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A generating polynomial for the two-bridge knot with Conway's notation C(n, r)
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We construct an integer polynomial whose coefficients enumerate the Kauffman states of the two-bridge knot with Conway's notation C(n, r).

Introduction

A state of a knot shadow diagram is a choice of splitting its crossings [2, Section 1]. There are two ways of splitting a crossing:

(A) =⇒ , (B) =⇒ .
By state of a crossing we understand either of the split of type (A) or (B). An example for the figure-eight knot is shown in Figure 1.

Let K be a knot diagram. If m denotes the initial number of crossings, then the final states form a collection of 2 m diagrams of nonintersecting curves. We can enumerate those states with respect to the number of their components -called circles -by introducing the sum

K(x) := S x |S| , (1) 
where S browses the collection of states, and |S| gives the number of circles in S. Here, K(x) is an integer polynomial which we referred to as generating polynomial [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF][START_REF] Ramaharo | Statistics on some classes of knot shadows[END_REF] (in fact, it is a simplified formulation of what Kauffman calls "state polynomial" [2, Section 1-2] or Figure 1: The states of a crossing.

"bracket polynomial" [START_REF] Louis | State models and the Jones polynomial[END_REF]). For instance, if K is the figure-eight knot diagram, then we have K(x) = 5x + 8x 2 + 3x 3 (the states are illustrated in Figure 2). In this note, we establish the generating polynomial for the two-bridge knot with Conway's notation C(n, r) [START_REF] Lafferty | The three-variable bracket polynomial for reduced, alternating links[END_REF][START_REF] Overduin | The three-variable bracket polynomial for two-bridge knots[END_REF]. We refer to the associated knot diagram as B n,r , where n and r denote the number of half-twists. For example, the figure-eight knot has Conway's notation C(2, 2). Owing to the property of the shadow diagram which we draw on the sphere [START_REF] Denton | Shadow movies not arising from knots[END_REF], we can continuously deform the diagram B n,r into B r,n without altering the crossings configuration. We let B n,r B r,n express such transformation see Figure 3 (a) . Besides, we let B n,0 and B n,∞ denote the diagrams in Figure 3 (b) and (c), respectively. Here, "0" and "∞" are symbolic notations -borrowed from tangle theory [2, p. 88] -that express the absence of half-twists. If r = ∞ and n ≥ 1, then B n,∞ represents the diagram of a (2, n)-torus knot B n-1,1 . Correspondingly, we let B 0,r and B ∞,r denote the diagrams pictured in Figure 3 (d) and (e), respectively.

Generating polynomial

Let K, K and be knot diagrams, where is the trivial knot, and let # and denote the connected sum and the disjoint union, respectively. The generating polynomial defined in (1) verifies the following basic properties:

(i) (x) = x; (ii) K K (x) = K(x)K (x); (iii) K#K (x) = 1 x K(x)K (x). Furthermore, if K K , then K(x) = K (x) [6].
Lemma 1. The generating polynomial for the knots B n,0 and B n,∞ are given by The key ingredient for establishing (2) and (3) consists of the states of specific crossings which produce the recurrences respectively, with initial values B 0,0 (x) = x and B 0,∞ (x) = x 2 [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF]. Note that the lemma still holds if we replace index n by r.

B n,0 (x) = x(x + 1) n (2) and B n,∞ (x) = (x + 1) n + x 2 -1. (3) 2 
B n,0 (x) = ( B n-1,0 ) (x) + B n-1,0 (x) and B n,∞ (x) = B n-1,0 (x) + B n-1,∞ (x), (a) B n,r B r,n . (b) B n,0 . (c) B n,∞ (2, n)-torus knot . (d) B 0,r . (e) B ∞,r ( 
Proposition 2. The generating polynomial for the two-bridge knot B n,r is given by the recurrence

B n,r (x) = B n-1,r (x) + (x + 1) n-1 B ∞,r (x), (4) 
and has the following closed form:

B n,r (x) = (x + 1) r + x 2 -1 x (x + 1) n + x 2 -1 (x + 1) r -1 x . (5) 
Proof. By Figure 4 we have where the last relation follows from property (iii). Solving the recurrence for n yields

B n,r (x) = B n-1,r (x) + B n-1,0 #B ∞,r (x) = B n-1,r (x) + (x + 1) n-1 B ∞,r (x),
B n,r (x) = B 0,r (x) + B ∞,r (x) (x + 1) n -1 x .
We conclude by the closed forms in Lemma 2.

