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Luenberger observers for non autonomous nonlinear
systems

Pauline Bernard and Vincent Andrieu

Abstract—We show how the (initial) Luenberger methodology
presented in [1] for linear systems can be used to design causal
observers for controlled nonlinear systems. Their implementation
relies on the resolution of a time-varying PDE, the solutions of
which transform the dynamics into linear asymptotically stable
ones. We prove the existence and injectivity (after a certain
time) of such transformations, under standard observability
assumptions such as differential observability or backward-
distinguishability. We show on examples how this PDE can be
solved and how the observability assumptions can be checked.
Also, we show that similarly to the high gain framework, it
is possible to use a time-independent transformation when the
system is observable for any input and strongly differentially
observable of order the dimension of the system.

Index Terms—observer, Kazantzis-Kravaris, Luenberger

I. INTRODUCTION

A. Context
Online estimation of the state of a dynamical system is

crucial in practice, especially for monitoring or control pur-
poses. However, very few general observer design methods
exist for nonlinear time varying systems or for nonlinear
systems with dynamics depending on an exogenous input.
Some, such as the popular extended Kalman filters ([2]) rely on
linearization methods, but thus provide only local convergence.
Others consist in finding a reversible input-independent change
of coordinates, which transforms the dynamics into a more
favorable form such as state-affine time-varying forms ([3],[4]
among others), for which a Kalman filter can be used, or a
triangular form ([5], [6]) for which a high gain observer can
be used. But the existence of such a change of coordinates
usually requires restrictive assumptions on the system, such
as the so-called uniform observability for triangular forms, or
can be applied to some particular classes of nonlinear systems
(see for instance the Immersion & Invariance approach in [7]).

On the other hand, if we allow the transformation to depend
on the input, the range of possibilities widens. For instance,
the transformation obtained by considering the output and a
certain number of its derivatives, transforms the dynamics into
the so-called phase-variable form ([8], [9]) under the ACP(N)
condition ([9]), which roughly says that the N th-derivative of
the output can be expressed in a ”Lipschitz” way in terms
of the first N − 1 ones. In this case, a classical high gain
observer can be used. But a drawback of this transformation
is that it involves the input’s time derivatives (appearing when
differentiating the output), which may make this solution
unsuitable for practical applications.
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In a completely independent line of research, some re-
searchers have tried to reproduce Luenberger’s initial1 method-
ology presented in [1] for linear systems on nonlinear systems.
Indeed, initially, Luenberger’s method consisted in transform-
ing the system into a linear asymptotically stable one for which
a trivial observer (made of a copy of the dynamics) exists.
The extension of such a method to autonomous nonlinear
systems was proposed and analyzed in a general context by
[10], and rediscovered later by [11] where a local analysis
close to an equilibrium point was given under conditions then
relaxed in [12]. The localness as well as most of the restrictive
assumptions were finally by-passed in [13], leading to the so-
called Kazantzis-Kravaris-Luenberger (KKL) observers.

In this paper, we want to extend the use of those Luenberger
observers to non autonomous systems. By non autonomous
systems, we mean systems which may be time varying or
which may depend on exogeneous signals. Exactly as in the
high gain framework two paths are possible when considering
exogenous inputs : either we keep the stationary transformation
obtained for some constant value of the input (typically u ≡ 0)
and hope the additional terms due to the presence of the
input do not prevent convergence. Or we take a transformation
taking into account (implicitly or explicitly) the input.

As far as we know, no result concerning this problem
exists in the literature apart from [14], [15] which follows
and extends [16]. The idea pursued in [14] belongs to the
first path : the transformation is stationary and the input is
seen as a disturbance which must be small enough. Although
the construction is extended in a cunning fashion to a larger
class of inputs, namely those which can be considered as
output of a linear generator model with small external input,
this approach remains theoretic and restrictive. On the other
hand, in [15], the author rather tries to use a time-varying
transformation but its injectivity is proved only under the
so-called ”finite-complexity” assumption, initially introduced
in [16] for autonomous systems. Unfortunately, this property
is very restrictive and hard to check. Besides, no indication
about the dimension of the target form is given and the
transformation cannot be computed online because it depends
on the whole past trajectory of the output.

That is why, in this paper, we endeavor to give results of
existence and injectivity of the transformation under more
standard observability assumptions and keeping in mind the
practical implementation of this method. Preliminary results
presented in [17] showed that any system which can’t blow
up in finite backward time can be transformed through a time-
varying transformation into a Hurwitz asymptotically stable

1We write ”initial” insofar as what is nowadays usually called ”Luenberger
observer” differs from what is in [1].
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form and the injectivity of this transformation is achieved
under a differential observability condition. We complete here
this result by showing that injectivity can actually be ensured
under a weaker backward observability condition for “almost
any” choice of the eigenvalues of the target Hurwitz form
with sufficiently large dimension. We also show that it is
possible to take a stationary transformation in the case of
instantaneously uniformly observable systems whose order of
differential observability equals the system’s dimension.

B. Problem statement

Consider a general system of the form

ẋ = f(x, u) , y = h(x, u) (1)

where x is the state in Rdx , y the output in Rdy , f a contin-
uously differentiable (C1) function, h a continuous function,
and u : [0,+∞) → U ⊂ Rdu in a set U ⊂ L∞loc([0,+∞))
of considered inputs2. We denote X(x, t; s;u) the value at
time s of the (unique) solution to system (1) with input u,
initialized at x at time t, and Y (x, t; s;u) the corresponding
output function at time s. We consider a subset X0 of Rdx
containing all the possible initial conditions for the system.
We introduce the following assumption :

Assumption 1. Solutions to System (1) initialized in X0 are
well defined in positive time and belong to an open set X . In
other words, for all u in U , for all x0 in X0 and for all s in
[0,+∞), X(x0, 0; s;u) is well defined and is in X .

In this paper, we want to design an observer for system (1),
via the Luenberger-like methodology developed in [1], [10],
[11], [13]. We assume the inputs and outputs are known in
a causal way, namely the observer can use only their past or
current values, i.e., at time t, u|[0,t] and y|[0,t] only3. The idea
is to transform system (1) into a Hurwitz form4

ξ̇ = Aξ +B y (2)

with A Hurwitz in Rdξ×dξ , B a matrix in Rdξ×dy , for some
strictly positive integer dξ, i.e. for each u in U , find a
transformation5 T : X × [0,+∞) → Rdξ such that for any
x in X and any time t in [0,+∞),

∂T

∂x
(x, t)f(x, u(t)) +

∂T

∂t
(x, t) = AT (x, t) +B h(x, u(t)) .

(3)
Indeed, implementing the dynamics (2) with any initial condi-
tion would then provide an asymptotically converging estimate

2Systems of the type (1) encompass time varying systems in the form

ẋ = f(x, t) , y = h(x, t),

simply by taking U = {t 7→ t}, u(t) = t and U = [0,+∞). Following this
route, systems in the form ẋ = f(x, t, u) , y = h(x, t, u) could also be
considered.

3Time 0 thus corresponds to the initial time of data recording.
4We could have considered a more general Hurwitz form ξ̇ = Aξ+B(u, y)

with B any nonlinear function, but taking B(u, y) = y is sufficient to obtain
satisfactory results.

