M < 1,
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and )

vi P8\ v PG

T(§):—(1+ )—l——(l— )2min(u,u')>0.
2 1353 2 1353

Moreover, if we denote by Pi(&, ), the projectors onto the eigenspaces corresponding to u, A and

A (i €{2,3,4}), and set

Bi(u) = F! (Pi (e s)(a@)), (3.85)

then for any divergence-free vector field f whose Fourier transform is supported in C,_ . and
s € R, we have the following estimates:

2o < Crll e % {|1 R oLy 380
and for i = 3,4,
IPifl. < Cr = fl = o™ ™20 ] .. (387
Finally, if we define Ps.4f "< (B3 + Py)f = (I — Po)f (as div f = 0), then
IPsrafll e < Cr(L+ v = [eR)| fll .- (3.88)
Remark 23 In the case v = V' everything is simpler: the eigenvalues have simple explicit ex-
pressions: —v|¢|? (double, p and g coincide), —v|€]? 4+ é%, the eigenvectors are mutually

orthogonal (so that P; are of norm 1) and this basis exactly correspond to the QG /osc decom-
position (for divergence-free vector fields): P = P34 and Q = Py so that the quasigeostrophic
part only depends on Wy and the oscillating part only depends on W3 4. Finally the operator I
reduces to a simple anisotropic Laplace operator. We refer to [8] (Appendix B) or [11, 12] for
more details.

Remark 24 We emphasize that the higher order term p is the Fourier symbol of the quasi-

geostrophic operator I'. Moreover, the dispersion is related to the term is‘f‘“—‘lzl’ and when ' =1

this term reduces to the constant é This is why dispersion does not occur in the case F =1 (we
refer to [15, 13] for a study of the asymptotics in the special cas F = 1).

3.3.2 Dispersion, Strichartz estimates

Combining Proposition 3 from [12] (covering the range p > 4) with the convolution arguments
from the appendix of [7] allows us to cover the full range p > 1 and obtain the following Strichartz
estimates satisfied by the last two projections of the solution of System(3.81):

Proposition 12 Assume that f satisfies (3.81) on [0, T[ where div fy = 0 and the frequencies of
fo and F are localized in C,_ r.. Then there exists a constant C = Cfp,,,» > 0 such that for
i1 €{3,4} and p > 1, we have

T
IPifllLg L < CK(e) <|f0||L2 +/O |Fezt(T)|L2dT> :

where
IO I B N to(am4(3+2ym)p 4 111
54Tg+% [V_O(E_Z)] =1 2T% [V—O(;—Z)] , ifpel,4],
€
KE@={ ..
ev R;é — 3~ (G+DM++DHm). ip> 4,
re ©
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Unfortunately these estimates would be completely useless in our case: we need more flexibility
than only LP — L -estimates, and in the case v # v/ we need to take into account the second
term G' as done in [7]. We begin with the case v = 1/ where we have to deal with the fact that
we obtain Strichartz estimates on W, which is not frequency localized (we improve the method
from [8] Appendix B). Then we deal with the case v # /.

3.3.3 Strichartz estimates in the case v =1/

The main result of this section is stated as follows:

Proposition 13 There exists a constant C'rp > 0, such that for any d € R, r > 4, ¢ > 1 and

=S =

4

N[ =

0 €]0, [N]0,1], pell, 1,

,_.
|
IS

if f solves (3.81) for initial data fo and external force F.,; both with zero divergence and potential
vorticity, then (cy refers to the smaller constant appearing in the Littlewood-Paley decomposition,
usually co = 2.)

0(1_4 t
R0t (Wllgg, + [ IRl 0r) . (389

d ~ .
I1DI*F Iz, < Cr—

where

~ga-4)  g¥(1-2-2a-1)

—i{1-2-2001-2
Y (e——

Remark 25 It is interesting to compare our Strichartz estimates with the ones from [33] (see
Proposition 2). In our estimates we use the range r > 4 whereas in Proposition 2 is considered
the case r €]2,4] and they use it for r close to 3. Our index p is mostly equal to 2 but we can
reach p = 1 (which is useful when there are derivatives), whereas in [33], p > 2z > 2. .

