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Abstract  

To elucidate the time-resolved molecular events underlying the LV remodeling (LVR) process, we 

developed a large-scale network model that integrates the 24 molecular variables (plasma proteins and 

non-coding RNAs) collected in the REVE-2 study at four time points (baseline, 1 month, 3 months 

and 1 year) after MI. The REVE-2 network model was built by extending the set of REVE-2 variables 

with their mechanistic context based on known molecular interactions (1,310 nodes and 8,639 edges). 

Changes in the molecular variables between the group of patients with high LVR (>20 %) and low 

LVR (<20 %) were used to identify active network modules within the clusters associated with 

progression of LVR, enabling assessment of time-resolved molecular changes. Although the majority 

of molecular changes occur at the baseline, two network modules specifically show an increasing 

number of active molecules throughout the post-MI follow up: one involved in muscle filament 

sliding, containing the major troponin forms and tropomyosin proteins, and the other associated with 

extracellular matrix disassembly, including matrix metalloproteinases, tissue inhibitors of 

metalloproteinases and laminin proteins. For the first time, integrative network analysis of molecular 

variables collected in REVE-2 patients with known molecular interactions allows insight into time-

dependent mechanisms associated with LVR following MI, linking specific processes with LV 

structure alteration. In addition, the REVE-2 network model provides a shortlist of prioritized putative 

novel biomarker candidates for detection of LVR after MI event associated with a high risk of heart 

failure and is a valuable resource for further hypothesis generation. 

Key words: Left ventricule remodeling, echocardiography, biomarkers, system biology 
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1. Introduction 

Left ventricular remodeling (LVR) after myocardial infarction (MI) is a strong predictor of 

heart failure and cardiovascular death
1
. In humans, imaging studies have confirmed a similar 

progressive left ventricular dilation after MI
1,2

 but difficulties in accessing to myocardial samples in 

this setting have precluded a comprehensive assessment of the time-dependent changes occurring at 

the tissue level.  

As an alternative to directly studying human myocardial biopsies, circulating biomarkers are 

easy to assess and may shed light on the pathophysiologic processes involved in heart failure and 

LVR
3
. Although a reasonable number of circulating biomarkers have been associated with LVR, most 

studies published so far have focused on one or few markers, and in most cases at a single time-point 

after MI [reviewed in 
4
]. Therefore, the complexity and the time-dependent nature of LVR after MI in 

humans have not yet been addressed adequately. 

It is now recognized that complex biological processes implicated in human diseases are often 

the result of multiple pathways interacting through interconnected networks that can best be studied 

using system biology approaches
5,6

. Therefore, in this study we set out to combine experimental data 

from a serial blood sampling throughout the first year post-MI with information contained in prior 

knowledge databases to allow more comprehensive, network-based mapping of the dynamic of LVR 

process in humans. 

The aim of the present study was to gain insight into molecular mechanisms that are 

associated with LVR at different timepoints after MI and to discover putative novel biomarker 

candidates for detection of LVR after a MI event. To this end, molecular data collected in the REVE-2 

study, a prospective cohort of 246 patients dedicated to the study of circulating biomarkers after 

anterior MI
7
, has been integrated with known molecular interactions available in 12 public knowledge 

databases. The resulting network model has been analyzed to explore processes associated with LVR 

at different timepoints after MI and to generate hypotheses regarding putative novel biomarker 

candidates for timely detection of LVR after a MI event. Together, for the first time we gain 

mechanistic insights in post-MI LVR process in such comprehensive and dynamic way, paving the 

way for further testing of generated hypotheses.  
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2. Methods 

2.1. The REVE-2 Study 

The design of the REVE-2 study has been published in detail elsewhere
7
; this prospective 

multicenter study was designed to analyze the association between circulating biomarkers and LVR. 

We enrolled 246 patients with a first anterior wall Q-wave MI. Inclusion criteria were hospitalization 

within 24 hours after symptom onset and at least 3 akinetic left ventricular segments in the infarct 

zone at the predischarge echocardiography. Exclusion criteria were inadequate echographic image 

quality, life-limiting noncardiac disease, significant valvular disease, or prior Q-wave MI. The 

protocol required serial echographic studies at hospital discharge (baseline = day 3 to day 7), 3 months 

(3M) and 1 year (1Y) after MI to assess LVR which was defined as a change in left ventricular end-

diastolic volume between baseline and 1Y >20%. Serial blood samples were taken at baseline, 1 

month (1M), 3M, and 1Y after MI. The institutional Ethics Committee (Centre Hospitalier 

Universitaire de Lille) approved the study; written informed consent was obtained from all patients. 

