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Belief Graphical Models for Uncertainty
Representation and Reasoning

Salem Benferhat, Philippe Leray, and Karim Tabia

Abstract Many real world problems and applications require to exploit incomplete,
complex and uncertain information. Belief graphical models encompass a wide
range of graphical formalisms for representing and reasoning with uncertain and
complex information. They generally involve a graphical component which can be
directed or undirected and a numerical one depending on the considered uncertainty
setting. The graphical component encodes a set of independence statements while
the numerical one quantifies the uncertainty regarding variables. The main use of be-
lief graphical models is knowledge representation, reasoning and decision making
for multivariate problems. Belief graphical models can be built either by eliciting the
uncertain knowledge of an expert or automatically learnt from data using machine
learning techniques. Many types of inference algorithms exist and many platforms
are now available allowing modeling and reasoning with belief graphical models in
many application areas such as diagnosis, forecasting, decision making and classi-
fication.
This chapter provides an overview of the most common belief graphical models. In
particular, it gives an overview on various aspects related to graphical models for
uncertainty: representation, inference, learning and finally applications.
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1 Introduction

Belief graphical models are intuitive, expressive and powerful tools for encoding,
reasoning and decision making with uncertain information. The term belief here
refers to uncertain information while the term graphical denotes the use of graph-
ical representations in these formalisms. The concepts of belief graphical models
have been extended and adapted in other uncertainty settings in order to combine
the advantages of graphical models in terms of compactness and interpretability
with the advantage of other uncertainty theories and frameworks. Common and
widely used belief graphical models are Bayesian networks [Pearl, 1988a; Lauritzen
and Spiegelhalter, 1988; Jensen, 1996; Darwiche, 2009], credal networks [Cozman,
2000], influence diagrams [Howard and Matheson, 1984; Shachter, 1986], decision
trees [Raiffa, 1968], valuation-based networks [Shenoy, 1989, 1993a; Ben Yagh-
lane and Mellouli, 2008; Xu and Smets, 1994], possibilistic networks [Fonck, 1994;
Ben Amor and Benferhat, 2005; Benferhat and Smaoui, 2007] and Kappa networks
[Halpern, 2001] to name the most common ones.

As knowledge representation tools, belief graphical models offer many advan-
tages like intuitiveness, compactness and interpretability thanks to the visual com-
ponent. They also make parameters’ elicitation easier thanks to the modularity of
this formalism. For instance, when eliciting a probabilistic model, once the graph
elicited, the expert has to elicit iteratively conditional probability of each variable
in the context of its parents only. Belief graphical models can also be learnt auto-
matically from empirical data. This generally comes down to learn the structure and
the parameters of the network form data using machine learning techniques. For
instance, in supervised classification tasks, Bayesian network classifiers are easily
learnt from datasets of labelled samples.

Regarding inference, the most elementary and basic query is to compute the
probability (or more generally the plausibility) of any event of interest given some
evidence. With such queries, one can answer other queries like finding the most
plausible explanation. The efficiency of inference in belief graphical models heav-
ily depends on the structure of the network. In general, inference is efficient only
on tree-like networks and it is a very hard task in the general case. Many problems
and tasks widely encountered in practice can be modeled and solved with belief
graphical models. Examples of such tasks are classification, diagnosis, predictions,
explaining away, annotation, planning under uncertainty, etc. Most of these tasks can
be viewed as special types of queries called maximum a posteriori (MAP) consist-
ing in predicting the most plausible values of some variables given some evidence.

The first part of this chapter briefly presents the most important concepts of prob-
abilistic graphical models: syntax, semantics, inference and learning from data. The
second part is devoted to some common extensions and variants of belief graphi-
cal models such as credal networks, possibilistic networks and influence diagrams.
The last part of the chapter focuses on applications and platforms for modeling and
reasoning with uncertain information.
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2 Preliminary Concepts and Definitions

In the rest of this chapter and without loss of generality we limit the presentation
to discrete domains and variables1. Namely the uncertainty is bearing on a set of
elementary worlds (also called states, outcomes, etc). Such set is called the universe
of discourse and it is denoted Ω={ω1..ωn} where ωi are the elementary states. An
event φ is any subset of states, namely φ⊆Ω . In some contexts, the problem is
modeled using a set of variables A1..Ak where each variable A j is associated with
a domain denoted DA j or simply D j. In this case, the universe of discourse comes
down to the Cartesian product DA1×..×DAk .

