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Applications of radiative transfers in 
polymers processing 
 

Some industrial applications of infrared 
heating [ADE 02] 

Energy required producing bottled 
water [NIX 15] 

 Around half the total energy of a consumable bottle of 
water lending itself to manufacturing  
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Injection-stretch Blow Moulding (ISBM) 
for PET bottles forming 

IR oven 
Stretch-Blow 

molding machine 

Preforms Heat conditioning 

 PET Processing temperature:  85-110 °C 

 Heating time: ~[20 - 40] s  

IR lamps 

PET preform 

Rotating support 

Reflectors 
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Electromagnetic wave spectrum 

NIR (Near-infrared) MIR (Mid-infrared) FIR (Far-infrared) 

0,78-3 mm 3-50 mm 50-1000 mm 

ISO 20473 (2007) 
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Black body spectral intensity 
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95.6% of energy is between 

0.5×λm and 5 ×λm 

m=1,2 

m=3,9 
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Radiative properties: Spectrometric 
measurements 

FT-IR spectrometer (0.4 − 25 μm) Bruker Vertex 70 
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 1st Kirchhoff’s law:  
Incident 

flux 

Reflected 
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Transmitted 
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Spectral transmission coefficient of PET [BOR 07] 
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Radiative transfer equation 
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Radiative source term 

Heat transfer equation including radiative source term 
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 Radiative transfer equation 

Non-scattering 

medium 
Cold medium 

Radiative flux Spectral intensity 
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Beer-Lambert’s law 



Tungsten 
filament 

R1 and R2: stochastic variables in the 
range [0,1] [Pharr-2004] : 
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RAY-HEAT software basis 

32nd International Conference of the PPS -
July 25-29, 2016 LYON FRANCE 

 Based upon ray tracing method [Cosson et al. 2011] 

 Launching rays from the emitters (IR lamps) 

Each ray looses radiative energy when crossing 

preform thickness 

Preform 

Air 

Air 
inside 
the 
cavity 

 Computing paths of each ray and throughout the preform 
thickness 

 Snell-Descartes law at the interface air/PET 
 Reflection conditions 
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 Last step: sum of the rays contributing heating of preform 

  Computation of radiative source term 
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 How to account for the preform rotation inside the IR oven?  

  Radiative source term defined as function versus time 

Transient radiative source term 
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In-lab blow molding machine 

Temperature measurement 

CS 325 FLIR 
infrared 
camera 

[7.5–13.5 mm] 

Heating time: 25 s Cooling time: 10 s 

P1 (%) P2 (%) P3 (%) P4 (%) P5 (%) 

100 100 20 5 60 

Halogen lamp: Philips 2 kW 

52 mm 

47 mm 

1.1 t/s 20 mm 

Bottle mold 

Halogen lamps 
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Numerical simulation 

Temperature distribution (t = 25 s)  Radiative source term ( RAYHEAT) 

4.5 107 (W/m3) 

CPU time = 90 min  (T9500 2.6 GHz, 3Go RAM) 
CPU time = 12 min  (T9500 2.6 GHz, 3Go RAM) 

(°C) 

ABAQUS®  solver  IR camera measurement 
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Measured

Calculated

Preform neck

External surface temperature versus height (t= 25s) 

Mean relative difference: 1.7 % 

IR camera Agema 880 LW [8-12] μm 
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Optimization problem 

 Blowing of 0,5l bottle on SIDEL SBO1 machine (18g PET T74F9 preform) 
 Production rate: 800 bottles/h 

 Heating time: 22.4 s 

 Holding time: 3 s 
Imposed 

Final goal of the optimization: 

Compute the nominal percentage power of 
each lamp 

Obtain the more uniform bottle  
thickness 

Compare virtual design results to experimental 
data (try-and- error) obtained by Logoplaste 

company 
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L1

L2

L3

L4

L5

L6

L7

Réflecteur arrière 

aluminium

Réflecteur avant 

aluminium

15 mm

23.5 mm

17.5 mm

Ω = 0.1 tr/s

Régulation: 

h = 500 Wm-²K-1 

[MON-2001]

