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Abstract—In a recent research paper, we proposed a common
mathematical framework for stochastic reverberation models,
that aimed to unify several well-known results regarding the
statistical properties of reverberation, in the spatial, spectral
and temporal domains. This model was dedicated to diffuse (i.e.
isotropic and uniform) acoustic fields, omnidirectional sources
and microphones, and constant attenuation coefficients w.r.t.
the frequency. In this technical report, we introduce several
extensions of this model, that aim to model reverberation more
realistically, by considering anisotropic and non-uniform acoustic
fields, directive sources and microphones, and frequency-varying
attenuation coefficients.

Index Terms—Reverberation; Diffusion; Room impulse re-
sponse; Stochastic models.

Résumé—Dans un récent article de recherche, nous avons
proposé un cadre mathématique commun pour les modèles
stochastiques de réverbération, qui visait à unifier plusieurs
résultats bien connus concernant les propriétés statistiques de
la réverbération, dans les domaines spatial, spectral et temporel.
Ce modèle était dédié aux champs acoustiques diffus (c’est à
dire isotropes et uniformes), à des sources et des microphones
omnidirectionnels, et à des coefficients d’atténuation constants
par rapport à la fréquence. Dans ce rapport technique, nous
introduisons plusieurs extensions de ce modèle, qui visent à mod-
éliser la réverbération de manière plus réaliste, en considérant
des champs acoustiques anisotropes et non uniformes, des sources
et des microphones directifs, et des coefficients d’atténuation
variant en fonction de la fréquence.

Mots clés—Réverbération; Diffusion; Réponse impulsionnelle
de salle; Modèles stochastiques.

I. INTRODUCTION

In [1], we proposed a common mathematical framework
for stochastic reverberation models, that aimed to unify several
well-known results regarding the statistical properties of rever-
beration, in the spatial, spectral and temporal domains [2]–[9].

This stochastic model was based on the source image prin-
ciple [10], [11], which represents the sound wave reflected by
a flat surface as if it was emitted by a so-called source image
located outside the room. In [1], the positions of the source
images were modeled as random and uniformly distributed
according to a Poisson point process. More precisely, given a
Borel set V ⊂ R3 of finite volume |V |, we assume that the
number N(V ) of source images contained in V follows a Pois-
son distribution of rate parameter λ|V |: N(V ) ∼ P(λ|V |).

Mathematically, this is formalized through the concept of
Poisson random measures with independent increments: given
a non-negative, locally integrable function Λ(x) on Rp, the
Poisson random increment dN(x) ∼ P(Λ(x)dx) corresponds
to an infinitesimal volume |V | = dx. Then for any Borel set
V ⊂ Rp of finite Lebesgue measure, the number N(V ) =∫
V
dN(x) of points contained in V follows a Poisson distribu-

tion of rate parameter
∫
V

Λ(x)dx: N(V ) ∼ P(
∫
V

Λ(x)dx).
In the stochastic reverberation model proposed in [1], we con-
sidered a spatially uniform distribution of the source images
in the 3D-space, so that p = 3 and Λ(x) = λ > 0 is constant.

In other respects, we assumed that the source images
emit spherical acoustic waves, which undergo an exponential
attenuation along their trajectories, that is due to the multiple
reflections on the room surfaces and to propagation in the
air. We considered a diffuse (i.e. uniform and isotropic)
acoustic field, so we further assumed that this attenuation is
isotropic. We also assumed that the attenuation is constant
w.r.t. the frequency, so that it only depends on the length of
the trajectory. Finally, we considered omnidirectional sources
and microphones. These assumptions resulted in the following
stochastic model: for any sensor i ∈ {1 . . . I}, time t ∈ R, and
frequency f ∈ R,

hi(t) =
∫
x∈R3

(gi∗s)
(
t− ‖x−xi‖2c

)
e−

α‖x−xi‖2
c

‖x−xi‖2
dN(x)

ĥi(f) = ĝi (f) ŝ (f)
∫
x∈R3

e−
(α+2ıπf)‖x−xi‖2

c

‖x−xi‖2
dN(x)

(1)
where

• hi(t) ∈ R (resp. ĥi(f) ∈ C) is the room impulse response
(resp. room frequency response) at sensor i;

• gi(t) ∈ R (resp. ĝi(f) ∈ C) is the impulse response (resp.
frequency response) of the omnidirectional sensor i;

• s (t) ∈ R (resp. ŝ (f) ∈ C) is the impulse response (resp.
frequency response) of the omnidirectional source;