The characteristics of the 246 patients included in the REVE-2 study are shown in Table 1. 

One-year echocardiographic follow-up was achieved in 226 (92%) patients; 87 (38.5%) patients had 

LVR.  

2.2. Molecular data processing 

The molecular REVE-2 network model was built based on the molecular data 
7,8,9,10,11,12,13

. 

This included 24 molecular variables (18 proteins, 6 non-coding RNAs (5 miRNAs and 1 long non-

coding RNA)), measured at 1 to 4 time points (depending on the variable, including baseline, 1M, 3M, 

and 1Y).  

Based on the skewed distributions, the data for all molecular variables were log2 transformed. 

For variables containing zero or negative values, an offset was applied before transformation by 

adding the minimum and first non-zero value to the data. To test for significant changes in the 

measurements between the groups of patients with high LVR versus the group of patients with low 

LVR, an unpaired, two-sided t-test was performed for each variable at each given time point. The 

resulting p-values were corrected for multiple testing using the Benjamini-Hochberg FDR control 
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procedure
14

. Unless specified otherwise, all statistical analyses were performed in R version 3.2.0 

(http://www.r-project.org/). 

2.3. Building the network model 

To construct the REVE-2 network model, the knowledge platform EdgeBox (EdgeLeap’s 

proprietary knowledge platform) was used as a resource of public knowledge on molecular 

interactions. This result in embedding REVE-2 variables into their molecular context based on 12 

public databases (Supplemental Table 1): ENCODE (http://encodenets.gersteinlab.org), 

EnsemblGenes (http://www.ensembl.org), HMDB (http://www.hmdb.ca), Microcosm 

(http://ebi.ac.uk/enright-srv/microcosm), miRBase (http://mirbase.org), miRecords 

(http://c1.accurascience.com/miRecords), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw), Reactome 

(http://www.reactome.org), STRING (http://string-db.org), TargetScan (http://www.targetscan.org), 

TFe (http://www.cisreg.ca/cgi-bin/tfe/home.pI) and WikiPathways (http://www.wikipathways.org). 

The REVE-2 network model embeds the REVE-2 molecular variables in an integrated 

network of known interactions (“edges”) between molecules (“nodes”). To enable linking the 

variables measured in REVE-2 study to their corresponding molecules in the network model, the 

variable names were manually annotated to a structured identifiers database. Each variable was 

mapped to a corresponding entity in Ensembl Genes
15

, the Human Metabolome Database
16

, and 

miRBase
17

. In addition, the proteins were annotated to Medical Subject Headings (MeSH)
18

, Ensembl 

Phenotypes (http://www.ensembl.org/Homo_sapiens/Phenotype/All),  Disease Ontology
19

, and 

DrugBank
20

. All variables were mapped to a database entity. In case multiple entities were identified 

for a single variable (e.g. when multiple genes encode for the measured protein), all annotations were 

included. These annotations were used to build the molecular network model. 

Firstly, a set of seed nodes was retrieved from EdgeBox, including: 1. All molecule nodes 

mapping to one or more REVE-2 variables; 2. All molecule nodes that are direct neighbors of the 

nodes defined in step 1 and 3. All molecule nodes that are part of the shortest paths up to 3 edges 

between any of the nodes defined in step 1. Here “molecule nodes” are defined as nodes representing 

http://www.r-project.org/
http://encodenets.gersteinlab.org/
http://www.ensembl.org/
http://www.hmdb.ca/
http://ebi.ac.uk/enright-srv/microcosm
http://mirbase.org/
http://c1.accurascience.com/miRecords
http://mirtarbase.mbc.nctu.edu.tw/
http://www.reactome.org/
http://string-db.org/
http://www.targetscan.org/
http://www.cisreg.ca/cgi-bin/tfe/home.pI
http://www.wikipathways.org/
http://www.ensembl.org/Homo_sapiens/Phenotype/All
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genes, miRNAs and metabolites (type “protein_coding”, “processed_transcript”, “miRNA”, or 

“metabolite”).  

Secondly, all edges between these nodes were queried. If multiple edges between two nodes 

exist (e.g. multiple sources of evidence for an interaction), they were bundled into a single edge. 

