

A generating polynomial for the two-bridge knot with Conway's notation C(n,r)

Franck Ramaharo

▶ To cite this version:

Franck Ramaharo. A generating polynomial for the two-bridge knot with Conway's notation C(n,r). 2019. hal-02050053

HAL Id: hal-02050053

https://hal.science/hal-02050053

Preprint submitted on 26 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A generating polynomial for the two-bridge knot with Conway's notation C(n, r)

Franck Ramaharo

Département de Mathématiques et Informatique Université d'Antananarivo 101 Antananarivo, Madagascar

franck.ramaharo@gmail.com

February 26, 2019

Abstract

We construct an integer polynomial whose coefficients enumerate the Kauffman states of the two-bridge knot with Conway's notation C(n, r).

Keywords: generating polynomial, shadow diagram, Kauffman state.

1 Introduction

A *state* of a knot shadow diagram is a choice of splitting its crossings [2, Section 1]. There are two ways of splitting a crossing:

$$(A) \hspace{-0.2cm} \hspace{-0.2cm} \Longrightarrow \hspace{-0.2cm} \hspace{-0.2cm$$

By state of a crossing we understand either of the split of type (A) or (B). An example for the figure-eight knot is shown in Figure 1.

Let K be a knot diagram. If m denotes the initial number of crossings, then the final states form a collection of 2^m diagrams of nonintersecting curves. We can enumerate those states with respect to the number of their components – called *circles* – by introducing the sum

$$K(x) := \sum_{S} x^{|S|},\tag{1}$$

where S browses the collection of states, and |S| gives the number of circles in S. Here, K(x) is an integer polynomial which we referred to as generating polynomial [6, 7] (in fact, it is a simplified formulation of what Kauffman calls "state polynomial" [2, Section 1–2] or

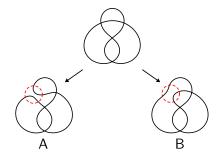


Figure 1: The states of a crossing.

"bracket polynomial" [3]). For instance, if K is the figure-eight knot diagram, then we have $K(x) = 5x + 8x^2 + 3x^3$ (the states are illustrated in Figure 2).

In this note, we establish the generating polynomial for the two-bridge knot with Conway's notation C(n,r) [4, 5]. We refer to the associated knot diagram as $B_{n,r}$, where n and r denote the number of half-twists. For example, the figure-eight knot has Conway's notation C(2,2). Owing to the property of the shadow diagram which we draw on the sphere [1], we can continuously deform the diagram $B_{n,r}$ into $B_{r,n}$ without altering the crossings configuration. We let $B_{n,r} \rightleftharpoons B_{r,n}$ express such transformation (see Figure 3 (a)). Besides, we let $B_{n,0}$ and $B_{n,\infty}$ denote the diagrams in Figure 3 (b) and (c), respectively. Here, "0" and " ∞ " are symbolic notations – borrowed from tangle theory [2, p. 88] – that express the absence of half-twists. If $r = \infty$ and $n \ge 1$, then $B_{n,\infty}$ represents the diagram of a (2,n)-torus knot ($\rightleftharpoons B_{n-1,1}$). Correspondingly, we let $B_{0,r}$ and $B_{\infty,r}$ denote the diagrams pictured in Figure 3 (d) and (e), respectively.

2 Generating polynomial

Let K, K' and \bigcirc be knot diagrams, where \bigcirc is the trivial knot, and let # and \sqcup denote the connected sum and the disjoint union, respectively. The generating polynomial defined in (1) verifies the following basic properties:

- (i) $\bigcirc(x) = x$;
- (ii) $(K \sqcup K')(x) = K(x)K'(x);$
- (iii) $(K \# K')(x) = \frac{1}{x} K(x) K'(x)$.

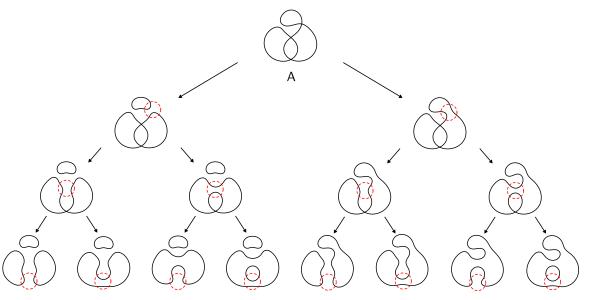
Furthermore, if $K \rightleftharpoons K'$, then K(x) = K'(x) [6].