Convection:

- Forcée : h = 30 Wm-2K-1

- Naturelle: h = 8 Wm-2K-1

[MON-2001]

L1

L2

L3

L4

L5

L6

L7

Réflecteur arrière 

aluminium

Réflecteur avant 

aluminium

15 mm

23.5 mm

17.5 mm

Ω = 0.1 tr/s

Régulation: 

h = 500 Wm-²K-1 

[MON-2001]

Convection:

- Forcée : h = 30 Wm-2K-1

- Naturelle: h = 8 Wm-2K-1

[MON-2001]

Aluminum back  
reflector 

Aluminum front 
reflector 

Forced 

Free 



Optimized temperature & bottle thickness 
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(M. Bordival et al., 2009) 

Measured thickness 
(thanks Logopaste 

company) 

Mean relative  
difference: 15% 

Before 
optimization 

After optimization 
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Experimentally optimized 
(thanks to Logoplaste 

company) 

Mean relative 
difference: 2.4% Preform Neck 

Initial value 

Numerically optimized  

Preform length 
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Before 
optimization 

After 
optimization 

T (°C) 

108 

80 

Partially blown 
bottle T (°C) 

108 

80 

- Bottle completed 

- Thickness uniformity 
improved 

Thickness (mm) 

0.09 

1.60 
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Thickness (mm) 

0.09 

1.60 
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Future works 

 Interaction of radiation and the microstructure of polymer (for 

example when adding submicronic mineral fillers or dyes in PET [BIL 12]) 

 Rays may be refracted and radiation scattering (*) may occur 
 Rayleigh approximation or Mie theory [VAN 81] may be applied 

 

 Measurement of absorption coefficient for semi-transparent 
polymers 

 In the case of specular reflection, we could take advantage of Kramers–
Kronig [KIT 04] relation in order to assess to the absorption coefficient 
 

 Characterization of heater lamps and more particularly halogen 
lamps still remains a big challenge 

(*) Session 1, 03:40-04:00 pm, S. Boztepe 



Infrared heating setup 

Temperature measurement 

CS 325 FLIR 
infrared 
camera 

[7.5–13.5 mm] 

32nd International Conference of the PPS -
July 25-29, 2016 LYON FRANCE 

16 

 Using IR camera together with inverse 
design approach allows 

 To estimate heaters temperature 
 To measure thermal conductivity 

(anisotropic materials) 
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Why using infrared heating for 
polymers?  

Direct energy transfer between the source and the 
product to be treated 
 

High power density 
 

 Radiation focusing 
 

 Control flexibility (low thermal inertia) 
 
 Adaptable and expandable 
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Spectral emissivity of pure tungsten  

(S. Nakouzi, 2012; R. Siegel, J.R. Howell; 1992, S. Monteix, 2001 ) 

Hagen-Rubens law (≥2,6 mm) 
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Mesh/ Boundary conditions 

 Lamps discretization (polar emission ): 1.5 million rays per lamp 

 Mesh of the preform: 20*10*30 = 6000 nodes 

Free convection+ self emission 

(hc = 8 W.m-².K-1, Ta = 30°C) 
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Churchill et Chu correlation, 

[CHU-1975]  

10 thickness 
nodes 20 hoop nodes 

Internal 
surface: 

adiabatic 

32nd International Conference of the PPS -
July 25-29, 2016 LYON FRANCE 



21 

  sde.TIe.),s(I),s(I
)ss(

ss

0s

s

o















 




Transmitted intensity Self  emission 

Non-scattering and cold medium assumptions 

 Integral form of radiative transfer equation 

≈ 3500 W.m-².μm-1.sr-1 

(luminance incidente) 

≈ 3,6.105 W.m-².μm-1.sr-1 

(luminance incidente) 

Spectral intensity 

0.96 

0.29 

Emissivity 

214 >> 1 ≈ 2500 K  
Halogen emitters 

(blow moulding process ) 

16 >> 1 ≈ 970 K  
IRL emitters 

(thermoforming process) 
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 PET self-emission negligeable versus lamp emission during 
heating phase 

Beer-Lambert’s law 
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