2.1 Probability Theory

Probability theory is the standard and traditional formalism for representing uncer-
tain information. The main concepts of this setting are:

Definition 1 (Probability measure). Given a universe of discourse Ω={ω1..ωn}, a
probability measure (also called distribution) p is a mapping from Ω to [0,1] s.t.
∀ω∈Ω : p(ω)∈[0,1].

A probability measure p obeys Kolmogorov axioms, simply called probability the-
ory axioms:

Positivity: ∀φ⊆Ω , p(φ)≥0.
Normalization: p(Ω)=1.
Additivity: ∀φ , ψ⊆Ω s.t. φ∩ψ=/0, p(φ ∪ψ) = p(φ) + p(ψ).

Probabilities can be given either a frequentist interpretation or a subjective one in
case of modeling an expert’s knowledge. See Chapter 3 of Volume 1 on uncertainty
representations for more details on the different interpretations of probabilities.

Given a probability measure p encoding the current uncertain information, a con-
ditional probability measure corresponds to the posterior distribution obtained from
p when an evidence φ⊆Ω is received.

Definition 2 (Conditional probability measure). A conditional probability mea-
sure p(.|φ) is a probability measure s.t. ∀ω∈Ω ,

p(ω|φ)= p(ω,φ)
p(φ) .

Conditioning a probability measure comes down to exclude any state that is incon-
sistent with the evidence (namely, ∀ω /∈φ , p(ω|φ)=0) and re-normalizing the prob-
ability degrees of states that are consistent with the evidence φ .

Named after Thomas Bayes (1701-1761), an English statistician, philosopher and

1 Dealing with continuous variables (whose domains involve uncountably infinite number of possi-
ble values) can be done through either discretization or using special notions to encode uncertainty
like probability density functions and cumulative distributions.
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Presbyterian minister, Bayes rule allows to inverse probabilities, namely infer the
probability p(φ |ψ) from p(ψ|φ), p(φ) and p(ψ).

Definition 3 (Bayes rule). Given the probabilities p(ψ|φ) and p(φ) and p(ψ) then

p(φ |ψ)= p(ψ|φ)∗p(φ)
p(ψ) .

Bayes rule is fundamental for reasoning tasks especially in probabilistic graphical
models, hence the name Bayesian networks.

Another important rule used in probabilistic models is the so-called chain rule.

Definition 4 (Chain rule). Given a joint probability measure p over a set of vari-
ables A1,.., An, then p(A1..An) can be factored as

p(A1..An)=p(A1)*p(A2|A1)*p(A3|A2A1)*..*p(An|An−1...A1).

The chain rule can be derived by iteratively applying conditioning and Bayes rules.

2.2 Conditional Independence

The concept of independence is a key notion in all belief graphical models. This is
what allows to factor a large joint distribution as a combination of a set of lower
dimension local distributions.

Intuitively, an event φ⊆Ω is said to be independent of another event ψ⊆Ω in the
context of ϕ⊆Ω if given ϕ , knowing ψ is irrelevant and does not provide any extra
information about φ (namely, if we know ϕ , further learning ψ does not change
what we think about φ ). We denote in the rest of this chapter such a relation by
φ⊥ψ|ϕ . This definition can be straightforwardly extended to finite sets of variables
as follows: Let X , Y and Z be three disjoint sets of variables and having the finite
domains DX , DY and DZ respectively. X is said to be independent of Y conditionally
to Z denoted X⊥Y |Z iff ∀xi∈DX , ∀y j∈DY , ∀zk∈DZ , the statement xi⊥y j|zk holds.
The main properties of conditional independence relations are (here X , Y , Z and W
are disjoints sets of variables):

• Symmetry: X⊥Y |Z iff Y⊥X |Z.
• Decomposition: X⊥Y∪W |Z if X⊥Y |Z and X⊥W |Z.
• Weak union: X⊥Y∪W |Z if X⊥W |Z∪Y .
• Contraction: X⊥Y |Z and X⊥W |Z∪Y if X⊥W∪Y |Z.
• Intersection: X⊥Y |Z∪W and X⊥W |Z∪Y if X⊥W∪Y |Z.