• vector xi ∈ R3 (in meters) is the position of sensor i;
• vector x ∈ R3 (in meters) represents the positions of the

source images. As mentioned above, it is distributed ac-
cording to a uniform and isotropic Poisson point process
dN(x) ∼ P(λdx) with λ > 0 (in meters−3);

• c > 0 is the speed of sound (in meters.hertz);
• α > 0 is the constant attenuation coefficient (in hertz);
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• the term e−
2ıπf‖x−xi‖2

c

‖x−xi‖2
corresponds to the propagation of

a monochromatic spherical wave from x to xi.
Note that (1) is a re-parametrization from [1], where gi(t)

and s(t) were merged in a single function g(t) = (gi ∗ s)(t+
T ) eαt, with T > 0.

This model was thus limited to diffuse acoustic fields,
omnidirectional sources and microphones, and constant at-
tenuation coefficients w.r.t. the frequency. In the following
sections, we will propose successive extensions of this model,
that aim to model reverberation more realistically, by con-
sidering anisotropic and non-uniform acoustic fields, directive
sources and microphones, and frequency-varying attenuation
coefficients. For this purpose, we will make several experi-
mental observations1 regarding some statistical properties of
the source images (Sections II to V), that we do not aim to
prove mathematically (this could be the topic of other papers),
but rather to describe mathematically with our new stochastic
reverberation model (that will be mathematically formulated in
Section VI). In future papers, we will show that this model is
able to predict various statistical properties of reverberation
(regarding the first and second order moments in the spa-
tial, spectral, temporal and time-frequency domains, and the
asymptotic Gaussianity), that we experimentally observed in
a wide variety of both synthetic and measured room impulse
responses. In the following sections, we will use the same
mathematical notation as in [1].

II. DIFFUSE REVERBERATION MODEL FOR
OMNIDIRECTIONAL SOURCES AND SENSORS

A. Simulation results: ergodic room

We consider a bi-dimensional room2 whose geometry is
depicted in Fig. 1. The straight blue lines represent the room
walls, the small black circles represent the sensors’ positions,
the red cross represents the original source position, and the
black straight line originating from the source represents the
source orientation.

We assume that the reflections on the walls of the sound
wave emitted from the source are specular, and they will be
modeled by using the source image principle: from within the
room, the sound wave reflected from a given wall is the same
as the one that would be emitted from a source image located
outside the room. Fig. 2 represents one such source image,
which is obtained by mirroring the original source (and its
orientation) w.r.t. the top-right wall, along with its visibility
region (green surface), which is included in a cone emerging
from the source image position, and whose boundaries match
the edges of the reflecting wall. Here we note that the first
(i.e. top-left) sensor can see this source image, whereas the
second (i.e. bottom-right) one cannot.

This source image is what we call a first generation source
image (obtained by mirroring the original source, whose

1The Matlab code generating all the figures in this report is available at
https://perso.telecom-paristech.fr/rbadeau/techreport2019-code.zip.

2All the experiments in this technical report illustrate the source image
principle in 2D-space for convenience, but of course the reverberation model
will be defined in the 3D-space.
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Fig. 1. Geometry of the ergodic room
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Fig. 2. Closest top-right source image and its visibility region

generation index is zero by convention). By iterating this
mirroring process on every wall, we can successively obtain
infinitely many source image generations. Fig. 3 represents
the two constellations of all source images up to the 30th
generation, that are visible from the first sensor (red crosses)
or from the second one (magenta circles). We observe that
some source images are visible from both sensors, whereas
others are visible only from one sensor (an accurate count
shows that about 32 % of the source images visible from
one sensor are also visible from the other one). We also
observe that the spatial distribution of the source images looks
random, and it is approximately uniform and isotropic. For
this reason, this reverberation room is called ergodic, which
means that computing averages over time is equivalent to
computing averages over space. Indeed, on the one hand, space
is sampled uniformly and isotropically by the source images,
thus averaging over space is equivalent to averaging over all
source images, and on the other hand, the propagation time
of sound waves is proportional to the distance of a source
image to the sensor, thus every instant corresponds to a circle
centered at each sensor, so that averaging over time is also
equivalent to averaging over all source images by varying the
radius of the circle.