5The function T implicitly depends on u in U , so we should write Tu. But
we drop this too heavy notation to ease the comprehension. What matters is
that the target Hurwitz form (2), namely dξ , A and B, be the same for all u
in U and that the dependence on u be causal.

of T (X(x0, 0; s;u), s). If T (·, s) is besides injective (at least
after a certain time), one could deduce an estimate for the
system solution X(x0, 0; s;u). More precisely, the following
theorem is proved in [17] :

Theorem 1 ([17]). Assume Assumption 1 is satisfied. Consider
a strictly positive integer dξ, a Hurwitz matrix A in Rdξ×dξ ,
and a matrix B in Rdξ×dy . Suppose that for any input u in
U , there exists a function T : X × [0,+∞)→ Rdξ such that

1) T is a C1 solution to PDE (3) on X × [0,+∞) ;
2) there exists a time t ≥ 0 and a concave K∞ function

ρT such that for all (x1, x2) in X 2 and all t ≥ t

|x1 − x2| ≤ ρT (|T (x1, t)− T (x2, t)|)

i.e. T becomes injective uniformly in time and in space
after a certain time t.

Then, there exists a function T ∗ : Rdξ × [t,+∞)→ Rdx such
that for any x0 in X0, and any ξ0 in Rdξ , the (unique) solution
(X(x0, 0; s;u),Ξ(ξ0, 0; s;u, yx0

)) to

ẋ = f(x, u) , y = h(x, u)

ξ̇ = Aξ +B y , x̂ = T ∗(ξ, t)
(4)

verifies
lim

s→+∞
|X(x0, 0; s;u)− X̂(s)| = 0

with
X̂(s) = T ∗(Ξ(ξ0, 0; s;u, yx0

), s) .

We conclude that it is sufficient to find a solution T to PDE
(3) that becomes injective uniformly in time and in space at
least after a certain time to obtain an observer for system (1).

In Section II, we show that the existence of the time-
varying transformation T itself is achieved under mild
assumptions, and that its injectivity can be ensured by
observability assumptions, similar to those presented in [13]
for autonomous systems. Then, in Section III, we show
on practical examples how an explicit expression for such
a transformation can be computed. Finally, in Section IV,
we prove that, similarly to [5], [6] for a high gain design,
in the case of a uniformly observable (see [18, Definition
1]) input-affine system whose drift system is strongly
differentially observable of order dx (see [18, Definition 2]),
a Luenberger-type observer can be built with a stationary
transformation T : X → Rdξ .

Notations
1) Since h (resp Y ) takes values in Rdy , we denote hi (resp

Yi) its ith-component.
2) For some integer m which we choose later in Assump-

tions 3, any solution x to system (1) with some Cm+1

input u, is such that (x, u, u̇, ..., u(m)) is solution to the
extended system

ẋ = f(x, ν0)

ν̇0 = ν1

...
ν̇m = u(m+1)
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with input u(m+1). We denote um = (u, u̇, ..., u(m)),
νm = (ν0, ..., νm), f̄ the extended vector field

f̄(x, νm, u
(m+1)) =

(
f(x, ν0), ν1, . . . , νm, u

(m+1)
)

and h the extended measurement function

h̄i(x, νm) = hi(x, ν0) .

Note that while νm is an element Rdu(m+1), um is
a function defined on [0,+∞) such that um(s) =
(u(s), u̇(s), ..., u(m)(s)) is in Rdu(m+1) for all s in
[0,+∞). We denote Um a subset of Rdu(m+1) such that
for all u in U , um([0,+∞)) ⊂ Um. For 1 ≤ i ≤ dy ,
the successive time derivatives of Yi are related to the
Lie derivatives of h̄i along the vector fields f̄ , namely
for j ≤ m

∂jYi
∂sj

(x, t; s;u) = Lj
f̄
h̄i(X(x, t; s;u), um(s)) .

II. TIME-VARYING TRANSFORMATION

We make the following assumption :

Assumption 2. Solutions to System (1) initiated from X do
not blow-up in finite backward time, namely for any u in U ,
any (x, t) in X × [0,+∞) and any s in [0, t], X(x, t; s;u) is
defined.

The existence of a C1 time-varying solution to PDE (3) is
achieved thanks to the following lemma :

Lemma 1 ([17]). Consider a strictly positive number dξ, a
Hurwitz matrix A in Rdξ×dξ , a matrix B in Rdξ×dy , and an
input u in U . Under Assumption 2, the function T 0 defined on
X × [0,+∞) by6

T 0(x, t) =

∫ t

0

eA(t−s)B Y (x, t; s;u) ds (5)

is a C1 solution to PDE (3) on X × [0,+∞).

When Assumption 2 does not hold, it may still be possible
to construct a function T 0 solution to PDE (3) on X×[0,+∞).
This is the case if there exists a subset X ′ of Rdx such that
cl(X ) ⊂ X ′ from which no solution blows up at infinity
in backward time before leaving the set7 X ′. Indeed, any
modified dynamics

ẋ = χ(x)f(x, u) , (6)

with a C∞ function χ : Rdx → R satisfying

χ(x) =

{
1 , if x ∈ cl(X )
0 , if x /∈ X ′

is then backward complete and satisfies Assumption 2, and
the PDE associated to system (6) is the same as PDE (3) on
X × [0,+∞). In particular, we deduce :

Corollary 1. Assume X is bounded. Consider a strictly
positive number dξ, a Hurwitz matrix A in Rdξ×dξ , a matrix

6Following what has been done for the function T , to simplify the
presentation, the dependance on u of the function T 0 has been dropped.

7This property is named completeness within X ′ in [13].

B in Rdξ×dy , and an input u in U . There exists a C1 function
T 0 solution to PDE (3) on X × [0,+∞).

In the extreme scenario where Assumption 2 does not hold
even for system (6), it could also be relaxed by considering an
output dependent time rescaling as in [13, Section 2.6] when
the system has some (backward) unbounded observability
property.

Note that extending directly what is done in [16], [13] would
rather lead us to the solution

T∞(x, t) =

∫ t

−∞
eA(t−s)B Y (x, t; s;u) ds .

The drawback is that some assumptions about the growth of Y
have to be made to ensure its continuity, unless Y is bounded
backward in time. As for the C1 property, and even if the
solutions are bounded backward in time, it is achieved only if
the eigenvalues of A are sufficiently negative. In fact, it is not
absolutely needed that the solution be C1, one could look for
continuous solutions to

lim
δ→0

T (X(x, t; t+ δ;u), t)− T (x, t)

δ
= AT (x, t)+Bh(x, u(t))

instead of PDE (3). The major disadvantage of this solution
is rather that T∞ is not easily computable since it depends
on the values of u on (−∞, t]. Nevertheless, it may still be
useful. For example, that is the solution chosen in [19] for the
specific application of a permanent synchronous motor, where
it is proved to be injective.

Unlike T∞, T 0 depends only on the values of the input
u on [0, t]. Therefore, it is theoretically computable online.
However, for each couple (x, t), one would need to integrate
backwards the dynamics (1) until time 0, which is quite heavy.
If the input u is known in advance (for instance u(t) = t) it
can also be computed offline. We will see in Section III on
practical examples how we can find a solution to PDE (3) in
practice, without relying on the expression T 0.

We finally conclude that a C1 time-varying transformation
into a Hurwitz form always exists under the mild Assumption
2, but the core of the problem is to ensure its injectivity.

A. Injectivity with strong differential observability
Assumption 3. There exists a subset S of Rdx such that :

1) For any u in U , any x in X and any time t in [0,+∞),
X(x, t; s;u) is defined in S for all s in [0, t].

2) The quantity

Mf = sup
x ∈ S
ν0 ∈ U

∣∣∣∣∂f∂x (x, ν0)

∣∣∣∣
is finite.