Remark 3. We can write

B n,0 (x) = x 2 α n (x) + x (6) and B n,∞ (x) = xα n (x) + x 2 , (7) 
where α n (x) := (x + 1) n -1 x , so that identity (5) becomes

B n,r (x) x 2 α n (x) + x + x 2 α r (x) + xα n (x)α r (x) . (8) 
Since the coefficients of α n (x) are all nonnegative, it is clear, by [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF], that the polynomial x 2 α n (x) counts the states of B n,0 that have at least 2 circles. This is illustrated in Figure 5 (a). Likewise, we have an interpretation of (7) in Figure 5 (b). In Figure 5 and 6, the dashed diagrams represent all possible disjoint union of -1 circles ( = n or r, depending on the context), counted by α (x) and eventually empty.

Therefore, for n, r / ∈ {0, ∞}, identity (8) means that we can classify the states into 4 subset as shown in Figure 6. In these illustrations, there are 2 n -1 and 2 r -1 states of (a) and (b) kind, respectively, and

n 1 × r 1 + 1 one-component states of (c) and (d) kind.
The remaining states are of (c) kind, bringing the total number of states to 2 n+r . where δ 1,k is the Kronecker symbol. By (1), we recognize b(n, r; k) as the cardinal of the set {|S| = k : S is a state B n,r }, i.e., the number of states having k circles. In this section, the coefficients b(n, r; k) are tabulated for some values of n, r and k. We give as well the corresponding A-numbers in the On-Line Encyclopedia of Integer Sequences [START_REF] Neil | The On-Line Encyclopedia of Integer Sequences[END_REF].

Particular values

k) = n + r k + 1 + n k -1 + r k -1 - n k + 1 - r k + 1 -δ 1,k , (a) 
• b(n, 0; k) = x k x(x + 1) n , essentially giving entries in Pascal's triangle A007318 (see Table 1).

n \ k 0 1 2 3 4 5 6 7 8 • b(n, 2; k) = x k + 2)(x + 1) n + x 2 -1 (x + 2) , giving triangle in A300454 (see Table 3). Table 3: Values of b(n, 2; k) for 0 ≤ n ≤ 7 and 0 ≤ k ≤ 8.

0 0 1 1 0 1 1 2 0 1 2 1 3 0 1 3 3 1 4 0 1 4
• b(n, n; k) = x k (x + 1) 2n + x 2 -1 2(x + 1) n -1)
x , giving triangle in A321127

(see Table 4).

• b(n, r; 1) = nr + 1, giving A077028, and displayed as square array in Table 5.

In Kauffman's language, b(n, r; 1) is, for a fixed choice of star region, the number of ways of placing state markers at the crossings of the diagram B n,r , i.e., of the forms The process is illustrated in Figure 7 for the figure-eight knot.

• b(n, r; 2) = n r 2 + 1 +r n 2 + 1 , giving square array in A300401 (see Table 6).

We paid a special attention to the case k = 2 because, surprisingly, columns b(n, 1; 2) n and b(n, 2; 2) n match sequences A000124 and A014206, respectively [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF]. The former gives the maximal number of regions into which the plane is divided by n lines, and the latter the maximal number of regions into which the plane is divided by (n + 1) circles.

• b n, r; d(n, r) = leading coefficient of B n,r (x), giving square array in A321125 (see Table 7). Here, d(n, r) = max(n + 1, r + 1, n + r -1) denotes the degree of B n,r (x), and gives entries in A321126. We have Table 8 giving the numbers d(n, r) for 0 ≤ n ≤ 7 and 0 ≤ r ≤ 7. n \ r 0 1 2 3 4 5 6 7 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 2 2 2 2 1 3 1 1 2 1 1 1 1 1 4 1 1 2 1 1 1 1 1 5 1 1 2 1 1 1 1 1 6 1 1 2 1 1 1 1 1 7 1 1 2 1 1 1 1 1

Table 7: Leading coefficients of B n,r (x) for 0 ≤ n ≤ 7 and 0 ≤ r ≤ 7.