Independence relations fulfilling Symmetry, Decomposition, Weak union and Con-
traction properties are called semi-graphoids. If in addition the independence rela-
tion satisfies the Intersection property, then it is said graphoid. Note that probabilis-
tic independence relationships are semi-graphoids and become graphoids only in
case of strictly positive probability measures. Graphoids can be graphically encoded
by means of directed acyclic graphs. Note finally that the notions of independence,
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stochastic correlation and causality are strongly related. For instance, independence
relations imply lack of causality but lack of independence does not always imply
causality.

2.3 Graph Concepts

In the following, a graph G corresponds to a couple (V,E) where V denotes the
set of vertices, also called nodes or simply variables while E represents the set of
edges between the nodes in V . In oriented graphs, the edges are directed and are
called arcs. In undirected graphs, the edges are simple links connecting two nodes
without any order. An arc from Ai to A j is denoted Ai→A j. Here Ai is called origin or
parent while A j is called destination or child. Indirect parents are called ancestors
or predecessors and indirect children are called descendants or successors. The
parents set of a given node Ai is denoted pa(Ai) or UAi or simply Ui.

Directed Acyclic Graphs (DAG for short) are directed graphs without directed
cycles.

A

B

C D

A B

CD

A

B

C D

Tree Polytree Multiply connected

Fig. 1 Some graph topologies in directed belief graphical models

In a tree, there is at most one (undirected) path between each pair of nodes and a
node can have at most one parent. In a polytree, there is at most one (undirected) path
between each pair of nodes and a node can have more than one parent. Trees and
polytrees are also called singly connected networks. In multiply connected networks,
many paths are allowed between pairs of variables as long as the graph remains
acyclic.

2.4 Graphical Encoding of Independence Relations

The graphical components of belief graphical models can be seen as independence
models underlying the uncertain information to be encoded. Indeed, a graphical
model encodes a set of independence relations. For instance, independence state-



6 Salem Benferhat, Philippe Leray, and Karim Tabia

ments between three variables X , Y and Z can be one of the following cases:

Z

X YSerial

Z

X YDivergent

Z

X YSerial Z

X YConvergent

The two cases X→Z→Y and Y→Z→X are serial and both encode the fact that X
is independent from Y given Z, namely, X⊥Y |Z (by symmetry, Y⊥X |Z). We say that
the information flow from X to Y is inactive or blocked by Z. The divergent connec-
tion (common cause) X←Z→Y also encodes X⊥Y |Z contrarily to the convergent
connection (common effect or V -structure) X→Z←Y where the information flow is
inactive only if Z is unknown.

Without loss of generality, the information flow in any graph can be answered
based on the three types of connections listed above. The concept of d-separation,
which generalizes conditional independence, is an independence test stating that any
subset of variables X is independent of its non descendants given its parents. Indeed,
the path from X to Y will be blocked if any path form X to Y involves a serial or
a divergent connection blocked by a variable from Z or a V -structure where Z is
not observed. The concept of Markov-blanket of a subset of variables X refers to
the subset of variables Z that disconnects or blocks information flow from the rest
of the graph to X . Intuitively, once we know all the values of variables involved in
the Markov-blanket, then observing other variables will not influence or bring any
additional information regarding X .

The following section presents main aspects related to probabilistic graphical
models.