Lemma 1. The generating polynomial for the knots $B_{n,0}$ and $B_{n,\infty}$ are given by

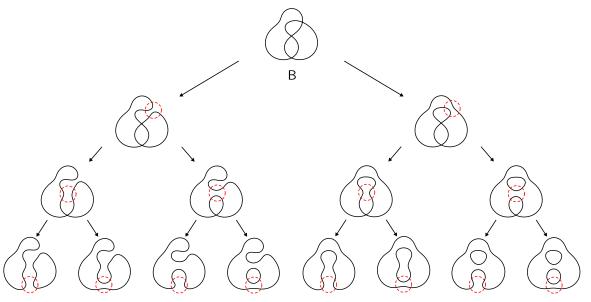
$$B_{n,0}(x) = x(x+1)^n (2)$$

and

$$B_{n,\infty}(x) = (x+1)^n + x^2 - 1.$$
(3)



(a) The states of the figure-eight knot following the initial "A" split.



(b) The states of the figure-eight knot following the initial "B" split.

Figure 2: The states of the figure-eight knot.

The key ingredient for establishing (2) and (3) consists of the states of specific crossings which produce the recurrences

$$B_{n,0}(x) = (\bigcirc \sqcup B_{n-1,0})(x) + B_{n-1,0}(x)$$

and

$$B_{n,\infty}(x) = B_{n-1,0}(x) + B_{n-1,\infty}(x),$$

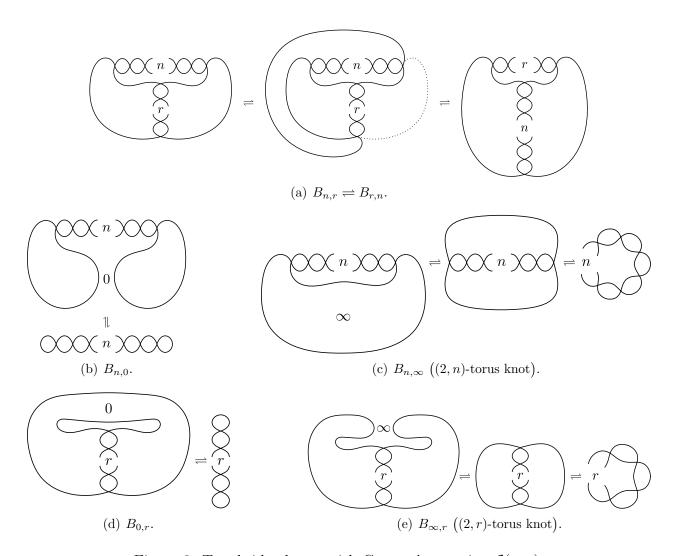


Figure 3: Two-bridge knots with Conway's notation C(n, r).

respectively, with initial values $B_{0,0}(x) = x$ and $B_{0,\infty}(x) = x^2$ [6]. Note that the lemma still holds if we replace index n by r.

Proposition 2. The generating polynomial for the two-bridge knot $B_{n,r}$ is given by the recurrence

$$B_{n,r}(x) = B_{n-1,r}(x) + (x+1)^{n-1} B_{\infty,r}(x), \tag{4}$$

and has the following closed form:

$$B_{n,r}(x) = \left(\frac{(x+1)^r + x^2 - 1}{x}\right)(x+1)^n + \left(x^2 - 1\right)\left(\frac{(x+1)^r - 1}{x}\right).$$
 (5)

Proof. By Figure 4 we have

$$B_{n,r}(x) = B_{n-1,r}(x) + (B_{n-1,0} \# B_{\infty,r})(x)$$

= $B_{n-1,r}(x) + (x+1)^{n-1} B_{\infty,r}(x),$

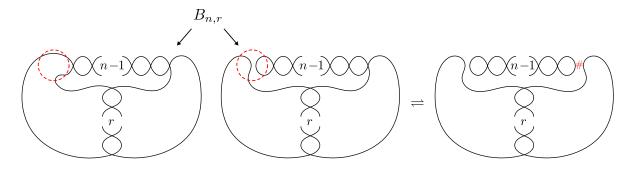


Figure 4: The splits at a crossing allow us to capture $B_{n-1,r}$, $B_{n-1,0}$ and $B_{\infty,r}$.

where the last relation follows from property (iii). Solving the recurrence for n yields

$$B_{n,r}(x) = B_{0,r}(x) + B_{\infty,r}(x) \left(\frac{(x+1)^n - 1}{x} \right).$$

We conclude by the closed forms in Lemma 2.