We have the following properties: 

  (a) The states of the figure-eight knot following the initial "A" split. (b) The states of the figure-eight knot following the initial "B" split.

Figure 2 :

 2 Figure 2: The states of the figure-eight knot.

  2, r)-torus knot .

Figure 3 :

 3 Figure 3: Two-bridge knots with Conway's notation C(n, r).

Figure 4 :

 4 Figure 4: The splits at a crossing allow us to capture B n-1,r , B n-1,0 and B ∞,r .

  r; k)x k := B n,r (x), or b(n, r; k) := x k B n,r (x). Then b(n, r;

  Illustration of x 2 α n (x) + x. (b) Illustration of xα n (x) + x 2 .

Figure 5 :

 5 Figure 5: Illustrations of B n,0 (x) and B n,∞ (x) as functions of α n (x) .

Figure 6 :

 6 Figure 6: The states of B n,r : states in (a) are counted by x 2 α n (x), those in (b) by x 2 α r (x), those in (c) by xα n (x)α r (x), and state in (d) is simply counted by x.

n \ k 0 1

 1 

Figure 7 :

 7 Figure7: Illustration of b(2, 2; 1): mark two adjacent regions by stars ( * ), then assign a state marker at each crossing so that no region of B 2,2 contains more than one state marker, and regions with stars do not have any.

-

  d(n, r) = d(r, n); if r = 0, then d(n, r) = n + 1; if r = ∞,then sequence d(n, r) n begins: 2, 2, 2, 3, 4, 5, 6, 7, 8, . . . (A233583 with

Table 1 :

 1 = x k (x + 1) n+1 + x 2 -1 , generating a subtriangle in A300453 (see Table2).

		6 4 1
	5	0 1 5 10 10 5 1
	6	0 1 6 15 20 15 6 1
	7	0 1 7 21 35 35 21 7 1

Values of b(n, 0; k) for 0 ≤ n ≤ 7 and 0 ≤ k ≤ 8. • b(n, 1; k)

Table 2 :

 2 Values of b(n, 1; k) for 0 ≤ n ≤ 7 and 0 ≤ k ≤ 8.

Table 4 :

 4 Values of b(n, n; k) for 0 ≤ n ≤ 7 and 0 ≤ k ≤ 13.

	,	,	,	,

Table 5 :

 5 Values of b(n, r; 1) for 0 ≤ n ≤ 7 and 0 ≤ r ≤ 7.

	so that the resulting states are "Jordan trails" [2, Section 1-2]. Note that a state
	marker is interpreted as an instruction to split a crossing as shown below:
	=⇒	and	=⇒	.

Table 6 :

 6 2, 2; 1): mark two adjacent regions by stars ( * ), then assign a state marker at each crossing so that no region of B 2,2 contains more than one state marker, and regions with stars do not have any. Values of b(n, r; 2) for 0 ≤ n ≤ 7 and 0 ≤ r ≤ 7.

	n \ r 0 1 2 3	4	5	6	7
	0	0 1 2 3	4	5	6	7
	1	1 2 4 7 11 16 22	
	2	2 4 8 14 22 32 44 58
	3	3 7 14 24 37 53 72 94
	4	4 11 22 37 56 79 106 137
	5	5 16 32 53 79 110 146 187
	6	6 22 44 72 106 146 192 244
	7	7 29 58 94 137 187 244 308

n \ r 0 1 2 3 4 5 [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF] Diagramatically, we give the corresponding illustration for some values of n and r in Figure 8. Remarquable values in Table 7 correspond to knots B 1,1 ("Hopf link", see Figure 9), B 2,2 (figure-eight knot, see Figure 1, 2) and B n,2 ("twist knot" [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF]) for n ≥ 3. The latter case can be observed from identity [START_REF] Neil | The On-Line Encyclopedia of Integer Sequences[END_REF] for which the leading coefficient is larger than 1 when n + 1 = n + r -1 is satisfied. Also, considere the identity below:

We notice that the leading coefficient is deduced from the contribution of the summands B n,0 (x) and B n,∞ (x) [START_REF] Ramaharo | Enumerating the states of the twist knot[END_REF].
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