3 Probabilistic Graphical Models

The main idea and benefit of belief graphical models is factoring a joint uncertainty
measure in the form of a combination of local measures thanks to independence
relations that may hold between some variables. Pearl and his colleagues [Geiger
et al, 1989, 1990; Pearl, 1988a] were among the pioneers to argue that uncertain
information could be efficiently managed if one takes advantage of conditional in-
dependence relations. Following their view, a DAG could be used as a graphical
representation of conditional independences. Their works led to the development of
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Fig. 2 Example of a Markov-blanket

Bayesian networks, the well-known and most widely used probabilistic graphical
models.

3.1 Bayesian Networks

Bayesian networks are directed graphical models for modeling and reasoning with
probabilistic uncertainty. A Bayesian network (BN for short) involves two compo-
nents BN=<G, P>:

• A graphical component G=<V ,E>, also called the structure, consisting in a
directed acyclic graph (DAG) where each node Ai denotes a variable and arcs
graphically encode conditional independence relations.

• A numerical component, also called parameters, consisting of a set of local con-
ditional probability tables (CPTs for short) denoted p(Ai|UAi) or p(Ai|pa(Ai)).

G is called an independence model (I-map) for the independence relations exist-
ing in the joint probability distribution encoded by the Bayesian network. Let I(G)
(resp. I(p)) denote the set of independence statements in the graph G (resp. the joint
probability distribution p). Then G is an I-map of p iff I(G)⊆I(p). G is called a de-
pendence model (D-map) of p iff I(p)⊆I(G) and it is a perfect map iff I(G)=I(p).

CPTs have to satisfy the normalization condition, namely:

• If pa(Ai)=/0 (Ai has no parents) then the associated table for Ai is a marginal
distribution, hence:

∑
ai∈DAi

P(ai) = 1. (1)

• If pa(Ai)6= /0 then the CPTs associated with Ai should be such that:
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∀ui ∈ ×DA j∈pa(Ai), ∑
ai∈DAi

P(ai|ui) = 1. (2)

The joint probability distribution encoded by a Bayesian network can be computed
using the chain rule:

P(A1, ...,An) =
n

∏
i=1

P(Ai|pa(Ai)). (3)

Figure 3 gives a basic example of a Bayesian network.

Example 1 Let us use the toy example about the alarm problem defined over four
Boolean variables: A (Alarm), S (Smoke), F (Fire) and B (Burglary).

F

A S

B

p(F)
T F

.01 .99

p(B)
T F

.05 .95

p(S|F)
F S=T S=F
T .9 .1
F .01 .99

p(A|B,F)
B F A=T A=F
T T .99 .01
T F .85 .15
F T .95 .05
F F .001 .999

Fig. 3 Example of a Bayesian network over four Boolean variables A, B, F and S.

In this example, the joint probability distribution is factorized as follows:

P(A,B,F,S)=P(B)∗P(F)∗P(A|B,F)∗P(S|F).

Arcs in Bayesian networks do not always denote cause-effect relationships. In-
deed, unless it is clearly stated that it is a causal Bayesian network (in which case,
the structure must satisfy some specific conditions. In particular, the parents of a
variable represent its direct causes while its children represent it direct effects), the
DAG of a Bayesian network should be interpreted as a graphical encoding of a set
of conditional independence relationships. See for instance [Pearl, 2000] for more
details on causal graphical models.

Note that even if all the variables of a BN are binary, the number of entries for
the corresponding joint probability distribution grows exponentially with the num-
ber of variables n. However, the total number of entries for the CPTs of a Bayesian
network grows linearly with the number of variables n and exponentially only in the
biggest number of parents per variable. Hence, as long as the network has a limited
number of parents per variable, then the number of parameters of the network will
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be much lower than the size of the corresponding joint distribution. As it will be
made explicit later in this chapter, inference is Bayesian networks (and more gen-
erally in belief graphical models) is efficient only on structures allowing a limited
number of parents such as trees and polytrees.

The two following sections deal with inference and learning Bayesian networks.

4 Reasoning and Inference in Bayesian Networks

A Bayesian network models the available uncertain information regarding the prob-
lem under study. Once the model built, it can be used for answering queries and
performing different types of reasoning tasks.