Furthermore, three quality criteria were applied to filter out low confidence interactions: for edges 

representing miRNA target interactions, edges were included only when either the target has been 

validated experimentally (data source is miRTarBase), or the target was predicted in at least three 

prediction resources (Microcosm, miRecords, and TargetScan); for edges originating from STRING, 

edges were included only for a STRING confidence score > 800; and for edges originating from 

WikiPathways, edges with type “in_group” were excluded. The resulting network forms the REVE-2 

molecular network model, consisting of 1,310 nodes and 8,369 edges. 

The REVE-2 molecular network model is an exploratory model which is not built towards a 

specific prediction, but is aimed towards uncovering potentially relevant relations (”give me all that is 

known about”) and generating testable hypotheses based on this model. 

2.4. Topology based cluster analysis  

Network clustering was performed using the InfoMap algorithm as implemented in the igraph 

R package (version 0.7.1) (http://igraph.org/r/) for an optimal cluster structure detection in the 

network. As the InfoMap algorithm assigns each node in the network to a cluster, clusters with less 

than 5 nodes and clusters with only one or fewer edges per node within the cluster were excluded. The 

identified clusters were subsequently functionally annotated to biological processes. For each 

identified cluster an overrepresentation analysis was performed using the Fisher exact test to identify 

Biological Process terms from the Gene Ontology (GO) that are enriched with genes in the cluster. 

Significantly enriched GO terms (p < 0.05) were added as properties to the network. 

2.5. Centrality analysis 

For each node in the network the centrality measure “betweenness” was calculated using the 

igraph R package. The betweenness of a node is the normalized count of shortest paths between all 

other nodes in the network passing through that node. High betweenness of a node indicates that a 

http://igraph.org/r/
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molecule is crucial to maintain functionality and coherence of signaling mechanisms, while a low 

betweenness indicates a more peripheral role for the molecule. 

2.6. Assessment of tissue and/or cell type expression of molecules in the model 

Expression for miRNA is based on mammalian miRNA ATLAS  
21

, expression for proteins is 

based on the TISSUES database, which combines several resources (Protein Atlas, UniProt, etc.), but 

excluding text mining based results 
22

. The "tissues" column in Supplemental table 4 lists all blood, 

circulating cells and heart tissues that the miRNA / protein has been identified in.  

2.7. Active module analysis 

Active modules were extracted from the network model by including all significantly changed 

REVE-2 molecular variables (p<0.05) between high- and low-LVR groups for a given time point, as 

well as all nodes on shortest paths (up to 3 edges) connecting the significant variables, and direct 

neighbors of the significant variables. The cluster coverage was calculated as a percentage of 

molecules of each cluster that are part of active modules. 

2.8. Network model visualization 

 All visualizations of the REVE-2 network model were performed using Cytoscape, version 

3.2.1. 
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3. Results 

3.1. The REVE-2 molecular network model 

The REVE-2 molecular network model embeds the REVE-2 molecular variables in an 

integrated network of known molecular interactions and contains 1,310 nodes (1,263 protein-coding 

nodes, 24 miRNA nodes, 22 metabolite nodes and 1 lncRNA node), and 8,639 edges (Supplemental 

Table 2).  

To obtain a high level overview of processes associated with REVE-2 molecular variables, the 

network model was clustered based on its topology and resulting clusters were functionally annotated 

to biological processes. Clustering algorithm identifies groups of nodes that are more highly connected 

to each other than to other nodes in the network, typically representing biological processes or protein 

complexes. In total, 33 clusters were identified in the REVE-2 molecular network model. All clusters 

could be significantly annotated to at least one GO term (Table 2). In total, 20 REVE-2 molecular 

variables are part of a cluster and 12 clusters contain at least one REVE-2 molecular variable. Table 2 

lists the 33 clusters and their corresponding most significantly enriched GO term highlighting different 

processes important for LVR such as eukaryotic transcriptional regulation (clusters 1, 2 and 5), 

apoptosis (cluster 14), immune response (cluster 40), creatine and aminoacid metabolic process 

(cluster 41), signaling pathways (cluster 4, 21, 28 and 29) and extracellular matrix organization 

(clusters 3 and 9). The REVE-2 molecular network model is visualized in Figure 1. Full network 

cluster characterization and GO enrichment is provided in Supplemental Table 3. 