3) There exist dy integers (m1, . . . ,mdy ) such that the
functions

Hi(x, νm) =
(
h̄i(x, νm), Lf̄ h̄i(x, νm),

. . . , Lmi−1
f̄

h̄i(x, νm)
)

(7)

is well defined on S × Rdu(m+1) with m = maximi

and 1 ≤ i ≤ dy verify :
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- for any νm in Um, Hi(·, νm)) is Lipschitz on S.
- there exists LH such that the function

H(x, νm) =
(
H1(x, νm), . . . , Hi(x, νm),

. . . ,Hdy (x, νm)
)

(8)

verifies for any (x1, x2) in S2 and any νm in Um

|x1 − x2| ≤ LH |H(x1, νm)−H(x2, νm)|

namely H is Lipschitz-injective on S, uniformly with
respect to νm in Um.

4) For all 1 ≤ i ≤ dy , there exists Li such that for all
(x1, x2) in S2 and for all νm in Um,

|Lmi
f̄
h̄i(x1, νm)− Lmi

f̄
h̄i(x2, νm)| ≤ Li|x1 − x2|

namely Lmi
f̄
h̄i(·, νm) is Lipschitz on S, uniformly with

respect to νm in Um.

Theorem 2 ([17]). Suppose Assumption 3 is satisfied. For all
integer 1 ≤ i ≤ dy and mi defined in Assumption 3, consider
a Hurwitz matrix Ai in Rmi×mi and a vector Bi in Rmi such
that the pairs (Ai, Bi) is controllable. Denote m = maximi.
There exists a strictly positive real number k such that for all
k ≥ k and for all Cm+1 input u in U , there exists tk,u such
that any C1 solution T to PDE (3) on X × [0,+∞) with

- dξ =
∑dy
i=1mi

- A in Rdξ×dξ and B in Rdξ×dy defined by

A =


kA1

. . .
kAi

. . .
kAdy

 , B =


B1

. . .
Bi

. . .
Bdy


- T (·, 0) Lipschitz on X

is such that T (·, t) is injective on X for all t ≥ tk,u, uniformly
in time and in space. More precisely, there exists a constant
Lk such that for any (x1, x2) in X 2, any u in U and any time
t ≥ tk,u

|x1 − x2| ≤ Lk |T (x1, t)− T (x2, t)| .

Besides, for any t ≥ tk,u, T (·, t) is an injective immersion on
X .

Note that the additional assumption “T (·, 0) Lipschitz on
X ” is not very restrictive because the solution T can usually be
chosen arbitrarily at initial time 0 (see examples in Section III).
In particular, the elementary solution T 0 found in Lemma 1 is
the zero constant function at time 0 and thus clearly verifies
this assumption.

Applying successively Lemma 1, Theorem 2 and Theorem
1, we conclude that under Assumption 3, it is possible to
write an observer for system (1) by choosing any (Ai, Bi)
controllable and k sufficiently large.

Remark 1. It is important to note that k does not dependent
on u, thanks to the fact that LH , Mf and Li given by
Assumptions 3.2, 3.3, 3.4 are the same for all νm in Um.

However, the time tk,u after which the solution becomes
injective a priori depends on k and u. This is not a problem in
practice since we only want to be sure that for k sufficiently
large, any solution will become injective after a certain time.
If we want this time tk,u to be uniform in u, the Lipschitz
constants of Hi(·, um(0))) and of T (·, 0) must be the same
for all u in U .

Remark 2. If we choose m = maximi sufficiently large
distinct strictly positive real numbers λj , and take Ai =
−diag(λ1, . . . , λmi) and Bi = (1, . . . , 1)>, then, the PDEs
to solve are simply

∂Tλ,i
∂x

(x, t)f(x, u(t))+
∂Tλ,i
∂t

(x, t) = −λTλ,i(x, t)+hi(x, u(t))

(9)
for each 1 ≤ i ≤ dy and λ in {λ1, . . . , λmi}. Then, one take

T (x, t) =
(
Tλ1,1, . . . , Tλm1 ,1

, . . . , Tλ1,dy , . . . , Tλmdy ,dy

)
.

Remark 3. Under Assumption 3.3, 3.4, the system could
also be transformed via H into a Lipschitz phase-variable
form of dimension dy × maximi ≥

∑dy
i=1mi ([20], [8])

and a high gain observer could be used. If we wanted to use
only mi derivatives for each output and obtain an observer
of dimension

∑dy
i=1mi, each Lmi

f
h would have to satisfy

an additional triangularity assumption. But in any case, the
crucial difference with the Luenberger observer presented in
this chapter is that unlike H , the transformation used here does
not require the computation of the derivatives of the input (see
examples in Section III).

In order to check Assumption 3 more easily in practice, we
prove the following result :

Lemma 2 ([17]). Assume that S is compact and there exist
dy integers (m1, ...,mdy ) such that Um with m = maximi

is compact and for any νm in Um, H(·, νm) in (8) is a well
defined injective immersion8 on S. Then, Assumptions 3.2, 3.3,
3.4 are satisfied.

In other words, since the additional assumption ”T (·, 0)
Lipschitz on S” made in Theorem 2 is automatically verified
when S is compact (T is C1), the result of Theorem 2
holds under the only assumptions of Lemma 2 if S satisfies
Assumption 3.1.

B. Injectivity with backward distinguishability

In the previous section, we have shown that finding an
injective transformation into an Hurwitz form is possible under
a strong differential observability property, namely that the
function H(·, νm) made of each output and a certain number
of its derivatives is an injective immersion. We investigate in
this section if injectivity is still ensured when we have only a
weak differential observability (i.e. H(·, νm) is injective but
not an immersion) or even only backward-distinguishability as
in [13, Theorem 3] for autonomous systems.

8H(·, νm) is injective on S and ∂H
∂x

(x, νm) is full-rank for any x in S
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Theorem 3. Take u in U . Assume that for this input, system
(1) is backward-distinguishable on X in time tu, i.e. for any
t ≥ tu and any (xa, xb) in X 2,

Y (xa, t; s;u) = Y (xb, t; s;u) ∀s ∈ [t− tu, t] =⇒ xa = xb .

Assume also that Assumption 2 holds. Then, there exists a
set R of zero-Lebesgue measure in Cdx+1 such that for any
(λ1, . . . , λdx+1) in Ωdx+1 \R with Ω = {λ ∈ C , <(λ) < 0},
and any t ≥ tu, the function T 0 defined in (5) with

- dξ = dy × (dx + 1)
- A in Rdξ×dξ and B in Rdξ×dy defined by

A =



Ã
. . .
Ã

. . .
Ã

 , B =



B̃
. . .
B̃

. . .
B̃


and

Ã =

 λ1

. . .
λdx+1

 , B̃ =

 1
...
1

 .

is such that T 0(·, t) is injective on X for t > tu.

Note that the assumption of backward-distinguishability
in finite time is in particular verified when the system is
instantaneously backward-distinguishable, and a fortiori when
the map made of the output and its derivatives up to a certain
order is injective, namely the system is weakly differentially
observable.

Of course, if T 0 has been built with system (6) instead
of (1) to satisfy Assumption 2, the assumption of backward
distinguishability needed here should hold for system (6),
namely the outputs should be distinguishable in backward time
before the solutions leave X .

Proof. Let us define for λ in C, the function T 0
λ : X ×R+ →

Cdy

T 0
λ(x, t) =

∫ t

0

e−λ(t−s)Y (x, t; s;u) ds . (10)

Given the structure of A and B, and with a permutations of
the components,

T 0(x, t) =
(
T 0
λ1

(x, t), . . . , T 0
λdx+1

(x, t)
)
.

We need to prove that T 0 is injective for almost all
(λ1, . . . , λdx+1) in Ωdx+1 (in the sense of the Lebesgue
measure). For that, we define the function

∆T (xa, xb, t, λ) = T 0
λ(xa, t)− T 0

λ(xb, t)

on Υ× Ω with

Υ = {(xa, xb, t) ∈ X 2 × (tu,+∞) : xa 6= xb} .