Fig. 4-(a) and (b) represent the exact same constellations
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Fig. 3. Two constellations of source images up to 30th generation

of source images as in Fig. 3, but a vertical axis is added,
which represents the generation index of every source image.
We observe that now both constellations form a cone, that we
will refer to as a reflection cone, since the generation index
corresponds to the total number of reflections undergone by
the sound wave. In the same way, Fig. 4-(c) (resp. Fig. 4-(d))
represents a slice of the cone in Fig. 4-(a) (resp. Fig. 4-(b))
cut along the horizontal axis, which shows that the thickness
of the cone is approximately uniform.

Fig. 4. Constellations of source images with their generations

In Fig. 5-(a) (resp. Fig. 5-(b)), we represented the same
reflection cone as in Fig. 4-(a) (resp. Fig. 4-(b)), as a surface
plot obtained by means of Delaunay triangulation. Fig. 5-(c)
(resp. Fig. 5-(d)) represents the same reflection cone as Fig. 5-
(a) (resp. Fig. 5-(b)), but seen from directly overhead. This

figure shows that the two reflection cones are approximately
isotropic and equal.
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Fig. 5. Reflection cones of the generations of the source images

Fig. 6 represents another kind of reflection cone: the vertical
axis does no longer represent the generations of the source
images, but rather their log-magnitudes, which are computed
as follows: the log-magnitude of the original source is 0, and
every reflection on every wall decreases the log-magnitude by
the attenuation coefficient of the wall. As a numerical example,
we used the following values of attenuation coefficients for
the four walls: {1, 2, 3, 4} (the walls being sorted counter-
clockwise, starting from the bottom wall). As previously, the
first column corresponds to the first sensor, the second column
to the second sensor, the first row represents the cones seen
from an oblique direction, the second row represents the cones
seen from directly overhead, and the third row represents a
slice of the cones along the horizontal axis. We notice that the
properties of this reverberation cone are the same as in Fig. 4
and 5: the different attenuation coefficients of the walls do not
affect its shape.

Finally, Fig. 7 represents the same kind of reflection cone as
in Fig. 6, but this time the attenuation coefficients of the four
walls depend on the angle of incidence of the sound wave on
the wall (as a numerical example, the coefficients {1, 2, 3, 4}
were multiplied by the cosine of the angle of incidence of the
sound wave w.r.t. the normal of the wall). We notice that the
properties of this reverberation cone are the same as in Fig. 6:
the dependence of the attenuation coefficients on the angle of
incidence does not affect its shape either.

B. Reverberation model for omnidirectional sources & sensors

We can now introduce a stochastic reverberation model
based on these empirical observations. Using the same notation
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Fig. 6. Reflection cones of the log-magnitudes of the source images
(attenuations do not depend on the angle of incidence on the walls)
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Fig. 7. Reflection cones of the log-magnitudes of the source images
(attenuations depend on the angle of incidence on the walls)

as in (1), for any sensor i ∈ {1 . . . I} and frequency f ∈ R,

ĥi(f) = ĝi (f) ŝ (f)
∫
x∈R3

∫
y∈RM Vi(x,y;y − q‖x− xi‖2)

e−
y>α̂(f)+2ıπf‖x−xi‖2

c

‖x− xi‖2
dN(x,y)

(2)
where:
• For all m = 1 . . .M , the reflections undergone on the
m-th wall by the sound wave emitted by the source image
at position x are characterized by a unique frequency
response e−

ymα̂m(f)
c , where α̂m(f) > 0 is the frequency-

varying attenuation coefficient of the m-th wall (in hertz),
and ym ≥ 0 (in meters) is related to the total number of
reflections on the m-th wall. Therefore the accumulated
frequency response of all reflections on all walls is
e−

y>α̂(f)
c , where α̂(f) = [α1(f) . . . αM (f)]> ∈ RM+ and

y = [y1 . . . yM ]> ∈ RM+ .

• Vectors (x,y) (in meters) are jointly distributed accord-
ing to a uniform and isotropic Poisson point process
dN(x,y) ∼ P(λdxdy) with λ > 0 (in meters−(3+M)).

• In practice however, not all possible pairs (x,y) are
visible from sensor i: in the same way as the source
images visible from sensor i form an isotropic reflection
cone (as observed in Fig. 4 and 5), the number of
reflections on every wall is approximately proportional
to ‖x − xi‖2, hence the condition ym ≈ qm‖x − xi‖2
where qm > 0 (dimensionless quantity) is related to the
rate of reflection on the m-th wall, which depends on the
dimensions of the wall and on the room geometry.