3.2. Relevance of individual molecules in REVE-2 network model 

 To assess relevance of individual molecules in the REVE-2 network model, the betweenness 

centrality was calculated. High betweenness suggests that a molecule is crucial to maintain 

functionality and coherence of signaling mechanisms and the molecules with the highest betweenness 

centrality may be relevant as putative biomarker candidates. Supplemental Table 4 lists the nodes with 

the highest betweenness centrality in the REVE-2 network. This allows identifying the most-central 

REVE-2 variables (e.g. miR-21-5p, miR-222-3p, miR-423-5p,) as well as novel highly central 

molecules that were not measured yet but could be good candidates for further investigation as 
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putative  novel biomarkers  (hsa-miR-335-5p, EP300, CTCF). Interestingly, the 20 nodes with the 

highest betweenness centrality are linked to 8 clusters (1, 2, 3, 5, 10, 12, 13 and 16), with cluster 1 

represented by 8 nodes (Histone acetyltransferase p300 (EP300), Myc proto-oncogene protein (MYC), 

transcriptional repressor CTCF (CTCF), transcription factor Sp1 (SP1), double-strand-break repair 

protein rad21 homolog (RAD21), transcription initiation factor TFIID subunit 1 (TAF1), proto-

oncogene c-Fos (FOS) and CCAAT/enhancer-binding protein beta (CEBPB)). To further determine if 

the molecules with high betweenness centrality could qualify as putative biomarker candidates we 

assessed whether these miRNAs and proteins are expressed in blood, circulating cells or heart tissues. 

Of the top 20 molecules, 17 can be mapped to one or more of these tissues, further narrowing down 

the list of putative novel biomarker candidates. For example, three miRNAs (hsa-miR-26b-5p, hsa-

miR-124-3p, hsa-miR-744-5p) would be interesting candidates for further testing based on their high 

betweenness centrality, expression in circulating cells and novelty (i.e. not yet measured among 

REVE-2 variables). The expression of molecules with the highest betweenness centrality in the tissues 

of interest is provided in the Supplemental Table 4. 

To benchmark the relevance of REVE-2 network model in the context of known biomarkers of 

LVR, the collection of 52 known molecular LVR biomarkers
4
 has been cross-referenced to REVE-2 

molecular network model. In total, of 48 biomarkers which could be annotated to either Ensembl Gene 

or HMDB identifier, 22 were present in the REVE-2 network model.  

3.3. Time-resolved activation of network modules associated with LVR progression 

 The REVE-2 network model is based on prior knowledge of molecular interactions and as 

such provides insight into molecular mechanisms associated with variables measured in REVE-2 

study, and identifies key molecules that may be relevant in the context of LVR. To assess which of 

these mechanisms change under LVR conditions in REVE-2 study, and which mechanisms are 

relevant at which time point after MI, an active module analysis was performed (see methods). The 

active modules were extracted from the REVE-2 network model for each time point (baseline, 1M, 

3M, 1Y), enabling insight into time-resolved molecular changes associated with LVR progression. 

Each active module highlights the part of the network model associated with REVE-2 molecules 
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which are differentially expressed between high- and low-LVR groups at each time point 

(supplemental Table 5). These active modules represent a robust mechanistic context of changed 

variables and provide insight into molecular interactions and mechanisms relevant at a given time 

point during LVR progression. Figure 2 shows the active modules for each time point. 

The most apparent observation is that the highest number of active modules is found at the 

baseline and 3M time points. This is reflected in both high number of clusters, as well as in total 

number of molecules represented in active modules at these time points (Figures 2 and 3).  

Specifically, while all the clusters in the REVE-2 model (n=33) are represented in active modules at 

baseline, there is a strong decrease of the number of clusters (n=9) in active modules at 1M. At time 

point 3M, again a large number of clusters (n=30) are in active modules and finally, only 3 clusters are 

in active modules at 1Y.  Although the number of clusters highlighted at 3M (n=30) was very similar 

to those at baseline (n=33), a higher ratio of molecules belonging to active modules was detected at 

baseline (936, corresponding to 71% of the molecules of the REVE-2 network model) compared to 

3M (389 molecules corresponding to 30% of the molecules of the REVE-2 network). Figure 3 details 

cluster coverage of the active modules at each time point. 