We are going to use the following lemma whose proof9 can
be found in [13]:

9More precisely, the result proved in [13] is for Υ open set of R2dx instead
of R2dx+1. But the proof turns out to be still valid with R2dx+1 because
the only constraint is that the dimension of Υ be strictly less than 2(dξ + 1).

Lemma 3 (Coron’s lemma). Let Ω and Υ be open sets of C
and R2dx+1 respectively. Let ∆T : Υ×Ω→ Cdy be a function
which is holomorphic in λ for all x in Υ and C1 in x for all λ
in Ω. If for any (x, λ) in Υ×Ω such that ∆T (x, λ) = 0, there

exists i in {1, . . . , dy} and k > 0 such that
∂k∆Ti
∂λk

(x, λ) 6= 0,
then the set

R =
⋃
x∈Υ

{
(λ1, . . . , λdx+1) ∈ Ωdx+1 :

∆T (x, λ1) = . . . = ∆T (x, λdx+1) = 0
}

has zero Lebesgue measure in Cdx+1.

In our case, ∆T is clearly holomorphic in λ and C1 in
x. Since for every x in Υ, λ 7→ ∆T (x, λ) is holomorphic
on the connex set C, its zeros are isolated and admit a finite
multiplicity, unless it is identically zero on C. Let us prove
that λ 7→ ∆T (x, λ) can’t be identically zero on C. If it was
the case, we would have in particular for any ω in R∫ +∞

−∞
e−iωτg(τ) dτ = 0

with g the function

g(τ) =

{
Y (xa, t; t− τ ;u)− Y (xb, t; t− τ ;u) , if τ ∈ [0, t]
0 , otherwise

which is in L2. Thus, the Fourier transform of g would be
identically zero and we deduce that necessarily we would have

Y (xa, t; t− τ ;u)− Y (xb, t; t− τ ;u) = 0

for almost all τ in [0, t] and thus for all τ in [0, t] by
continuity. Since t ≥ tu, it would follow from the backward-
distinguishability that xa = xb but this is impossible be-
cause (xa, xb, t) is in Υ. We conclude that λ 7→ ∆T (x, λ)
is not identically zero on C and the assumptions of the
lemma are satisfied. Thus, R has zero measure and for all
(λ1, . . . , λdx+1) in Cdx+1 \ R, T 0 is injective on X , by
definition of R.

Remark 4. The function T proposed by Theorem 3 takes
complex values. To remain in the real frame, one should
consider the transformation made of its real and imaginary
parts, and instead of implementing for each i in {1, . . . , dy}
and each lambda

˙̂
ξλ,i = −λξ̂λ + yi

in C, one should implement

˙̂
ξλ,i =

(
−<(λ) −=(λ)
=(λ) −<(λ)

)
ξ̂λ,i +

(
yi
0

)
in R. Thus, the dimension of the observer is 2×dy× (dx+1)
in terms of real variables.

Remark 5. It should be noted that Theorem 3 gives for each
u in U a set Ru of zero measure in which not to choose the
λi, but unfortunately, there is no guarantee that

⋃
u∈U
Ru is also

of zero-Lebesgue measure.

Remark 6. Unlike Theorem 2 which proved the injectivity
of any solution T to PDE (3), Theorem 3 proves only the
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injectivity of T 0. Note though that as shown at the beginning
of the proof of Theorem 2 (see [17]) by the “variation of
constants” formula, any solution T verifies

T (x, t) = eAt T (X(x, t; 0;u), 0) + T 0(x, t)

with A Hurwitz, and thus tends to the injective function T 0.
We can thus expect T to become injective after a certain time,
under some appropriate uniformity assumptions. In particular,
this is the case if for all x in X and all t ≥ 0, X(x, t; 0;u)
is in a set S for which there exists a class K function ρ such
that for all (xa, xb) in S × S ,

|T (xa, 0)− T (xb, 0)| ≤ ρ(|xa − xb|) ,∣∣T 0(xa, 0)− T 0(xb, 0)
∣∣ ≤ ρ(|xa − xb|) ,

and a positive real number ` such that for all t ≥ 0,∣∣T 0(xa, t)− T 0(xb, t)
∣∣ ≥ ` ρ(|xa − xb|).

In that case,

|T (xa, t)− T (xb, t)|| ≥
(
`− 2

∣∣eAt∣∣) ρ(|xa − xb|).

Hence, injectivity on X is obtained after a certain time. The
first part is about uniform (in space) continuity, which is
satisfied as soon as S is bounded, and the second part is about
injectivity (in space and in time). In fact, a way of ensuring
the injectivity is to take, if possible, a solution T with the
boundary condition

T (x, 0) = 0 ∀x ∈ S , (11)

because in that case, necessarily, T = T 0.
It is also interesting to remark that in the case where T is

initialized along (11), and the observer state is initialized at
ξ0 = 0, we have for all time s

Ξ(ξ0, 0; s;u, yx0) = T (X(x0, 0; s;u), s)

i.e. finite-time convergence is achieved as soon as T (·, t)
becomes injective.

We conclude from this section that as soon as no blow-
up in finite-time is possible, there always exists a time-
varying solution to PDE (3) which is injective under standard
observability assumptions. It follows that the only remaining
problem to address is the computation of such a solution
without relying on the expression (5). This is done in the
following section through practical examples.

III. EXAMPLES

A. Linear dynamics with polynomial output

Consider a system of the form10

ẋ = A(u, y)x+B(u, y) , y = C(u)Pd(x) (12)

with Pd : Rdx → Rkd a vector containing the kd possible
monomials of x with degree inferior to d, A : Rdu × Rdy →

10This is an abuse of notation to highlight the fact that A and B are
functions of known signals which can thus be used in the observer. In truth,
the dynamics are given by ẋ = A(u,C(u)Pd(x))x+B(u,C(u)Pd(x)).

Rdx×dx , B : Rdu×Rdy → Rdx and C : Rdu → Rdy×kd matri-
ces depending on u. For any i in {1, · · · , dy}, a transformation
Tλ,i of the form

Tλ,i(x, t) = Mλ,i(t)Pd(x)

with Mλ,i : R→ R1×kd , verifies

∂Tλ,i
∂x

(x, t)f(x, u) +
∂Tλ,i
∂t

(x, t)

= Mλ,i(t)
∂Pd
∂x

(x)
(
A(u, y)x+B(u, y)

)
+ Ṁλ,i(t)Pd(x) .

But there exists a matrix of coefficients D : Rdu×Rdy → Rkd
such that

∂Pd
∂x

(x)
(
A(u, y)x+B(u, y)

)
= D(u, y)Pd(x)

so that we get

∂Tλ,i
∂x

(x, t)f(x, u) +
∂Tλ,i
∂t

(x, t)

=
(
Mλ,i(t)D(u, y) + Ṁλ,i(t)

)
Pd(x) .

It follows that by choosing the coefficients Mλ,i as solutions
of the filters

Ṁλ,i(t) + λMλ,i(t) = −Mλ,i(t)D(u(t), y) + Ci(u(t)) ,

Tλ,i is solution to the PDE (9) with X = Rdx .
A practical example of this kind of systems is a Permanent

Magnet Synchronous Motor (PMSM), which can be modeled
by

ẋ = u(t)−Ri(t) , y = |x− Li(t)|2 − Φ2 = 0 (13)

where x is in R2, the voltages u and currents i are time varying
exogenous signals taking value in U = R2, the resistance R,
impedance L and flux Φ are known scalar parameters and
the measurement y is constantly zero. Applying the method
presented above and removing the unnecessary terms, we find
that we can choose Tλ of the form (dy = 1)

Tλ(x, t) = |x|2 + aλ(t)>x+ bλ(t)

with the dynamics of aλ and bλ given by

ȧλ = −λ aλ − 2(u(t)−Ri(t)) + 2Li(t)

ḃλ = −λ bλ − a>λ (u(t)−Ri(t)) + L2|i(t)|2 − Φ2.(14)

Once this solution has been found, an observability analysis
must be carried out to know the number of eigenvalues λ
which are necessary to ensure the injectivity of the transfor-
mation. This is developed in [17].