4.1 Main Reasoning Tasks

A belief graphical model provides two kinds of information: i) qualitative informa-
tion allowing to answer any query regarding the independence of a set of variables
X⊆V with Y⊆V conditionally to Z⊆V . In order to answer such queries, the so-
called d-separation and Markov-blanket tests allow to determine for each subset of
variables X the subset of variables Z which renders it independent of all the remain-
ing variables. Regarding the numerical information encoded by a Bayesian network,
there are three main types of queries one may want to answer:

• Compute the probability degree Pr of an event q of interest given an evidence e
(e is an instance of observation variables E⊆V while q is an instance of query
variables Q⊆V ).

• Compute the most plausible explanation (MPE). Given an observation e of a sub-
set of variables E⊆V , the objective is to compute the most plausible instantiation
q of all the remaining (unobserved) query variables Q⊆V . Note that here E∪Q=V
and Q∩E=/0.

• Compute the maximum a posteriori (MAP). Given some observations e of the
values of some variables E⊆V , the objective is to compute the most plausible
instantiation q of the query variables Q⊆V . In MAP queries, Q∩E=/0. Clearly
MPE queries are a special case of MAP ones.

In order to answer queries, different operations may be needed like Bayes rule,
conditioning, marginalization, chain rule, etc. The computational complexity of an-
swering these three types of queries depends on the class of the network structure
[Cooper, 1990; de Campos, 2011].
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Query Polytree Bounded
treewidth

Multiply-
connected

Pr Polynomial Polynomial PP-Complete
MPE Polynomial Polynomial NP-Complete
MAP NP-Complete NP-Complete NPPP-Complete

Clearly, inference in Bayesian networks is a hard task. As it will be highlighted
later in this chapter, the existing inference algorithms and approaches are efficient
only on tree-like and bounded treewidth2 Bayesian networks.

Inference algorithms allow to compute the probability of any event of interest.
These probabilities can be used depending on the application, for classification, ex-
planation or decision making. Depending on the accuracy of the computed results,
inference algorithms are either exact or approximate. Most common exact inference
algorithms are:

1. Inference by enumeration: This method is a little better than brute force which
operates directly on joint probability distributions. In order to compute the prob-
ability of an event, one can just use marginalization over all the configurations
that are consistent with the query and use the chain rule to perform some simpli-
fications and improvements. This technique can be used only for networks with
few variables.

2. Inference by variable elimination: The principle of this approach is to eliminate
variables step by step through marginalization and product operations until reach-
ing the variables needed to answer the query [Zhang and Poole, 1994]. The time
complexity of such algorithms is exponential in the width (in terms of number
of variables) of the factors (tables for subsets of variables) built while eliminat-
ing variables. In addition to the fact that variable elimination is efficient only on
low tree-width networks, the efficiency also depends on the order of elimination
while the problem of finding the optimal order is NP-hard [Arnborg et al, 1987].

3. Message passing-based algorithms: Such algorithms, also called sum-product al-
gorithms or belief propagation are developed for tree-like networks and proceed
by a series of message passing procedures to compute the probability degrees
of interest [Pearl, 1982]. Sum-product algorithms are also adapted and used in
approximate inferences algorithms.

4. Junction tree algorithms: The junction tree algorithm is a well-known and widely
used inference algorithm in Bayesian networks with general structures [Lauritzen
and Spiegelhalter, 1990]. This algorithm is also known as the clique-tree propa-
gation or clustering algorithm. The main idea of the algorithm is to decompose
the joint belief distribution into a combination of local potentials (local joint
distributions). The algorithm consists in i) A set of graphical transformations
(moralization and triangulation) transforming the initial DAG into an undirected
graph (tree) composed of cliques and clusters and ii) numerical operations (ini-
tialization and stabilization) allowing to integrate the initial local distributions
into the new structure then perform stabilization operation consisting in propa-
gating marginals in order to guarantee that the marginal distribution relative to

2 Broadly speaking, the concept of treewidth quantifies the similarity of a network to a tree
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a given variable appearing in two adjacent clusters are the same. The complex-
ity of this algorithm is exponential in the size of the largest clique making this
algorithm efficient only on sparse networks.