  In contrast to the general pattern of largest cluster coverage in the active module at baseline, 

clusters 7 and 9 involved respectively in muscle filament sliding and extracellular matrix organization, 

remain highly represented in active modules at 1M, with the highest cluster coverage at 3M. This 

pattern suggests that these two clusters and associated processes specifically represent the dynamic 

process of long-term pathological changes during the post-MI LVR, rather than the acute stress of the 

system triggered by MI (Figure 3 and Table 3). Cluster 7, which includes proteins of myofilament 

such as the TnT, TnC and TnI forms, myosin and tropomyosin proteins, has 33 active molecules at 1M 

and 3M representing the highest number of molecules, 94% compared to only 11% at baseline. Cluster 

9 which includes most of the metalloproteinase (MMPs), tissue inhibitors of metalloproteinases 

(TIMPs) and laminin proteins has a ratio of nearly 60% of active molecules (n=28) at 3M compared to 

baseline (n=17) and 1M (n=7). 
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4. Discussion 

Due to the difficulties in accessing human myocardial samples after MI, little is known about 

long-term processes associated with LVR in humans. Studies so far focused on a handful of 

measurable variables, typically assessed only at the baseline
4
.  Our objective was therefore to build a 

more comprehensive view on processes associated with LVR up to one year after MI, by enriching our 

dataset obtained from serial blood samples during the LVR progression (baseline, 1M, 3M, 1Y) with 

prior knowledge on molecular interactions. Network analysis allowed us to identify robust 

mechanisms associated with the measured variables, as this approach considers not only list of isolated 

molecules, but also accounts for their mechanistic context. Importantly, availability of time-resolved 

dataset allowed us to determine relevance of LVR-associated mechanisms over time after an MI event. 

Interestingly, muscle filament sliding and extracellular matrix disassembly have been identified to be 

specifically (unlike other identified mechanisms) more activated at the 3M timepoint compared to the 

baseline, suggesting their relevance for the long-term pathological changes during the post-MI LVR. 

To the best of our knowledge, here we for the first time can discriminate between mechanisms 

associated with acute stress response triggered by MI and the mechanisms associated with dynamic 

process of long-term pathological changes during the post-MI LVR.  

Another important result of our study is the prioritization of putative LVR-relevant molecules, 

including those that have not yet been measured or previously associated with LVR. The undertaken 

knowledge-based network modelling approach therefore stimulates novel discovery and hypothesis 

forming, which is particularly relevant for identification of putative novel biomarker candidates for 

timely detection of LVR after a MI event. In line with this motivation, we provide a shortlist of 

putative novel biomarker candidates prioritized based on their high betweeness centrality and 

expression in accessible tissues, which may be considered for a follow up biomarker studies. 

Circulating biomarkers may provide information on changes occurring in the myocardium after MI, 

specifically in humans due to the difficulties in accessing to human myocardial samples after MI. 

MMPs, TIMPs, and cytokines are known to be implicated in the myocardium during the remodeling 

process
23,24

, and are also modulated in a similar time-dependent fashion in the circulation 
10,25,26

. In a 

2012 review of the literature, 59 studies examining in total 112 relations between 52 different 
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biomarkers and LVR were cited
4
. Therefore - although this approach can certainly not be viewed as 

equivalent to direct studies on myocardial tissue, the assessment of circulating biomarkers may 

provide useful information on LVR and heart failure.  

4.1. The REVE-2 network model 

Systems and network biology approaches are being applied with the aim to capture the 

molecular complexity of the disease by data integration, ultimately achieving goals of systems 

medicine
27

. Integrative approaches have been classified into four broad categories: identification of 

active modules through integration of networks and molecule profiles, identification of conserved 

modules across multiple species, identification of differential network modules through integration of 

different interaction types, and identification of composite functional modules through integration of 

different interaction types
6
. Recently, a MI-specific protein-protein-interaction (MIPIN) network has 

been built using 38 seed proteins from published human studies
28

. Based on statistical analysis of 

individual molecules, the MIPIN network was constituted of 613 proteins that associated 4443 edges 

interactions. In the present study, we used the molecular variables measured in the REVE-2 study, 

their direct neighbors and molecules on the shortest paths between these molecules as the seed nodes 

for building a network model. The interactions between molecules were derived from 12 public 

resources, including functional links such as physical interaction, pathway interactions, transcriptional 

regulation and enzyme activation. The resulting network model constitutes 1,310 nodes, including not 

only 1,263 proteins but also 24 miRNAs, 22 metabolites and 1 lncRNA, connected through 8639 

edges. A network topology of clustering the REVE-2 network model identified 33 clusters annotated 