Remark 3. We can write

$$B_{n,0}(x) = x^2 \alpha_n(x) + x \tag{6}$$

and

$$B_{n,\infty}(x) = x\alpha_n(x) + x^2, (7)$$

where $\alpha_n(x) := \frac{(x+1)^n - 1}{x}$, so that identity (5) becomes

$$B_{n,r}(x) = \left(x^2 \alpha_n(x) + x\right) + \left(x^2 \alpha_r(x) + x \alpha_n(x) \alpha_r(x)\right). \tag{8}$$

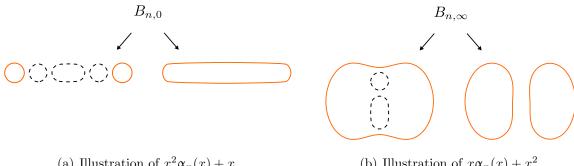
Since the coefficients of $\alpha_n(x)$ are all nonnegative, it is clear, by (6), that the polynomial $x^2\alpha_n(x)$ counts the states of $B_{n,0}$ that have at least 2 circles. This is illustrated in Figure 5 (a). Likewise, we have an interpretation of (7) in Figure 5 (b). In Figure 5 and 6, the dashed diagrams represent all possible disjoint union of $\ell - 1$ circles ($\ell = n$ or r, depending on the context), counted by $\alpha_{\ell}(x)$ and eventually empty.

Therefore, for $n,r\notin\{0,\infty\}$, identity (8) means that we can classify the states into 4 subset as shown in Figure 6. In these illustrations, there are 2^n-1 and 2^r-1 states of (a) and (b) kind, respectively, and $\binom{n}{1}\times\binom{r}{1}+1$ one-component states of (c) and (d) kind. The remaining states are of (c) kind, bringing the total number of states to 2^{n+r} .

3 Particular values

Let $\sum_{k\geq 0} b(n,r;k)x^k := B_{n,r}(x)$, or $b(n,r;k) := [x^k] B_{n,r}(x)$. Then

$$b(n,r;k) = \binom{n+r}{k+1} + \binom{n}{k-1} + \binom{r}{k-1} - \binom{n}{k+1} - \binom{r}{k+1} - \delta_{1,k},$$



(a) Illustration of $x^2 \alpha_n(x) + x$.

(b) Illustration of $x\alpha_n(x) + x^2$.

Figure 5: Illustrations of $B_{n,0}(x)$ and $B_{n,\infty}(x)$ as functions of $\alpha_n(x)$.

Figure 6: The states of $B_{n,r}$: states in (a) are counted by $x^2\alpha_n(x)$, those in (b) by $x^2\alpha_r(x)$, those in (c) by $x\alpha_n(x)\alpha_r(x)$, and state in (d) is simply counted by x.

where $\delta_{1,k}$ is the Kronecker symbol. By (1), we recognize b(n,r;k) as the cardinal of the set $\{|S|=k: S \text{ is a state of } B_{n,r}\}, \text{ i.e., the number of states having } k \text{ circles. In this section,}$ the coefficients b(n,r;k) are tabulated for some values of n, r and k. We give as well the corresponding A-numbers in the On-Line Encyclopedia of Integer Sequences [8].

• $b(n,0;k) = [x^k] x(x+1)^n$, essentially giving entries in Pascal's triangle A007318 (see Table 1).

$n \setminus k$	0	1	2	3	4	5	6	7	8
0 1 2 3 4 5 6 7	0	1							
1	0	1	1						
2	0	1	2	1					
3	0	1	3	3	1				
4	0	1	4	6	4	1			
5	0	1	5	10	10	5	1		
6	0	1	6	15	20	15	6	1	
7	0	1	7	21	35	35	21	7	1

Table 1: Values of b(n, 0; k) for $0 \le n \le 7$ and $0 \le k \le 8$.

• $b(n,1;k) = [x^k]((x+1)^{n+1} + x^2 - 1)$, generating a subtriangle in A300453 (see Table 2).

Table 2: Values of b(n, 1; k) for $0 \le n \le 7$ and $0 \le k \le 8$.