• We thus introduce a random Boolean Vi(x,y;y−q‖x−
xi‖2), where q = [q1 . . . qM ]> ∈ RM+ , which determines
whether the source image parameterized by (x,y) is
visible from sensor i. Its distribution (that we do not
need to specify precisely) is parameterized by zi =
y − q‖x− xi‖2: the closer zi is to zero, the higher the
probability of visibility from sensor i (in order to fit the
reflection cone). The joint distribution for all sensors i of
the random vector [V1(x,y; z1) . . . VI(x,y; zI)]i∈{1...I}
is assumed i.i.d. w.r.t. (x,y), and it will be denoted
p(b1 . . . bI ; z1 . . . zI) where bi ∈ {0, 1} and zi ∈ RM
(note that the Boolean variables Vi and Vj for very close
sensors i and j are expected to be mutually dependent).
The marginals for one sensor are the same ∀i and will
be denoted p(b; z), and the marginals for a pair of
sensors (i, j) are the same ∀i, j and will be denoted
p(bi, bj ; zi, zj).

We can make several remarks about model (2):
• Contrary to the original model (1), model (2) is written

in the frequency domain only (not in the time domain),
because the dependency of α̂(f) on frequency f prevents

the inverse Fourier transform of e−
y>α̂(f)

c to be written
in closed form in the general case. Nevertheless, as we
will show in future papers, investigating the statistical
properties of model (2) in the temporal and in the time-
frequency domains will be still feasible.

• Considering the above definitions, Proposition 1 in the
Appendix proves that the spatial distribution of the
source images visible from every sensor i is uniform and
isotropic of same rate parameter ∀i, as observed in Fig. 3.

• As observed in Fig. 6-(a) to (d), the points of coordinates(
x,−y

>α̂(f)
c

)
(at fixed frequency f ) form a cone, since

the Boolean Vi(x,y;y − q‖x − xi‖2) selects values of
y close to q‖x − xi‖2. Moreover, since the probability
distribution of Vi(x,y;y−q‖x−xi‖2) only depends on
y − q‖x − xi‖2, the thickness of this cone is uniform,
as observed in Fig. 6-(e) and (f).

• As observed in Fig. 7, this model is also applicable even
when the attenuation coefficient of every wall actually
depends on the angle of incidence of the sound wave on
the wall.

• The attenuation due to sound propagation in the air can be
modeled in exactly the same way as the attenuation due
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to the successive reflections on any wall; so it is readily
taken into account by the model, if we just assume that
one index (e.g. m = 1) corresponds to the propagation
in the air rather than to the reflections on a wall of the
room.

• Even though the source image principle only takes spec-
ular reflections into account in its geometric formula-
tion, the stochastic model (2) allows for source images
randomly distributed in space, with random visibility
regions; therefore it readily takes diffuse reflections into
account.

In brief, compared to the original model (1), model (2)
brings the following novelties:
• the attenuation coefficients are now frequency-varying;
• the reflection cone is no longer parameterized as a perfect

isotropic cone (cf. the term e−
α‖x−xi‖2

c in (1)), but
more realistically as a noisy isotropic cone (cf. the term
e−

y>α̂(f)
c in (2), where y is random);

• the visibility regions of the source images from different
parts of the room are taken into account.

III. UNIFORM AND ISOTROPIC MODEL FOR
DIRECTIVE SOURCES AND SENSORS

A. Simulation results: orientations of the source images

We now intend to take the source directivity into account.
Fig. 2 shows that the orientations of the source images are
obtained by iteratively mirroring that of the original source.
Fig. 8 represents the resulting orientations of the source
images in a vicinity of the original room. It can be noticed
that, similarly to the positions of the source images, their
orientations also look random.

Fig. 8. Orientations of the source images

Fig. 9-(a) (resp. 9-(b)) displays the histogram of the orien-
tations of all source images up to the 30th generation, that
are visible from sensor 1 (resp. sensor 2). These histograms

look a bit noisy, but clearly show that the distribution of the
orientations of the source images is approximately uniform for
both sensors.
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Fig. 9. Histograms of the orientations of the source images

Suppose now that the original source has a directivity, so
that its response can be written ŝ (u, f) instead of ŝ(f),
where u is a unit direction vector. Then at any sensor i,
the response of a source image of parameters (x,y) can be
written ŝ

(
Θ(x,y) xi−x

‖xi−x‖2 , f
)

, where Θ(x,y) is a random
rotation matrix, i.i.d. w.r.t. (x,y) and uniformly distributed
on the rotation group SO(3).