to Gene Ontology processes. Therefore, the REVE-2 network model provides robust insight in LVR-

associated physiopathological mechanisms and facilitates identification of novel potentially relevant 

molecules to be studied further, which is as mentioned above, an important resource for discovery of 

novel putative biomarkers.  For instance, betweenness centrality of the nodes indicates relevance of 

individual molecules within the model, where high betweenness suggests that a molecule is crucial to 

maintain functionality and coherence of signaling mechanisms. Interestingly, we identified as highly 

central molecules 1 miRNA, miR-335-5p and 2 proteins, the histone acetylase p300 (EP300) and the 
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transcriptional repressor CCCTC-binding factor (CTCF). The latter proteins have not yet been 

associated with LVR but they have been described indirectly to have a potential role in the heart. 

SIRT-1, which is acetylated by EP300 has been described to be implicated in dystrophic 

cardiomyopathy
29

 and a CTCF binding site has been described to be a novel heart enhancer
30

. 

Importantly, most of the molecules with high betweenness centrality are expressed in blood, 

circulating cells or heart tissues, further qualifying them for the follow up biomarker studies. For 

example, three miRNAs (hsa-miR-26b-5p, hsa-miR-124-3p, hsa-miR-744-5p) would be interesting 

candidates for further testing based on their high expression in circulating cells and novelty.  

4.2. Temporal changes associated with LVR 

 Strength of the present study is the availability of serial blood samples during the LVR 

progression (baseline, 1M, 3M, 1Y). Imaging studies in humans have shown that LV dilation begins 

early after MI and may continue up to 1 year after the initial insult
2,31

. In animal models, the cellular 

and molecular changes that occur within the myocardium can last weeks or months after MI 
23,24

. The 

baseline sample (3-7 days) likely combines information on initial myocardial necrosis and on the early 

steps of LVR. Later samples (1M to 1Y) are at a significant distance from initial MI and are probably 

more indicative of the late remodeling process.  

Our data summarized in Figures 2 and 3 show the active modules of the REVE-2 network 

model associated with each time point, enabling insight into time-dependent molecular changes 

associated with LVR progression. Examination of temporal molecular patterns reveals a clear dynamic 

signature of biological processes. Most of the LVR-relevant processes are activated at the baseline and 

include molecules which have been previously reviewed
3
 as potential heart failure biomarkers such as 

markers of inflammation and oxidative stress, extracellular matrix remodeling, and myocyte injury. 

After the initial changes at baseline, at 1M the changes in processes underlying LVR are less 

prominent, and are reactivated at 3M (although including a smaller subset of molecules in these 

processes). Interestingly, as outlined above, large number of molecules from the clusters associated 

with muscle filament sliding and extracellular matrix disassembly, represented in active modules at 3 

months confirms a specific role for these processes in the later stage of LVR. The statistical 
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significance of changes between high- and low-LVR group in REVE-2 molecules associated with 

these clusters (troponin and MMPs) is in line with this hypothesis, with increase in changes from 

baseline up to 3M (supplemental Table 5). Finally, the low number of active molecules and clusters 

detected at 1Y indicates a shut-down of all processes associated to LVR. In summary, our results 

suggest that many molecular events and pathways are activated during LVR in a time-dependent 

manner and allow better understanding of which mechanisms are linked to acute stress of the system 

upon MI, and which are associated with long-term pathological changes associated with LVR.  

Conclusion 

 In conclusion, our results improve our knowledge about the LVR process after MI by 

identifying the temporal activation profiles of REVE-2 molecules along with their associated 

mechanistic context. This provides more robust insight in LVR processes compared to purely 

statistical methods based on limited set of variables, facilitates mechanistic hypotheses and prioritizes 

molecules to be further studied as putative biomarker for timely detection of LVR after MI. The 

REVE-2 network model is a promising tool to capture the molecular complexity of the disease and can 

be used as a resource for discovery of LVR-relevant interactions in the context of development of 

therapeutic interventions aiming at reducing adverse LVR (e.g., which target? at which time point after 

MI?). Finally, another implication of interest would be to explore whether the same type of proteins 

(nodes) segregate into close neighborhood of proteins associated for other diseases, providing clues for 

investigation of comorbidities
32

.   
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Table 1. Characteristics of the patients included in the REVE-2 study
1
 

Age, y (mean±SD) 57±14 

Women 46 (19%) 