Note that for this particular system, a classical gradient ob-
server of smaller dimension exists ([21], [22]). The Luenberger
observer that we would obtain here offers the advantage of
depending only on filtered versions of u and i, which can be
useful in presence of significant noise. On the other hand, no
high gain design would have been possible for this system
without computing the derivatives of i, which is not desirable
in practice.
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B. A time-varying transformation for an autonomous system

It was observed in [23, Section 8.4] that it is sometimes
useful to allow the transformation to be time-varying even
for an autonomous system. Only results concerning stationary
transformations were available at the time, so that the frame-
work of dynamic extensions had to be used. This is no longer
necessary thanks to Theorems 2 and 3. Indeed, consider for
instance the system{

ẋ1 = x3
2

ẋ2 = −x1
, y = x1 (15)

which admits bounded trajectories (the quantity x2
1 + x4

2 is
constant). This system is weakly differentially observable of
order 2 on R2 since x 7→ H2(x) = (x1, x

3
2) is injective on R2.

It is thus a fortiori instantaneously backward-distinguishable
and [13, Theorem 3] holds. Applying Luenberger’s methodol-
ogy to this system would thus bring us to look for a stationary
transformation Tλ into

ξ̇λ = −λ ξλ + x1 , (16)

for which a possible solution is

Tλ(x) =

∫ 0

−∞
eλ τY (x; τ)dτ .

Although the injectivity of T = (Tλ1
, Tλ2

, Tλ3
) is satisfied for

a generic choice of (λ1, λ2, λ3) in {λ ∈ C : <(λ) > 0}3
according to [13, Theorem 3], it is difficult to compute T
numerically and as far as we are concerned, we are not able
to find an explicit expression.

Instead, it may be easier to look for a time-varying transfor-
mation and apply either Theorem 2 or 3. According to Lemma
1, such a transformation exists whatever the chosen set X of
interest and given the structure of the dynamics, one can try
to look for it in the form

Tλ(x, t) = aλ(t)x3
2 + bλ(t)x2

2 + cλ(t)x2 + dλ(t)x1 + eλ(t) .
(17)

It verifies the dynamics (16) if for instance

ȧλ(t) = −λ aλ(t) + dλ(t)

ḃλ(t) = −λ bλ(t) + 3aλ(t)y

ċλ(t) = −λ cλ(t) + 2bλ(t)y

ḋλ(t) = −λ dλ(t) + 1

ėλ(t) = −λ eλ(t) + cλ(t)y

Using Remark 6 and applying Theorem 3, we know that, by
initializing the filters aλ, bλ, cλ, dλ and eλ at 0 at time 0,
x 7→ (Tλ1(x, t), Tλ2(x, t), Tλ3(x, t)) is injective on R2 for
t > 0 and for a generic choice of (λ1, λ2, λ3) in {λ ∈ C :
<(λ) > 0}3.

To reduce the dimension of the filters, we can take dλ(t) =
1
λ and aλ(t) = 1

λ2 . In that case Theorem 3 cannot be properly
applied because Tλ is not T 0

λ . However, we have found at least
in simulations that injectivity is preserved after a certain time
as shown in Figure 1.

Note that since the system is strongly differentially observ-
able of order 4 on S = {(x1, x2) ∈ R2 : x2

1 + x2
2 6=

0}, i.e. H4 is an injective immersion on S, Theorem 2 in

Time
0 1 2 3 4 5 6 7

-1.5
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-0.5

0

0.5

1

1.5

2

x1

x̂1

Time
0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

x2

x̂2

Fig. 1. Nonlinear Luenberger observer for system (15) : dynamics (16) and
transformations (17) (with dλ(t) = 1

λ
and aλ(t) = 1

λ2 ) for λ1 = 5, λ2 =
6, λ3 = 7. The transformation is inverted by first linearly combining the
Tλi − ξλi to make x1 disappear (because the dλi are all nonzero), and then
searching numerically the common roots of the obtained two polynomials of
order 3 in x2.

combination with Lemma 2 says that, for any positive real
number L > 1, by choosing 4 sufficiently large real strictly
positive numbers λi, and for any initial conditions for the fil-
ters, x 7→ (Tλ1(x, t), Tλ2(x, t), Tλ3(x, t), Tλ4(x, t)) becomes
injective on X =

{
(x1, x2) ∈ R2 : 1

L < x2
1 + x4

2 < L
}

after
some time.

Remark 7. In those examples, the time dependence of T
comes through filters aλ, ..., eλ, that take into account the
input and output signals. Therefore, T could also be seen as a
stationary transformation T (x, aλ, . . . , eλ) if the filters’ states
were added to the system and observer states.

IV. STATIONARY TRANSFORMATION

We have just seen that a time-varying transformation could
be used for an autonomous system. We investigate here the
converse, i.e. if a stationary transformation can be used for
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time-varying systems. Consider a control-affine single-output
system

ẋ = f(x) + g(x)u , y = h(x) ∈ R . (18)

We will use the following two notions of observability :

Definition 1 (Differential observability of the drift system).
The drift system of system (18) is said weakly differentially
observable of order m on an open subset S of Rdx if the
function

Hm = (h(x), Lfh(x), . . . , Lm−1
f h(x)

is injective on S. If it is also an immersion, we say strongly
differentially observable of order m.

Definition 2 (Instantaneous uniform observability). System
(18) is instantaneously uniformly observable on an open subset
S of Rdx if, for any pair (xa, xb) in S2 with xa 6= xb,
any strictly positive number t, and any function u defined on
[0, t), there exists a time t < t such that h(Xu(xa, t)) 6=
h(Xu(xb, t)) and (Xu(xa, s), Xu(xb, s)) ∈ S2 for all s ≤ t.

In the high gain framework, we know from [5], [6] that
when system (18) is uniformly instantaneously observable and
its drift dynamics are differentially observable of order dx, it
is possible to keep the stationary transformation associated
to the drift autonomous system, because the additional terms
resulting from the presence of inputs are triangular and do
not prevent the convergence of the observer. It turns out that,
inspired from [13, Theorem 5], an equivalent result exists in
the Luenberger framework.

Theorem 4. Let λ1, . . . , λdx be any distinct strictly positive
real numbers, A the Hurwitz matrix diag(−λ1, . . . ,−λdx) in
Rdx×dx , B the vector (1, ..., 1)> in Rdx and S an open subset
of Rdx containing X0. Assume that system (18) is uniformly
instantaneously observable on S and its drift system is strongly
differentially observable of order dx on S. Then, for any
positive real number u, any bounded open subset X of Rdx
such that

- cl(X ) ⊂ S,
- for any u in U , for all t in [0,+∞) and for all x0 in X0,
|u(t)| ≤ u and X(x0, 0; t;u) is in X ,

there exists a strictly positive number k such that for any
k > k:

- there exists a function T : Rdx → Rdx which is a
diffeomorphism on cl(X ) and is solution to the PDE
associated to the drift dynamics

∂T

∂x
(x)f(x) = k AT (x) +B h(x) ∀x ∈ X . (19)

- there exists a Lipschitz function ϕ defined on Rdx veri-
fying

ϕ(T (x)) =
∂T

∂x
(x)g(x) ∀x ∈ X , (20)

and such that, for any function T : Rdx → Rdx verifying

T (T (x)) = x ∀x ∈ X ,

the system

ξ̇ = k A ξ +B y + ϕ(ξ)u , x̂ = T (ξ) (21)

is an observer for system (18) initialized in X0.