5. Inference by compilation: Inference based on compilation consists in first en-
coding the uncertain information represented by the graphical model into a tar-
get language then perform inference in the target language. For inference with
Bayesian networks, the graphical model is first encoded in the form of a logical
knowledge base, then this latter is encoded in an appropriate encoding accept-
ing the requests that are made for the initial probabilistic model. Probabilistic
compilation-based methods are proposed for instance in [Chavira and Darwiche,
2005; Bart et al, 2016; Kimmig et al, 2016].

6. Conditioning-based inference: The main idea in this approach is to use the ev-
idence involved in the request in order turn the initial network into a tree or
poly-tree. The term conditioning here simply means assigning values to some
variables. For example, the observations are incorporated by disconnecting the
observed variables and their descendants by updating local tables. The cutset
conditioning algorithm proposed in [Pearl, 1986, 1988b] for multiply connected
networks tries to find a minimal set of variables such that if such variables were
instantiated, then this will turn the network into a singly connected one. Inference
on the obtained singly connected network is done using the message passing al-
gorithm. Then the results of each instantiation are combined to derive the answer
for the the initial query. The computational complexity of this schema is related
to the number of instantiations performed to answer queries. Unfortunately, for
multiply connected networks, this algorithm is exponential in the size of the loop
cutset while minimizing the loop cutset is an NP-hard problem.

Other exact inference algorithms were proposed in the literature like arc rever-
sal/node reduction, symbolic probabilistic inference, differential approach and most
of the existing algorithms have been adapted, extended and refined in many ways.

As said earlier in this chapter, exact inference in Bayesian networks is not
tractable in the general case. Since it is established that the complexity of the ex-
act inference is NP-hard in the worst case, especially since it was established that
the complexity is exponential in the treewidth of the BN, this has oriented a lot of
works to approximate inference. Interestingly, for problems with a large number of
variables, some tasks can be performed with a satisfactory accuracy without com-
puting exact probabilities. Indeed, some problems like classification, diagnosis and
other prediction tasks can be addressed with approximate probabilities. Approxi-
mate inference aims to ensure a good compromise between computational tractabil-
ity and accuracy of the results. Examples of approximate inference algorithms in
Bayesian networks are variational methods [Jordan et al, 1999], sampling-based
methods [Henrion, 1986] and loopy belief propagation [Murphy et al, 1999]. Note
finally that in last years, there is a growing interest in inference schemas exploiting
local and repeated structures [Chavira et al, 2006; Vlasselaer et al, 2016].
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5 Learning and Classification with Bayesian Networks

A Bayesian network is defined by a graph representing a set of conditional inde-
pendencies, and by a set of conditional probability distributions. Hence, learning a
Bayesian network from data therefore amounts to find the graph (i.e. the structure)
and the parameters of these conditional distributions from the dataset.

A Bayesian network can be used as a generative model or as a discriminative one
(regarding a specific target variable). Learning such a model may also vary using
dedicated structures for classification for example or a dedicated objective function
to be optimized during learning. We will first review the main methods for learning
parameters where we assume that the graph is already known, then we will address
the more complex issue of structure learning. We then discuss the particular case of
classification and discriminant learning.

Thereafter, we will assume that the variables of the Bayesian network are dis-
crete and that the data used for learning is complete, independent and identically
distributed. For more information on learning Bayesian networks with incomplete
data, we recommend [Ramoni and Sebastiani, 1998; Fiot et al, 2008].

5.1 Parameter Learning

When the graph of a Bayesian network is known (by assumption or already learnt
from data), learning the Bayesian network aims at estimating the conditional proba-
bility distributions associated to each random variable Xi in the context of its parents
pa(Xi).

5.1.1 Statistical Learning

The simplest statistical estimation method is the method of likelihood maximization
(ML):

θ̂
ML
i, j,k =

Ni, j,k

∑k Ni, j,k
(4)

where Ni, j,k is the number of events {Xi=xk and pa(Xi)=x j} in the dataset. Namely,
Ni, j,k is the number of times variable Xi has value xk and the parents of Xi denoted
pa(Xi) have value x j. Recall that here the structure is given.