Proof: Let us first assume that F.; = 0. As v =1/, the fact that fy is divergence-free and
with zero potential vorticity implies that:

fo=Pfo=PPfo=P314Pfo =P340,

So that we only consider the last two eigenvalues (we recall the eigenvectors are orthogonal). The
idea is here to push further the Strichartz estimates without frequency truncation we obtained in
[8]: we will once more use a simple non-stationnary phase argument (see for example the works
of Chemin, Desjardins, Gallagher and Grenier, we refer to [16, 17, 18]). As outlined previously,
in this special case there is no need to truncate in frequency through the operator P,_ r_ but
within the computations we will truncate considering the vertical Littlewood-Paley decomposition
(Abu = p(277 D3)u):

j+1

1A fllizer: =18 florr = Y I1AVA; fllzorr-

k=—o0

Now we will use the methods leading to the general Strichartz estimates (previously used when
frequencies are truncated on some C, r) as in our case r = co2* and R = Cy27. We recall that
¢ is the truncation function involved in the Littlewood-Paley decomposition, we denote by ¢
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another smooth truncation function, with support in a slightly larger annulus than ¢ and equal
to 1 on suppy, and by B the set:

def
{ € C(R,R?), |9l Lor,,Lrms) < 1},

then following the same classical steps as in [8] we get that (we choose for more simplicity to
write it only for the third eigenvalue) for any g > 1:

|AYA; fll oo = sup/ AVA; f(t, x)(t, z)dxdt

_ Csup/ / —vt|g]P+it
PpeB R3

<csup||Afo||Lz[/ / [ Koie+s)
SCZEI;HAJ‘JCOHL? [/0 /0 | K (v(t+s),

with K defined as follows (we refer to [8] for details):

A 1o(€) 01 (279€)p (2 5]V (t, €)dedt

) (004 000) (oasar]

W=

Itl

sl <s>||mdsdt} (3.90)

ir-E—ol€)? i‘rmF -7 —
K(Ua T,(E) :/ € ol Fw(pl(Q ]|€|)2(‘0(2 k|€3|)2d€a
A] k

where
A def

Interpolating the followmg estimates (we refer to [8] Section B.2 for more details), and using as
n [12] (section 3.2) that for all a,b > 0 and 6 € [0, 1] we have min(a,b) < a'~%b?:

{E€R3, 027 < €] < Cp2% and 28 < |&3] < Cp2*). (3.91)

1K (0,7, )|z < Crpe=072" 2% mm<2k*j, ),
K (0,7,.)|| L2 < Cre= Do 9% ok
we get for any r € [2, o], %: %Jr% =5,and 6 € [0,1]
B _o2j 9 (k=7)(1-26) - 8 k—j\ =
o, 7, )||r < Cpe™ 2 e 39 3
(7l < Cpedo2 (2 ) (2¥2°7)
T2

11 2
<Cpe—§022j23a‘<1—%>2(k =z —260-7)]

(3.92)

Now we can go back to (3.90), by the Cauchy-Schwarz inequality, fixing 5 > 1 so that:

() * D()lle < I@®)Lellv(s)llzr,
that is choosing 3 = % = & (which implies that > 4), and using (3.92), we obtain that

. . . 4 37 2 k—j1_2_ _4
||AzAjf||LPLTSCFSHI;HAijHLzsg(lfi)QTJ(1*r)2 —i(1-2_2p(1-4))
pe

o] oom . %
X[/o /0 |t5|%<1—%>ddt] , (3.93)

with h(t) = e~ Fvi2¥ [[(t)]| 7. Next we will use the Hardy-Littlewood-Sobolev estimates, that
we recall in R for the convenience of the reader (we refer to [27, 44, 38]):
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Proposition 14 There exists a constant C > 0 such that for any function h; €
for i =1,2) and any « > 0, with q% + q% + « = 2, then we have

// |t_ MOR2E) 145 < o

Choosing hy = hy = hlg,, a = 4(1—2) > 0 and % =1-2(1-1), we get that

% p(t)h(s LB o 2
[ 0 asan < clnl, < © (Je F o il
o Jo |t—sl20-%)

L%(R) (¢ > 1

1 2
1 2 1™ 2j
< R Tm P 94
—C<y% El ||¢|LL> - (99

for m € [1,00] chosen so that - + % = %, that is:

Gathering with (3.93), we can write that

2 ki(1-2-20(1-4))
JARA fllinsr < CpllA; follpaed PG r it a0 2
pr-a(1—%
21 0, 4.7
Z(-_Z1=2
x 2<p 4< )
It is possible to sum this for k¥ < j+ 1 if and only if 1 — 20(1—2) > 0 that is,
11-2
0 <= .
214

Summing over k£ we obtain that for all 7,

||A FllrLr <CF70P# GF0-1)9i(3-2-2+% (1_é))||A Foll e,

2a-19)

which leads to the desired result in the homogeneous case. The inhomogeneous
F..t # 0) easily follows thanks to the Duhamel formula. B

3.3.4 Strichartz estimates in the case v # 1/

20-4)