Proof. See Appendix.

Even though Theorem 4 is not constructive in its statement it
has to be mentioned that the function involved in the observer
definition can be given explicitly. For instance, following [13]
the function T : Rdx → Rdx solution to (19) is defined by

T (x) =

∫ 0

−∞
e−kAτB h(X̌(x, τ)) dτ

where X̌ is the flow of a modified version of the vector field f
(see the proof in the Appendix for more details). Similarly to
the function T∞, this mapping is not easily computable. Note
however that as shown in [24] some numerical approximation
can be considered.

Also, the function ϕ is defined on the open set T (X ) by
(20). If the trajectories of the observer state ξ̂ remain in this set,
there is no need to extend its domain of definition to the whole
Rdx . Otherwise, the only constraint is that the global Lipschitz
constant a of the extension be such that kmin |λi| > au, to
ensure the convergence of the observer. In the proof below,
it is proved that such extensions exist for k sufficiently large
(this is not trivial because a could a priori depend on k).

Otherwise, instead of extending ϕ outside T (X ), one could
take

ϕ(ξ) =
∂T

∂x
(T (ξ))g(T (ξ))

but the way T is defined outside T (X ) must be such that :

∃α > 0 : ∀k ≥ k , ∀ξ̂ ∈ Rdx , ∀x ∈ X ,
|T (x)− T (T (ξ̂))| ≤ α|T (x)− ξ̂| .

The constraint here is that α must be independent from k. For
instance, the function

T (ξ) = Argminx∈cl(X )|T (x)− ξ|

clearly works since

|T (x)− T (T (ξ̂))| ≤ |T (x)− ξ̂|+ |ξ̂ − T (T (ξ̂))|︸ ︷︷ ︸
≤|ξ̂−T (x)|

.

Another more regular candidate is the McShane extension

T (ξ) = min
x∈cl(X )

{x+ |T (x)− ξ|}

which also verifies the requirement.

Example 1. Consider the bioreactor model used in [6]{
ẋ1 = µ(x1, x2)x1 − ux1

ẋ2 = −a3 µ(x1, x2)x1 − ux2 + ua4
, y = x1

(22)
where x1 (resp x2) is the concentration of the microorganisms
(resp the substrate) in a tank of constant volume, u is bounded
positive input and the growth rate is given by the ”Contois”
model

µ(x1, x2) =
a1x2

a2x1 + x2
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with ai positive constants. This system is uniformly instanta-
neously observable on the set

S = {(x1, x2) ∈ R2 : x1 > 0 , x2 > 0}

which is invariant by the dynamics (22). Besides, it is straight-
forward to check that the drift system is strongly differentially
observable of order 2 on S. Note finally that the input u being
bounded, the trajectories are bounded and all the assumptions
of Theorem 4 are satisfied.

Let us look for a transformation T solution to the PDE (19)
associated to the drift system. We first note that the quantity
z = a3x1 + x2 is constant along the drift dynamics and to
facilitate the computations, we look for T as a function of
(x1, z) instead of (x1, x2), namely we solve :

∂Tλ
∂x1

(x1, z)µ(x1, z − a3x1)x1 = −kλTλ(x1, z) + x1

Integrating with respect to x1, we find that a possible solution
is :

Tλ(x1, z) =
1

a1

∫ x1

0

(
z − a3x1

z − a3s

) kλa2
a1a3

(
s

x1

) kλ
a1(
a2

z − a3s
+ 1

)
ds

By taking

T (x1, x2) =
(
Tλ1(x1, a3x1 + x2), Tλ2(x1, a3x1 + x2)

)
with λ1 and λ2 two distinct strictly positive numbers, we thus
obtain a solution to PDE (19) on S.

For k sufficiently large, we know from Theorem 4 that there
exists at least one solution of (19) which is a diffeomorphism
and we assume the same property holds for this particular
solution. Assuming also that ξ remains in T (X ) as in [6], the
observer writes

ξ̇ = kA ξ +B y +
dT

dx
(x̂)g(x̂)u, x̂ = T−1(ξ)

which may be realized in the x-coordinates as

˙̂x = f(x̂) + g(x̂)u+

(
dT

dx
(x̂)

)−1

(y − x̂1) . (23)

The results of a simulation with the same system parameters
as in [6] are presented on Figure 2.

V. CONCLUSION

We have shown how a Luenberger methodology can be
applied to nonlinear controlled systems. It is based on the
resolution of a time-varying PDE, the solutions of which exist
under very mild assumptions, transform the system into a
linear asymptotically stable one, and become injective after
a certain time if

- either the function made of the output and a certain
number of its derivatives is Lipschitz-injective : this
is verified when the system is strongly differentially
observable and the trajectories are bounded.

- or the system is backward-distinguishable (uniformly in
time), but in this case, injectivity is ensured for ”almost
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Fig. 2. Nonlinear Luenberger observer (23) for system (22) with k = 3,
λ1 = 1, λ2 = 2.

all” choice of a diagonal complex matrix A (of suffi-
ciently large dimension) in the sense of the Lebesgue
measure in C.

Although solutions to the PDE are guaranteed to exist, they
may be difficult to compute. We have shown on practical
examples how this can be done by a priori guessing their
”structure”. The advantage with respect to a more straight-
forward high gain design is however that the transformation
does not depend on the derivatives of the input which thus
need not be computed.

Also, it is interesting to remember that exactly as in the
high gain paradigm, for uniformly instantaneously observable
control-affine systems, we may use the stationary transfor-
mation associated to the autonomous drift system when it is
strongly differentially observable of order dx. The result does
not stand for higher orders of differential observability, since
it relies on the existence of Lipschitz functions gi such that
gi(Hi(x)) = LgL

i−1
f (x), and it is shown in [18] that the

Lipschitzness is lost when the drift system is differentially
observable of higher order.

A perspective of this work could be to study the impact of
the noise in a Luenberger design and in particular see if it
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is possible to optimize the choice of the eigenvalues of the
Hurwitz matrix A in order to limit its effect.

APPENDIX A
PROOF OF THEOREM 4

Let X ′ and X ′′ be open sets such that

cl(X ) ⊂ X ′ ⊂ cl(X ′) ⊂ X ′′ ⊂ cl(X ′′) ⊂ S .

Consider the function T : Rdx → Rdx defined by

T (x) =

∫ 0

−∞
e−kAτB h(X̌(x, τ)) dτ

where X̌(x, τ) denotes the value at time τ of the solution
initialized at x at time 0 of the modified autonomous drift
system

ẋ = χ(x)f(x) ,

for any C∞ function χ : Rdx → R satisfying

χ(x) =

{
1 , if x ∈ cl(X ′)
0 , if x /∈ X ′′

According to [25, Proposition 3.3], there exists k0 such that
for all k ≥ k0, T is C1 and verifies PDE (19). Now let us
prove that it is injective on cl(X ′) for k sufficiently large11.
The drift system being strongly differentially observable of
order dx, the function

Hdx(x) = (h(x), Lfh(x), . . . , Ldxf (x))

is an injective immersion on cl(X ′) and by [25, Lemma 3.2],
there exists LH > 0 such that for all (xa, xb)

2 in cl(X ′)2,

|Hdx(xa)−Hdx(xb)| ≥ LH |xa − xb| .