B. Reverberation model for directive sources and sensors

In order to take the source and sensor directivities into
account, model (2) is modified as follows: for any sensor
i ∈ {1 . . . I} and frequency f ∈ R,

ĥi(f) =
∫
x∈R3

∫
y∈RM Vi(x,y;y − q‖x− xi‖2)

ĝi

(
Θi

x−xi
‖x−xi‖2

, f
)
ŝ
(

Θ(x,y) xi−x
‖xi−x‖2 , f

)
e−

y>α̂(f)+2ıπf‖x−xi‖2
c

‖x−xi‖2
dN(x,y)

(3)

where
• ĝi (u, f) ∈ C is the response of sensor i at direction u

and frequency f (taking into account its directivity);
• ŝ (u, f) ∈ C is the response of the source at direction u

and frequency f (taking into account its directivity);
• Θi ∈ SO(3) is a deterministic rotation matrix that repre-

sents the orientation of sensor i;
• Θ(x,y) ∈ SO(3) is a random rotation matrix that repre-

sents the orientation of the source image of parameters
(x,y). Its distribution is i.i.d. w.r.t. (x,y) and uniform
on the rotation group SO(3).

IV. UNIFORM AND ANISOTROPIC MODEL

A. Simulation results: rectangular room

We now consider the rectangular room depicted in Fig. 10
(using the same symbols as in Fig. 1).

Fig. 11 represents the constellation of all source images
up to the 30th generation. Note that in this very particular
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Fig. 10. Geometry of the rectangular room

geometric setup, all source images are visible from the whole
room3. Compared with Fig. 3, the spatial distribution of the
source images no longer looks random, but it is still uniform.

Fig. 11. Constellation of source images up to 30th generation

Fig. 12-(a) represents the exact same constellation of source
images as in Fig. 11, but a vertical axis was added, which
represents the generation index of every source image. We
observe that the constellation still forms a reflection cone, but
this cone is no longer isotropic. Fig. 12-(c) represents a slice
of the cone cut along the horizontal axis, which shows that the
thickness of the cone is still approximately uniform. Fig. 12-
(b) represents the same reflection cone as in Fig. 12-(a), as
a surface plot obtained by means of Delaunay triangulation.
Fig. 12-(d), represents the same reflection cone as in Fig. 12-

3In practice, the source images still have visibility regions, but the particular
geometry of the room is such that every source image in Fig. 11 actually
results from the superposition of a finite number of source images of same
generation and same orientation, located at the same position, whose visibility
regions form a partition of the rectangular room.

(b), but seen from directly overhead, which confirms that the
shape of the cone is not isotropic.

Fig. 12. Reflection cone of the generations of the source images

The left column in Fig. 13 repeats the experiment in Fig. 6:
the vertical axis does no longer represent the generations of
the source images, but rather their log-magnitudes, which
are computed as follows: the log-magnitude of the original
source is 0, and every reflection on a wall decreases the log-
magnitude by the attenuation coefficient of this wall. As a
numerical example, we used the same values of attenuation
coefficients for the four walls: {1, 2, 3, 4} (the walls being
sorted counter-clockwise, starting from the bottom wall). As
previously, the first row represents the cone seen from an
oblique direction, the second row represents the cone seen
from directly overhead, and the third row represents a slice
of the cone along the horizontal axis. We notice that the
properties of this reverberation cone are the same as in Fig. 12:
the different attenuation coefficients of the walls do not affect
its shape.

The right column in Fig. 13 repeats the experiment in Fig. 7:
now the attenuation coefficients of the four walls depend on
the angle of incidence of the sound wave on the wall (as a
numerical example, the coefficients {1, 2, 3, 4} were multiplied
by the cosine of the angle of incidence w.r.t. the normal of
the wall). Contrary to what was observed in Fig. 7, we notice
that the shape of the reverberation cone is modified by the
dependence of the attenuation coefficients on the angle of
incidence: the cone is more isotropic. But more importantly,
it is still a cone.