Diabetes mellitus 51 (21%) 

First anterior myocardial infarction 246 (100%) 

Initial reperfusion therapy 

- Primary percutaneous coronary intervention 

- Thrombolysis alone 

- Thrombolysis and rescue percutaneous coronary intervention 

- No reperfusion 

 

128 (52%) 

28 (11%) 

59 (24%) 

31 (13%) 

Left ventricular ejection fraction, % (mean±SD) 49±8 

Medications at discharge 

- Antiplatelet therapy 

- ß-blockers 

- Angiotensin-converting enzyme inhibitors 

- Statins 

 

246 (100%) 

238 (97%) 

238 (97%) 

231 (94%) 

One-year echocardiographic follow-up 

- No. of patients with follow-up 

- Left ventricular remodeling
2
 

 

226 (92%) 

87 (38.5%) 

1
 Of the 226 patients with echocardiographic follow-up;  

2
Defined as a >20% change in left ventricular 

end-diastolic volume between baseline and 1 year. 

  



BBADIS-16-507-R1 
 

21 
 

Table 2. List of the identified clusters of the REVE-2 network model. 

Cluster 

number 
Nodes

1
 Edges

2
 

REVE-2 

variables
3
 

Most significant GO category
4
 

1 191 1013 ST2 sequence-specific DNA binding 

2 203 302 Mir-21-5p intrinsic component of membrane 

3 57 978 ICTP, P1NP, 

P3NP 

endoplasmic reticulum lumen 

4 65 403 HGF transmembrane receptor protein tyrosine kinase signaling pathway 

5 98 123 miR-222-3p RNA binding 

6 37 495 TIMP1 platelet alpha granule lumen 

7 35 392 troponin muscle filament sliding 

8 30 271  nuclear-transcribed mRNA catabolic process 

9 47 154 MMP1, MMP2, 

MMP3, MMP8, 

MMP9, TIMP2, 

TIMP4 

extracellular matrix disassembly 

10 38 75  ATP binding 

12 30 75  mitotic cell cycle phase transition 

13 32 33  O-glycan processing 

14 22 111 FasL activation of cysteine-type endopeptidase activity involved in apoptotic 

process 

15 17 67  G2/M transition of mitotic cell cycle 

16 23 33  G-protein coupled receptor signaling pathway 

18 14 61  RNA splicing, via transesterification reactions 

19 16 29  positive regulation of intrinsic apoptotic signaling pathway 

20 22 23  phosphatase activity 

21 14 32  toll-like receptor 2 signaling pathway 

22 15 17  steroid hormone receptor activity 

24 11 19  regulation of cell differentiation 

25 10 18  cell surface 

26 11 16  cellular component disassembly involved in execution phase of apoptosis 

28 9 14  negative regulation of transforming growth factor beta receptor signaling 

pathway 

29 8 15  small GTPase mediated signal transduction 

30 11 12 BNP protein targeting to mitochondrion 

32 9 12  DNA repair 

33 9 10  nuclear pore 

35 7 11  Mitochondrial inner membrane 

37 7 8  DNA-directed RNA polymerase II, holoenzyme 

39 6 11  posttranscriptional gene silencing 

40 7 12 CRP complement activation 

41 6 11 Creatine kinase creatine metabolic process 

1
Nodes represent molecules such as proteins, non-coding RNAs and metabolites; 

2
Edges represent 

known interactions between molecules (nodes); 
3
REVE-2 variables represent molecules measured in 
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plasma of REVE-2 patients; 
4
Full network cluster characterization and GO (Gene Ontology) is 

provided in supplemental Table 3.   
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Table 3. Detailed list of molecules in two clusters modulated during the LVR progression. 

Clusters
1
/REVE2 

variables
2
 

(number of nodes)
 3
 

Baseline 1 month 3 months 1 year 

7/Troponin 

(35 nodes) 

Dystrophin (P11532) 

Tropomyosin α-1 chain 

(P09493) 

Caldesmon 1 (Q05682) 

Myosin 1 (P12882) 

Dystrophin (P11532) 

Tropomyosin α-1 chain 

(P09493) 

TnT, slow skeletal (P13805) 

TnT, cardiac (P45379) 

TnT, fast skeletal (P45378) 

TnI, slow skeletal (P19237) 

TnI, fast skeletal (P48788) 

TnI, cardiac (P19429) 

TnC, slow skeletal and 

cardiac (P63316) 