Besides, since χf = f on cl(X ′), after several integrations
by parts (by integrating e−kAτ and differentiating h(X(x, τ))
with respect to time, and using that A is Hurwitz and X
bounded for the limit τ → −∞), we obtain for all x in cl(X ′)

T (x) = A−dxC

(
−KHdx(x) +

1

kdx
R(x)

)
(24)

where K = diag
(

1
k , ...,

1
kdx

)
, C is the invertible controllabil-

ity matrix
C = [Adx−1B ... AB B] ,

and R the remainder

R(x) = C−1

∫ 0

−∞
e−kAτB Ldxf (X̌(x, τ)) dτ .

This latter integral makes sense on cl(X ′) because :
- A being diagonal and denoting a = mini |λi| > 0, for all
τ ∈ (−∞, 0], ∣∣e−kAτ ∣∣ ≤ ekaτ .

- By definition of the function χ, for all x in cl(X ′),
X̌(x, τ) is in cl(X ′) for all τ , i.e. τ 7→ Ldxf (X̌(x, τ)) is
bounded.

11This proof is similar to that of [13, Theorem 4].

So now taking (xa, xb) in cl(X ′)2, and considering the
difference |T (xa)− T (xb)|, from (24), we obtain

|T (xa)− T (xb)| ≥
|A−dxC |
kdx

(
|Hdx(xa)−Hdx(xb)|

− |R(xa)−R(xb)|
)
,

and if R is Lipschitz with Lipschitz constant LR, we get

|T (xa)− T (xb)| ≥
|A−dxC |
kdx

(LH − LR)|xa − xb| .

In order to deduce the injectivity of T , we also need LR < LH
and we are going to prove that this is true for k sufficiently
large. To compute LR, let us find a bound of

∣∣∂R
∂x (x)

∣∣. By
defining

c0 = max
x∈cl(X ′)

∣∣∣∣∣B∂L
dx
f h

∂x
(x)

∣∣∣∣∣ , ρ1 = max
x∈cl(X ′)

∣∣∣∣∂f∂x (x)

∣∣∣∣ ,
we have for all τ in (−∞, 0] and all x in cl(X ′),∣∣∣∣∣B∂L

dx
f h

∂x
(X̌(x, τ))

∣∣∣∣∣ ≤ c0 and12

∣∣∣∣∂X̌∂x (x, τ)

∣∣∣∣ ≤ e−ρ1τ . (25)

We conclude that for k > ρ1
a , R is C1 and there exists a

positive constant c1 such that for all x in cl(X ′),∣∣∣∣∂R∂x (x)

∣∣∣∣ ≤ |C−1|
∫ 0

−∞

∣∣e−kAτ ∣∣∣∣∣∣∣B∂L
dx
f h

∂x
(X̌(x, τ))

∣∣∣∣∣
∣∣∣∣∂X̌∂x (x, τ)

∣∣∣∣ dτ
≤ c1
ka− ρ1

.

We finally obtain

|T (xa)− T (xb)| ≥ LT |xa− xb| ∀(xa, xb) ∈ cl(X ′)2 (26)

where

LT =
|A−dxC |
kdx

(
LH −

c1
ka− ρ1

)
,

and T is injective on cl(X ′) if k ≥ k1 with

k1 = max

{
k0,

c1 + ρ1LH
aLH

}
.

Moreover, taking x in X ′, any v in Rm and h sufficiently
small for x+ hv to be in X ′, it follows from (26) that∣∣∣∣T (x+ hv)− T (x)

h

∣∣∣∣ ≥ LT |v| ,
and making h tend to zero, we get∣∣∣∣∂T∂x (x)v

∣∣∣∣ ≥ LT |v|
and T is full-rank on X ′. So T is a diffeomorphism on X ′ for
k ≥ k1.

12Because ψ(τ) = ∂X̌
∂x

(x, τ) follows the ODE dψ
dτ

(τ) =
∂f
∂x

(X̌(x, τ))ψ(τ), and ψ(0) = I .
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Now, let us show that system (21) is an observer for system
(18). Suppose for the time being that we have shown that there
exists a strictly positive number a such that for any k ≥ k1,
there exists a function ϕ such that (20) holds and

|ϕ(ξ̂)− ϕ(ξ)| ≤ a |ξ̂ − ξ| ∀(ξ̂, ξ) ∈ (Rdx)2 . (27)

Take u in U , x0 in X0 ξ̂0 in Rdx , and consider the solution
X(x0; t;u) of system (18) and any corresponding solution
Ξ̂(ξ̂0; t;u, yx0

) of system (21). Since X(x0; t;u) remains
in X by assumption, the error e(t) = Ξ̂(ξ̂0; t;u, yx0

) −
T (X(x0; t;u)) verifies

ė = kA e+
(
ϕ(Ξ̂(ξ̂0; t;u, yx0

))− ϕ(T (X(x0; t;u))
)
u

and thus
˙︷ ︷

e>e ≤ −2(ka− au) e>e .

Defining k2 = max{k1,
au
a }, we conclude that e asymptoti-

cally converges to 0 if k ≥ k2. Note that for this conclusion to
hold, it is crucial to have a independent from k. Now, consider
an open set X̃ such that cl(X ) ⊂ X̃ ⊂ cl(X̃ ) ⊂ X ′. Since
T (X(x0; t;u)) remains in T (X ) and cl(T (X )) = T (cl(X ))
is contained in the open set T (X̃ ), there exists a time t such
that for all t ≥ t, Ξ̂(ξ̂0; t;u, yx0

) is in T (X̃ ). T = T−1 is C1

on the compact set cl(T (X̃ )) and thus Lipschitz on that set. It
follows that X̂((x0, ξ̂0); t;u) = T (Ξ̂(ξ̂0; t;u, yx0

)) converges
to X(x0; t;u).

It remains to show the existence of the functions ϕ. Since
system (18) is uniformly instantaneously observable and its
drift system is strongly differentially observable of order dx
on S, we know since [5] that for all i in {1, . . . , dx}, there
exists a Lipschitz function gi such that

LgL
i−1
f h(x) = gi(h(x), . . . , Li−1

f (x)) ∀x ∈ cl(X ) .
(28)

Consider the function

ϕ(x) =
∂T

∂x
(x)g(x)

= A−dxC

−K∂Hdx

∂x
(x)g(x)︸ ︷︷ ︸

ϕH(x)

+
1

kdx
∂R

∂x
(x)g(x)︸ ︷︷ ︸

ϕR(x)

 .

Let us first study ϕH . Notice that the ith-component of ϕH is

ϕH,i =
1

ki
LgL

i−1
f h(x) and according to (28), there exists Li

such that for all (x, x̂) in cl(X )2

|ϕH,i(x̂)− ϕH,i(x)| ≤ Li
i∑

j=1

∣∣∣∣ 1

kj

(
Lj−1
f (x̂)− Lj−1

f (x)
)∣∣∣∣

and thus L such that for all (x, x̂) in cl(X )2

|ϕH(x̂)− ϕH(x)| ≤ L|KHdx(x̂)−KHdx(x)| .

But using (24), we get

|KHdx(x̂)−KHdx(x)| ≤ |AdxC−1||T (x̂)− T (x)|

+
1

kdx
|R(x̂)−R(x)| .

We have seen that for all (x, x̂) in cl(X )2

|R(x̂)−R(x)| ≤ c1
ka− ρ1

|x̂− x|

and according to (26),

1

kdx
|R(x̂)−R(x)| ≤

c1
ka−ρ1

LH − c1
ka−ρ1

|AdxC−1||T (x̂)− T (x)| .