Finally, Fig. 14 represents the orientations of the source
images in a vicinity of the original room. It can be noticed
that, similarly to the positions of the source images, their ori-
entations no longer look random: their angles take 4 different
values only, that are equidistributed.
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Fig. 13. Reflection cone of the log-magnitudes of the source images

Fig. 14. Orientations of the source images

B. Reverberation model with anisotropic reflection cone

In order to take the anisotropy observed in Section IV-A
into account, model (3) is modified by simply replacing the
isotropic reflection cone, which was parameterized as y ≈
q‖x−xi‖2, by a more general, possibly anisotropic, reflection
cone, parameterized as y ≈ q(x − xi): for any sensor i ∈
{1 . . . I} and frequency f ∈ R,

ĥi(f) =
∫
x∈R3

∫
y∈RM Vi(x,y;y − q(x− xi))

ĝi

(
Θi

x−xi
‖x−xi‖2

, f
)
ŝ
(

Θ(x,y) xi−x
‖xi−x‖2 , f

)
e−

y>α̂(f)+2ıπf‖x−xi‖2
c

‖x−xi‖2
dN(x,y)

(4)

where

• q(x) ∈ RM+ is a 1-homogeneous function;

• Θ(x,y) is a random rotation matrix, i.i.d. w.r.t. (x,y),
whose probability distribution is not necessarily uniform
on the rotation group SO(3).

Compared to the original model, this new model permits to
represent a uniform and anisotropic acoustic field.

V. NON-UNIFORM AND ANISOTROPIC MODEL

A. Simulation results: church geometry

We consider a bi-dimensional room whose geometry is
shaped as that of church, and depicted in Fig. 15.

0 1 2 3 4 5 6 7 8 9 10
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2

3

4

5

Fig. 15. Geometry of the church

Fig. 16 represents the two constellations of all source images
up to the 30th generation, that are visible from the first
(i.e. top-left) sensor (red crosses) or from the second (i.e.
bottom-right) one (magenta circles). As in Section II-A, we
observe that some source images are visible from both sensors,
whereas others are visible only from one sensor (an accurate
count shows that about 7 % of the source images visible from
one sensor are also visible from the other one).

Fig. 16. Two constellations of source images up to 30th generation

Fig. 17-(a) and (b) represent the exact same constellations as
in Fig. 16, but a vertical axis was added, which represents the
generation index of every source image. Again we observe that
both constellations form a reflection cone. In the same way,
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Fig. 17-(c) (resp. Fig. 17-(d)) represents a slice of the cone
in Fig. 17-(a) (resp. Fig. 17-(b)) cut along the horizontal axis,
which shows that the thickness of the cone is approximately
uniform.

Fig. 17. Constellations of source images with their generations

Fig. 18-(a) (resp. Fig. 18-(b)), represents the same reflection
cone as in Fig. 17-(a) (resp. Fig. 17-(b)), as a surface plot
obtained by means of Delaunay triangulation. Fig. 18-(c) (resp.
Fig. 18-(d)) represents the same reflection cone as Fig. 18-(a)
(resp. Fig. 18-(b)), but seen from directly overhead. Contrary
to what we observed in Section II-A, the two reflection
cones are neither isotropic nor equal: the reflection cone now
depends on the sensor location.
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Fig. 18. Reflection cones of the generations of the source images

Fig. 19 represents the second kind of reflection cones:
the vertical axis represents the log-magnitudes of the source
images, which are computed as follows: the log-magnitude
of the original source is 0, and every reflection on a wall de-

creases the log-magnitude by the attenuation coefficient of this
wall. As a numerical example, we used the following values
of attenuation coefficients for the 14 walls: {1, . . . , 14} (the
walls being sorted counter-clockwise, starting from the bottom
wall). As previously, the first column corresponds to the first
sensor, the second column to the second sensor, the first row
represents the cones seen from an oblique direction, the second
row represents the cones seen from directly overhead, and the
third row represents a slice of the cones along the horizontal
axis. We notice that the properties of these reverberation cones
are the same as in Fig. 17 and 18: the different attenuation
coefficients of the walls do not clearly affect their shapes.
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Fig. 19. Reflection cones of the log-magnitudes of the source images
(attenuations do not depend on the angle of incidence on the walls)

Fig. 20 represents the same kind of reflection cones as in
Fig. 19, but now the attenuation coefficients of the 14 walls
depend on the angle of incidence of the sound wave on the
wall (as a numerical example, the coefficients {1, . . . , 14}
were multiplied by the cosine of the angle of incidence w.r.t.
the normal of the wall). As in Section IV-A, we notice that
the shapes of the reverberation cones are modified by the
dependence of the attenuation coefficients on the angle of
incidence: they are more isotropic. But more importantly, they
are still cones.

Finally, Fig. 21-(a) (resp. 21-(b)) displays the histogram
of the orientations of all source images up to the 30th
generation, that are visible from sensor 1 (resp. sensor 2).
These histograms look a bit noisy, but clearly show that the
distribution of orientations of the source images is the same
for both sensors, and that it is not uniform (the angles take 8
different values only).