(3.95)

as r > 4, when

(3.96)

case (i.-e. when

Proposition 15 There exists a constant Cr,, > 0 (where w = M) such that for any d € R,

r>4andp < 4 , if f solves (3.81) for initial data fy and external force Fi.

three of them W1th zero divergence and potential vorticity, then for i = 3,4,

‘HO

4—
D|?P < Cpy—Der _ ta-p fte T
IIDI*PiPr. r. fllzrpe < Crm—=T—31—m€* "~ —553-%
trg D 4(1 7‘) +p
Z/O Te

o
sSlo

1
X <|7’r€,R€fo|Bqu 1 Prer PPl g +——

Z/O Te
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where D,, , = max(by.,dp ) with

Remark 27 We could prove like in the previous section some refined estimate with 6 €]0, 1]
(allowing p < - 4)) but we will only need the case § = 1 and p close to 2 in this article.

Proof: Let us first assume that F.,; = 0. With the same notations as in the previous
section, we get that (see previous section, as well as [10, 12] for details):

||IED PTE7R5fHLP(R+ Lr(R3) — Sup/ /RBP /Prg RE t ZC)’lb(t .Z')dl'df

=sup [ [ et op T ) (1~ () Bt asa

pveBJo 2R Te

1

< Csup ||PiPr. g fol 2 [/ / 1Lt 5., ) 5 1) % ()], = dsdt] , (3.98)
PeB 0 0

where

. 2, . 1€] D)
L(t, s,e,2) = /]Rd ezm{*(ﬂrs)‘r(f)\f\ +i(t—s) Eg‘lg‘JrstE(E,s)JrssE(g €) (22 €] o ) ( (2|§3|)) de.

2R.
Like before, to obtain the LZ-norm, we will interpolate between L? and L. It is easy to obtain
3 v
IL(s,t,e,.)|| 2 < CpREe™ F 972,

and we refer to [10, 12] where we proved that (there we were working with local in time solutions,
and we dropped the exponential):

so that we obtain for any g > 2:

t 2Rs % £ 5(1_%)
|L(s,t,e,)|ls < Cpue™© Plttsyrle T .
— S
rs

Thanks to (3.87), and doing the same as previously, we end-up with (8 = %):

49 1
R: 2

= _ei(=D gup U / 4 — D s dt} . (3.99)
74?7? YeEB f — S| (1

62
with g(t) = e~ T"Z||4)(t)|| L=. Using once more Proposition 14, we end-up with:

IPiPr. k. fllLrrr = CruwllPr. r. fol L2

9
r

b r 14 R
IPPrrfllirr < Cr——pfi=g;e¥ ™) =g IPren ol 2o (3.100)
0 re U7

33



Then it is easy to deduce the non-homogeneous case with F* only. Let us now focus on the other

external force term, we extend the method from [7]. If we denote by S(t) fo the solution of System
(3.81) with F,,; = 0, we have by the Duhamel formula

t
I / S(t = Py BF () 71 = sup / / PPy Ut €)
0 : R3

X/ =t (E )\£\2+i(t7t’)!F"g‘+stE(§s (oo i )( (2|§3|

)) i, ddear
<0sup||PPTEREF|LzL2[/ / / LG =t s — e, ), 5 16(2) * B(s)

RI7
<CFMHP’I‘5,R5F ||L2L2 38 E%(l_%)

Te

20 (t4s—2t")r? 2
X sup / / / 1{t’<m1n(t 5)} .
YpeB [t —

3

—
N

N (¢ >|Lr||¢(8)||erSdtdt/] (3.101)
Computing the integral in ¢':
/mln(é7t) 6 2L Ut 7‘ dt 2 5 eCZVTU min(t,s)Tg,
0 vr
and using the fact that [t — s| = s + ¢ — 2min(s, t), we get
492
Ra " 1(1_é)
|| 5 (t = t)Prom PiF ()l || o e < Crma||Pro . FY || 202 ——5e 7077
A
) 1
e—¢ 220 |t—s|r2 2
o | [ [ s Ol @l (.10
YyeB e
Then denoting
e~ 2U0|‘r|7‘
(1) = |T|5(1—%) ’
we just have to estimate a convolution
L[ s oo o) dsar < 1l g ol (3.103)

provided that p > 2 and £(1

) < 1so that k € L%, whose norm is featured in the constant
dp, and we have

49
D, 1q_ay Re 7
|PiPr. k. fllLerr < Cr —1(f_g)54( ») 5+2_6
4 s 2 P T
vy T

X <|7’7«€,RE‘/:0|L2 +1Pro . PPl g2 + 1—||PTE,R€FZ||L2L2> . (3.104)

VG Te
Finally, to obtain the announced estimates, we just have to apply this estimates to A;|D|?f. B
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