We finally obtain, for any (x, x̂) in cl(X )2 and for any k ≥ k1,

|ϕH(x̂)− ϕH(x)|

≤ L|AdxC−1|

(
1 +

c1
ka−ρ1

LH − c1
ka−ρ1

)
|T (x̂)− T (x)|

≤ L|AdxC−1|
(

1 +
c1

LH(k1a− ρ1)

)
|T (x̂)− T (x)| .

Let us now study the term ϕR(x). For (x, x̂) in cl(X )2,

ϕR(x̂)− ϕR(x) =
1

kdx
C−1

∫ 0

−∞
e−kAτB

× (D1(x, x̂, τ) +D2(x, x̂, τ) +D3(x, x̂, τ))dτ

where

D1(x, x̂, τ)

=

(
∂Ldxf h

∂x
(X̌(x, τ))−

∂Ldxf h

∂x
(X̌(x̂, τ))

)
∂X̌

∂x
(x̂, τ)g(x̂)

D2(x, x̂, τ)

=
∂Ldxf h

∂x
(X̌(x, τ))

(
∂X̌

∂x
(x̂, τ)− ∂X̌

∂x
(x, τ)

)
g(x̂)

D3(x, x̂, τ) =
∂Ldxf h

∂x
(X̌(x, τ))

∂X̌

∂x
(x, τ) (g(x̂)− g(x))

Assuming that Ldxf h is C2 and g is C1, it follows from (25)
and the fact that X̌(x, τ) is in the compact set cl(X ′) for all
τ in (−∞, 0], that for all (x, x̂) in cl(X )2 and for all τ in
(−∞, 0],

|D1(x, x̂, τ)| ≤ c2e
−2ρ1τ |x− x̂|

|D3(x, x̂, τ)| ≤ c3e
−ρ1τ |x− x̂| .

As for D2, posing ϕ(τ) = ∂X̌
∂x (x̂, τ) − ∂X̌

∂x (x, τ), and differ-
entiating ϕ with respect to time, we get

ϕ(0) = 0

ϕ′(τ) =
∂f

∂x
(X̌(x̂, τ))ϕ(τ) (29)

+

(
∂f

∂x
(X̌(x̂, τ))− ∂f

∂x
(X̌(x, τ))

)
∂X̌

∂x
(x, τ) .

Since for all τ in (−∞, 0] and for all (x, x̂) in cl(X )2,∣∣∣∣∂f∂x (X̌(x̂, τ))

∣∣∣∣ ≤ ρ1 ,

∣∣∣∣∂X̌∂x (x, τ)

∣∣∣∣ ≤ e−ρ1τ
and ∣∣∣∣∂f∂x (X̌(x̂, τ))− ∂f

∂x
(X̌(x, τ))

∣∣∣∣ ≤ c4e−ρ1τ |x− x̂| ,
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we obtain by solving (29) in negative time and taking the norm

|D2(x̂, x, τ)| ≤
(
c5e
−ρ1τ + c6e

−2ρ1τ
)
|x−x̂| ≤ c7 e−2ρ1τ |x−x̂|

for all τ in (−∞, 0] and all (x, x̂) in cl(X )2. Therefore, for
all k ≥ k1,

|ϕR(x̂)− ϕR(x)| ≤ 1

kdx
c8

ka− ρ1
|x− x̂|

≤
c9

ka−ρ1
LH − c1

ka−ρ1
|T (x)− T (x̂)|

≤ c9

LH(k1a− ρ1)
|T (x)− T (x̂)| .

Finally, there exists a constant a such that for all k ≥ k1, and
for all (x, x̂) in cl(X )2,

|ϕ(x̂)− ϕ(x)| ≤ a |T (x̂)− T (x)| . (30)

Consider now the function

ϕ(ξ) = ϕ(T−1(ξ))

defined on T (X ′). According to (30), ϕ is Lipschitz on T (X ′),
and with Kirszbraun-Valentine Theorem [26], [27], it admits
a Lipschitz extension on Rdx with same Lipschitz constant a,
i.e. such that (20) and (27) hold. This concludes the proof.

REFERENCES

[1] D. Luenberger, “Observing the state of a linear system,” IEEE Transac-
tions on Military Electronics, vol. 8, pp. 74–80, 1964.

[2] A. H. Jazwinski, Stochastic processes and filtering theory. Academic
Press, 1970.

[3] D. Bossane, D. Rakotopara, and J. P. Gauthier, “Local and global
immersion into linear systems up to output injection,” IEEE Conference
on Decision and Control, pp. 2000–2004, 1989.

[4] P. Jouan, “Immersion of nonlinear systems into linear systems modulo
output injection,” SIAM Journal on Control and Optimization, vol. 41,
no. 6, pp. 1756–1778, 2003.

[5] J.-P. Gauthier and G. Bornard, “Observability for any u(t) of a class of
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 26,
pp. 922 – 926, 1981.

[6] J.-P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for
nonlinear systems application to bioreactors,” IEEE Transactions on
Automatic Control, vol. 37, no. 6, pp. 875–880, 1992.

[7] A. Astolfi, R. Ortega, and A. Venkatraman, “A globally exponential
convergent immersion and invariance speed observer for mechanical
systems with non-holonomic constraints,” Automatica, vol. 46, no. 1,
pp. 182–189, 2010.

[8] M. Zeitz, “Observability canonical (phase-variable) form for nonlin-
ear time-variable systems,” International Journal of Systems Science,
vol. 15, no. 9, pp. 949–958, 1984.

[9] J.-P. Gauthier and I. Kupka, Deterministic observation theory and
applications. Cambridge University Press, 2001.

[10] A. Shoshitaishvili, “On control branching systems with degenerate
linearization,” IFAC Symposium on Nonlinear Control Systems, pp. 495–
500, 1992.

[11] N. Kazantzis and C. Kravaris, “Nonlinear observer design using Lya-
punov’s auxiliary theorem,” Systems and Control Letters, vol. 34, pp.
241–247, 1998.

[12] A. Krener and M. Xiao, “Nonlinear observer design in the Siegel
domain,” SIAM Journal on Control and Optimization, vol. 41, no. 3,
pp. 932–953, 2003.

[13] V. Andrieu and L. Praly, “On the existence of a Kazantzis–Kravaris
/ Luenberger observer,” SIAM Journal on Control and Optimization,
vol. 45, no. 2, pp. 432–456, 2006.

[14] R. Engel, “Exponential observers for nonlinear systems with inputs,”
Universität of Kassel, Department of Electrical Engineering, Tech. Rep.,
2005.

[15] ——, “Nonlinear observers for Lipschitz continuous systems with
inputs,” International Journal of Control, vol. 80, no. 4, pp. 495–508,
2007.

[16] G. Kreisselmeier and R. Engel, “Nonlinear observers for autonomous
lipshitz continuous systems,” IEEE Transactions on Automatic Control,
vol. 48, no. 3, pp. 451–464, 2003.

[17] P. Bernard, “Luenberger observers for nonlinear controlled systems,”
IEEE Conference on Decision and Control, 2017.

[18] P. Bernard, L. Praly, V. Andrieu, and H. Hammouri, “On the triangular
canonical form for uniformly observable controlled systems,” Automat-
ica, vol. 85, pp. 293–300, 2017.

[19] F. Poulain, L. Praly, and R. Ortega, “An observer for permanent magnet
synchronous motors with currents and voltages as only measurements,”
IEEE Conference on Decision and Control, 2008.

[20] A. Tornambe, “Use of asymptotic observers having high gains in the
state and parameter estimation,” IEEE Conference on Decision and
Control, vol. 2, pp. 1791–1794, 1989.

[21] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi, “Sensorless
control of surface-mount permanent-magnet synchronous motors based
on a nonlinear observer,” IEEE Transactions on Power Electronics,
vol. 25, no. 2, pp. 290–297, 2010.
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