B. Reverberation model with sensor-dependent reflection cone

In order to take this dependence of the reflection cone on the
sensor location into account, model (4) is modified by simply
making the 1-homogeneous function q depend on xi: for any
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Fig. 20. Reflection cones of the log-magnitudes of the source images
(attenuations depend on the angle of incidence on the walls)
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Fig. 21. Histograms of the orientations of the source images

sensor i ∈ {1 . . . I} and frequency f ∈ R,

ĥi(f) =
∫
x∈R3

∫
y∈RM Vi(x,y;y − q(x− xi,xi))

ĝi

(
Θi

x−xi
‖x−xi‖2

, f
)
ŝ
(

Θ(x,y) xi−x
‖xi−x‖2 , f

)
e−

y>α̂(f)+2ıπf‖x−xi‖2
c

‖x−xi‖2
dN(x,y)

where function q(x,xi) is 1-homogeneous w.r.t. its first pa-
rameter. Compared with the original model, this new stochas-
tic model permits to represent non-uniform acoustic fields:
different constellations of source images may form different
reflection cones in different parts of the room (however, note
that the random variables Vi(x,y; z), Θ(x,y) and dN(x,y)
are still i.i.d. for all (x,y); they are thus uniformly distributed
over space).

VI. GENERAL STOCHASTIC REVERBERATION MODEL

To sum up, we can now formally define the most general
stochastic reverberation model, that was introduced in Sec-

tion V-B: for any sensor i ∈ {1 . . . I} and frequency f ∈ R,

ĥi(f) =
∫
x∈R3

∫
y∈RM Vi(x,y;y − qi(x− xi))

ĝi

(
Θi

x−xi
‖x−xi‖2

, f
)
ŝ
(

Θ(x,y) xi−x
‖xi−x‖2 , f

)
e−

y>α̂(f)+2ıπf‖x−xi‖2
c

‖x−xi‖2
dN(x,y)

(5)

where

• ĥi(f) ∈ C is the room frequency response at sensor i as
a function of frequency f .

• ĝi (u, f) ∈ C is the response of sensor i at direction u
and frequency f (taking into account its directivity).

• ŝ (u, f) ∈ C is the response of the source at direction u
and frequency f (taking into account its directivity).

• vector xi ∈ R3 (in meters) is the position of sensor i.
• vector x ∈ R3 (in meters) represents the positions of the

source images.
• Θ(x,y) ∈ SO(3) is a random rotation matrix that repre-

sents the orientation of the source image of parameters
(x,y). Its distribution is i.i.d. w.r.t. (x,y) and not nec-
essarily uniform on the rotation group SO(3).

• c > 0 is the speed of sound (in meters.hertz).
• α̂(f) ∈ RM+ is a vector of frequency-varying attenuation

coefficients (in hertz).
• qi(x) = q(x,xi) ∈ RM+ is a 1-homogeneous function.
• vector (x,y) ∈ R3 × RM (in meters) is distributed ac-

cording to a uniform and isotropic Poisson point process
dN(x,y) ∼ P(λdxdy) with λ > 0 (in meters−(3+M)).

• Vi(x,y; z) ∈ {0, 1} is a random Boolean. The joint
distribution for all sensors i of the random vec-
tor [V1(x,y; z1) . . . VI(x,y; zI)]i∈{1...I} is i.i.d. w.r.t.
(x,y), and is denoted p(b1 . . . bI ; z1 . . . zI) where bi ∈
{0, 1} and zi ∈ RM . The marginals for one sensor are
the same ∀i and will be denoted p(b; z) (they are such
that the closer z is to zero, the higher p(1; z)), and the
marginals for a pair of sensors (i, j) are the same ∀i, j
and will be denoted p(bi, bj ; zi, zj).

This general model encompasses all the particular cases of
interest presented in the previous sections:

• if the acoustic field is uniform, qi(x) = q(x) ∀i;
• if the acoustic field is isotropic, qi(x) = qi‖x‖2 and

rotation matrices Θ(x,y) are uniformly distributed;
• therefore if the acoustic field is diffuse, qi(x) = q‖x‖2;
• if sensor i is omnidirectional, ĝi (u, f) does no longer

depend on u;
• if the source is omnidirectional, ŝ (u, f) does no longer

depend on u and rotation Θ(x,y) disappears.