TnC, fast skeletal (P02585) 

Tropomyosin β chain 

(P07951) 

Tropomyosin α-3 chain 

(P06753) 

Desmin (P17661) 

MYBPC1 protein (Q00872) 

MYBPC2 protein (Q14324) 

MYBPC3 protein (Q14896) 

MLC1/3, skeletal (P05976) 

MLC2, cardiac (P10916) 

MLC3 (P08590) 

MLC4 (P12829) 

Myosin 3 (P11055) 

Myosin 6 (P13533) 

Myosin 8 (P13535) 

Vimentin (P08670) 

Nebulin (P20929) 

Tropomodulin-1 (P28289) 

Dystrophin (P11532) 

Tropomyosin α-1 chain 

(P09493) 

TnT, slow skeletal (P13805) 

TnT, cardiac (P45379) 

TnT, fast skeletal (P45378) 

TnI, slow skeletal (P19237) 

TnI, fast skeletal (P48788) 

TnI, cardiac (P19429) 

TnC, slow skeletal and 

cardiac (P63316) 

TnC, fast skeletal (P02585) 

Tropomyosin β chain 

(P07951) 

Tropomyosin α-3 chain 

(P06753) 

Desmin (P17661) 

MYBPC1 protein (Q00872) 

MYBPC2 protein (Q14324) 

MYBPC3 protein (Q14896) 

MLC1/3, skeletal (P05976) 

MLC2, cardiac (P10916) 

MLC3 (P08590) 

MLC4 (P12829) 

Myosin 3 (P11055) 

Myosin 6 (P13533) 

Myosin 8 (P13535) 

Vimentin (P08670) 

Nebulin (P20929) 

Tropomodulin-1 (P28289) 

- 
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Calcipressin-3 (Q9UKAB) 

Telothonin (O15273) 

Felodipine 

Trifluoperazine 

Levosimendan 

Dihydroxyaluminium 

Calcipressin-3 (Q9UKAB) 

Telothonin (O15273) 

Felodipine 

Trifluoperazine 

Levosimendan 

Dihydroxyaluminium 

9/ MMP3, MMP8, MMP9, 

TIMP2, TIMP4 

(47 nodes) 

Brevican (Q96GW7) 

Neutrophil elastase 

(P08246) 

MMP8 (P22894) 

PRSS1 protein (Q3SY19) 

Kallikrein -2 (P20151) 

Marimastat 

MMP1 (P03956) 

MMP2 (P08253) 

TIMP2 (P16035) 

MMP9 (P14780) 

Aggrecan (P16112) 

hsa-miR-338-3p 

hsa-miR-451a 

Captopril 

 

HS3SB protein (Q9Y662) 

Fibrillin-1 (P35555) 

Nidogen-1 (P14543) 

Brevican (Q96GW7) 

Neutrophil elastase 

(P08246) 

MMP8 (P22894) 

PRSS1 protein (Q3SY19) 

Kallikrein -2 (P20151) 

Marimastat 

 

 

 

 

 

 

 

 

Tenascin C (P24821) 

 

 

 

 

 

 

 

 

Brevican (Q96GW7) 

Neutrophil elastase 

(P08246) 

MMP8 (P22894) 

PRSS1 protein (Q3SY19) 

Kallikrein -2 (P20151) 

Marimastat 

MMP1 (P03956) 

MMP2 (P08253) 

TIMP2 (P16035) 

MMP3 (P08254) 

Aggrecan (P16112) 

hsa-miR-338-3p 

hsa-miR-451a 

Captopril 

Tenascin C (P24821) 

MMP7 (P09237) 

MMP11 (P24347) 

MMP14 (P50281) 

TIMP4 (Q99727) 

Decorin (P07585) 

Laminin alpha3 (Q16787) 

Laminin beta-3 (Q13751) 

Laminin gamma2 (Q13753) 

Syndecan-2 (P34741) 

IGF2 (P01344) 

IGFALs protein (P35858) 

IBP3 protein (P17936) 

Halofuginone 

- 
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1
Number corresponds to the cluster listed in Table 2; 

2
REVE-2 variables measured in plasma of REVE-2 patients; 

3
Number of

 
nodes (molecules) present 

within the cluster; Genes in bold indicates the molecules present in active modules at each time point; Accession number in UniProtKB 

(http://www.uniprot.org/) is provided for proteins under bracket. 

 

 

http://www.uniprot.org/
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