• $b(n,2;k) = [x^k]((2x+2)(x+1)^n + (x^2-1)(x+2))$, giving triangle in A300454 (see Table 3).

$n \setminus k$	0	1	2	3	4	5	6	7	8
0	0	1	2	1					
1	0	3	4	1 1					
2	0	5	8	3					
3	0	7	14	9	2				
4	0	9	22	21 41	10	2			
5	0	11	32	41	30	12	2		
6	0	13	44	71	70	42	14	2	
7	0	15	58	71 113	140	112	56	16	2

Table 3: Values of b(n, 2; k) for $0 \le n \le 7$ and $0 \le k \le 8$.

- $b(n, n; k) = \left[x^k\right] \left(\frac{(x+1)^{2n} + \left(x^2 1\right)\left(2(x+1)^n 1\right)}{x}\right)$, giving triangle in <u>A321127</u> (see Table 4).
- b(n, r; 1) = nr + 1, giving A077028, and displayed as square array in Table 5. In Kauffman's language, b(n, r; 1) is, for a fixed choice of star region, the number of ways of placing *state markers* at the crossings of the diagram $B_{n,r}$, i.e., of the forms

$$X$$
, X , X ,

$n \mathrel{\backslash} k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	1												
1	0	2	2											
2	0	5	8	3										
3	0	10	24	21	8	1								
4	0	17	56	80	64	30	8	1						
5	0	26	110	220	270	220	122	45	10	1				
6	0	37	192	495	820	952	804	497	220	66	12	1		
7	0	50	308	973	2030	3059	3472	3017	2004	1001	364	91	14	1

Table 4: Values of b(n, n; k) for $0 \le n \le 7$ and $0 \le k \le 13$.

$n \setminus r$	0	1	2	3	4	5	6	7
0			1					
1			3					
2	1	3	5	7	9	11	13	15
3	1	4	7	10	13	16	19	22
4	1	5	9	13	17	21	25	29
5	1	6	11	16	21	26	31	36
6	1	7	13					
7	1	8	15	22	29	36	43	50

Table 5: Values of b(n, r; 1) for $0 \le n \le 7$ and $0 \le r \le 7$.

so that the resulting states are "Jordan trails" [2, Section 1–2]. Note that a state marker is interpreted as an instruction to split a crossing as shown below:

$$\nearrow$$
 \Rightarrow \nearrow and \Rightarrow \nearrow .

The process is illustrated in Figure 7 for the figure-eight knot.

•
$$b(n, r; 2) = n\left(\binom{r}{2} + 1\right) + r\left(\binom{n}{2} + 1\right)$$
, giving square array in A300401 (see Table 6).

We paid a special attention to the case k = 2 because, surprisingly, columns $(b(n, 1; 2))_n$ and $(b(n, 2; 2))_n$ match sequences A000124 and A014206, respectively [6]. The former gives the maximal number of regions into which the plane is divided by n lines, and the latter the maximal number of regions into which the plane is divided by (n + 1) circles.

• $b(n, r; d(n, r)) = leading coefficient of <math>B_{n,r}(x)$, giving square array in A321125 (see Table 7). Here, $d(n, r) = \max(n+1, r+1, n+r-1)$ denotes the degree of $B_{n,r}(x)$, and gives entries in A321126. We have Table 8 giving the numbers d(n, r) for $0 \le n \le 7$ and $0 \le r \le 7$.

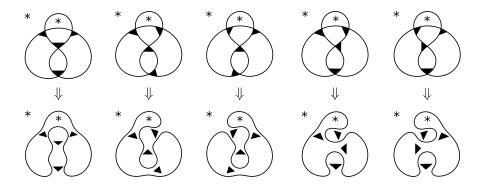


Figure 7: Illustration of b(2, 2; 1): mark two adjacent regions by stars (*), then assign a state marker at each crossing so that no region of $B_{2,2}$ contains more than one state marker, and regions with stars do not have any.

$n \setminus r$	0	1	2	3	4	5	6	7
0	0	1	2	3	4 11	5	6	7
1	1	2	4	7	11	16	22	29
2	2	4	8	14	22	32	44	58
					37			
4					56			
5	5	16	32	53	79	110	146	187
6	6	22	44	72	106	146	192	244
7	7	29	58	94	137	187	244	308

Table 6: Values of b(n, r; 2) for $0 \le n \le 7$ and $0 \le r \le 7$.