Note that in practice, functions ĝi (u, f), ŝ (u, f), α̂(f), and
the parametric probability distribution p, have to satisfy some
technical conditions for the model (5) to be mathematically
well-defined and physically meaningful. These conditions de-
pend on the physical assumptions about the acoustic field (ei-
ther isotropic or anisotropic, either uniform or non-uniform),
the source and the sensors (either directive or omnidirectional).
They will be mathematically formulated in future work.
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VII. CONCLUSION AND PERSPECTIVES

In this technical report, we proposed several extensions
of the stochastic reverberation model introduced in [1], that
aim to model reverberation more realistically, by considering
anisotropic and non-uniform acoustic fields, directive sources
and microphones, and frequency-varying attenuation coeffi-
cients. In future work, we will show that this model is able to
predict various statistical properties of reverberation (regarding
the first and second order moments in the spatial, spectral,
temporal and time-frequency domains, and the asymptotic
Gaussianity), that we experimentally observed in a wide vari-
ety of both synthetic and measured room impulse responses.

APPENDIX

Proposition 1. Let dN(x,y) denote a uniform Poisson ran-
dom measure on R3 × RM with independent increments
dN(x,y) ∼ P(λdxdy) where λ > 0, and ∀(x,y) ∈ R3 ×
RM , let V (x,y; z) be independent Boolean random variables,
whose probability distribution p(b; z) with b ∈ {0, 1} is
parameterized by z ∈ RM , and such that z 7→ p(1; z) ∈
L1(RM ). Finally, let q : R3 → RM+ be any function. Then

dN ′(x) =

∫
y∈RM

V (x,y;y − q(x))dN(x,y) (6)

defines a uniform Poisson random measure on R3, of rate
parameter λ′ = λ

∫
z∈RM p(1; z)dz.

Proof of Proposition 1. In Proposition 4 in [1], we showed
that a random measure is distributed as a uniform Pois-
son point process with independent increments dN ′(x) ∼
P(λ′dx) if and only if any stochastic integral of the form

I =

∫
x∈R3

ψ(x) dN ′(x), (7)

where ψ : R3 → R is any essentially bounded function with
compact support, has a characteristic function of the form

φI(θ) = eλ
′ ∫
x∈R3(eıθψ(x)−1)dx (8)

with λ′ > 0. Thus, in order to prove that (6) defines a uniform
Poisson random measure on R3, we can sketch the following
mathematical derivations:

ln (φI(θ)) = ln
(
E[eıθI ]

)
(9)

=ln
(
E
[
eıθ

∫
x∈R3 ψ(x)

∫
y∈RM V (x,y;y−q(x))dN(x,y)

])
(10)

=

∫
x∈R3

∫
y∈RM

ln
(
E
[
eıθψ(x)V (x,y;y-q(x))dN(x,y)

])
(11)

=

∫
x

∫
y

ln
(

1+p(1;y-q(x))
(
E
[
eıθψ(x)dN(x,y)

]
-1
))

(12)

=

∫
x∈R3

∫
y∈RM

p(1;y-q(x))
(
E
[
eıθψ(x)dN(x,y)

]
-1
)

(13)

=

∫
x∈R3

∫
y∈RM

p(1;y-q(x))
(
eλdxdy(e

ıθψ(x)−1)-1
)

(14)

=λ

∫
x∈R3

∫
y∈RM

p(1;y-q(x))
(
eıθψ(x)-1

)
dxdy (15)

=λ′
∫
x∈R3

(
eıθψ(x) − 1

)
dx (16)

where
• (10) is obtained from (9) by substituting (7) and (6);
• (11) is obtained from (10) by considering the indepen-

dence for all (x,y) of the random variables V (x,y;y−
q(x)) and dN(x,y);

• (12) is obtained from (11) by considering the condi-
tional expectation of eıθψ(x)V (x,y;y−q(x))dN(x,y) given
the Boolean random variable V (x,y;y-q(x));

• (13) is obtained from (12) by using the first-order expan-
sion of the logarithm;

• (14) is obtained from (13) by using the closed-form
expression of the characteristic function of the Poisson
distribution;

• (15) is obtained from (14) by using the first-order expan-
sion of the exponential;

• (16) is obtained from (15) by substituting z = y − q(x)
and λ′ = λ

∫
z∈RM p(1; z)dz.

These derivations do not really form a rigorous mathematical
proof of (8), but they provide an intuitive understanding of
how it is obtained. Actually, (8) can be formally proved by
following the construction of the Lebesgue integral, as we
did in [1, Appendix B]. We conclude that dN ′(x) defines
a uniform Poisson random measure on R3 with independent
increments dN ′(x) ∼ P(λ′dx).
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