$n \setminus r$	0	1	2	3	4	5	6	7
0	1	1	1	1	1	1	1	1
1	1	2	1	1	1	1	1	1
2	1	1	3	2	2	2	2	1
3	1	1	2	1	1	1	1	1
4	1	1	2	1	1	1	1	1
5	1	1	2	1	1	1	1	1
6	1	1	2	1	1	1	1	1
7	1	1	2	1	1	1	1	1

Table 7: Leading coefficients of $B_{n,r}(x)$ for $0 \le n \le 7$ and $0 \le r \le 7$.

We have the following properties:

- d(n,r) = d(r,n);
- if r = 0, then d(n, r) = n + 1;
- if $r=\infty$, then sequence $\left(d(n,r)\right)_n$ begins: $2,2,2,3,4,5,6,7,8,\ldots$ (A233583) with

$n \setminus r$	0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7	8
1	2	2	3	4	5 5	6	7	8
2	3	3	3	4	5 6	6	7	8
3	4	4	4	5	6	7	8	9
4	5	5	5	6	7	8	9	10
5	6				8		10	11
6	7	7			9		11	12
7	8	8	8	9	10	11	12	13

Table 8: Values of d(n,r) for $0 \le n \le 7$ and $0 \le r \le 7$.

offset 1).

Diagramatically, we give the corresponding illustration for some values of n and r in Figure 8.

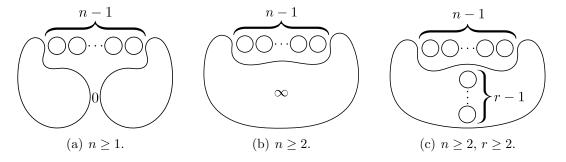


Figure 8: Illustration of the numbers d(n, r).

Correspondingly, we have

- -b(n,r;d(n,r)) = b(r,n;d(r,n));
- if r = 0, then b(n, r; d(n, r)) = 1;
- if $r = \infty$, then sequence $\left(b(n, r; d(n, r))\right)_n$ begins: $1, 1, 2, 1, 1, 1, 1, \dots$ (A294619 with initial term equals to 0).

Remarquable values in Table 7 correspond to knots $B_{1,1}$ ("Hopf link", see Figure 9), $B_{2,2}$ (figure-eight knot, see Figure 1, 2) and $B_{n,2}$ ("twist knot" [6]) for $n \geq 3$. The latter case can be observed from identity (8) for which the leading coefficient is larger than 1 when n+1=n+r-1 is satisfied. Also, considere the identity below:

$$B_{n,2}(x) = B_{n,0}(x) + B_{n,\infty}(x) + B_{n,\infty}(x) + (\bigcirc \sqcup B_{n,\infty})(x).$$

We notice that the leading coefficient is deduced from the contribution of the summands $B_{n,0}(x)$ and $(\bigcirc \sqcup B_{n,\infty})(x)$ [6].

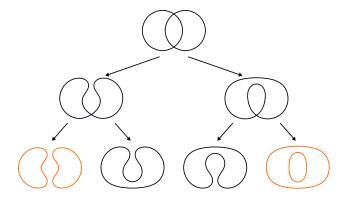


Figure 9: The states of the knot $B_{1,1}$: d(1,1) = 2 and b(1,1,d(1,1)) = 2.

References

- [1] Daniel Denton and Peter Doyle, Shadow movies not arising from knots, arXiv preprint, 2011, https://arxiv.org/abs/1106.3545.
- [2] Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- [3] Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 95–107.
- [4] Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal 14 (2013), 98–113.
- [5] Matthew Overduin, The three-variable bracket polynomial for two-bridge knots, California State University REU, 2013, https://www.math.csusb.edu/reu/OverduinPaper.pdf.
- [6] Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint, 2017, https://arxiv.org/abs/1712.06543.
- [7] Franck Ramaharo, Statistics on some classes of knot shadows, arXiv preprint, 2018, https://arxiv.org/abs/1802.07701.
- [8] Neil J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, published electronically at http://oeis.org, accessed 2019.

2010 Mathematics Subject Classification: 05A10; 57M25.

(Concerned with sequences <u>A000124</u>, <u>A007318</u>, <u>A014206</u>, <u>A077028</u>, <u>A233583</u>, <u>A294619</u>, <u>A300401</u>, <u>A300453</u>, <u>A300454</u>, <u>A321125</u>, <u>A321126</u> and <u>A321127</u>.)