5.1.2 Bayesian Learning

When the size of the training dataset is small, or when expert knowledge about
the values of parameters is available, Bayesian estimation methods as the Bayesian
maximum a posteriori (MAP) or a posteriori expectation (APE) seem to be more rel-
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evant. These methods require the definition of a prior distribution on the parameters
to be estimated. In the classical discrete case, the distribution is a conjugate prior
Dirichlet distribution whose coefficients α can be interpreted as the number of prior
occurrences of each event. Following the maximum a posteriori (MAP) approach,
we have the following parameter estimation:

θ̂
MAP
i, j,k =

Ni, j,k +αi, j,k−1
∑k (Ni, j,k +αi, j,k−1)

, (5)

where αi, j,k denotes the parameter of the Dirichlet distribution associated with the
prior distribution P(Xi = xk|pa(Xi) = x j).

The a posteriori expectation (APE) is stated in a similar way:

θ̂
APE
i, j,k =

Ni, j,k +αi, j,k

∑k (Ni, j,k +αi, j,k)
(6)

5.2 Structure Learning

Learning the structure of a Bayesian network is an NP-hard problem [Chickering
et al, 1994], this led to a lot of works and states of the art [Heckerman, 1998; Daly
et al, 2011]. The number of possible structures is super-exponential in the number
of variables n [Robinson, 1977]. Some works addressed finding the exact solution
when the number of variables is low [Koivisto and Sood, 2004; Koivisto, 2006;
Parviainen and Koivisto, 2009; Malone et al, 2011]. Most existing methods propose
heuristics to find a good model when the number of variables gets higher.

The first family of approaches, known as constraints-based approach, uses the
fact that a Bayesian network is a graphical model of independence. Conditional in-
dependence tests are used to find the necessary information to reconstruct the model.

The second family is the so-called score-based approaches. They aim to find a
structure maximizing a scoring function, an approximation of the marginal likeli-
hood, and exploring the search space heuristically.

The last family is the one of hybrid approaches combining the advantages of the
previous two families by taking advantage of statistical dependence measures and
score-based optimization.

In all cases, structure learning approaches face the problem of identifiability. In-
deed, an independence model can correspond to several Bayesian network struc-
tures. This concept, called Markov equivalence or likelihood equivalence, makes
conventional learning algorithms unable to identify a structure within it class equiv-
alence.
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5.2.1 Constraint-based Structure Learning

This family of algorithms mainly results from the work of the pioneers of Bayesian
networks, namely Pearl and Verma with the IC algorithm [Pearl and Verma, 1991;
Pearl, 2000] on one side and Spirtes, Glymour and Scheines on the other side with
the PC algorithm [Spirtes et al, 1993, 2000]. These algorithms follow basically the
same principle and steps:

• Build an undirected graph containing the dependency relationships between vari-
ables, from conditional independence tests;

• Identify the V-structures (directed substructures having conditional dependency
properties that other substructures do not have);

• Complete the orientation of other edges using the fact that (1) all V-structures
have already been detected and (2) that the directed graph must not contain cy-
cles. This step applies a set of rules described in [Meek, 1995].

Given that the number of statistical tests to perform is exploding in the number of
variables, several heuristics have been proposed. The best known, used in the PC
algorithm [Spirtes et al, 1993] consists in firstly performing the pairwise indepen-
dence tests, then the conditional tests with one single variable, and so on, reducing at
each step the number of tests. Note that the reliability of the used statistical tests de-
creases exponentially in the number of considered variables, limiting these methods
to problems with a hundred variables.

5.2.2 Score-based Structure Learning

This second category of methods aims to explore heuristically the super-exponential
search space and maximize a specific scoring function.

Scoring Functions

Used scoring functions are approximations of the marginal likelihood p(D|B)
[Chickering and Heckerman, 1996]. A first approximation of computing this likeli-
hood leads to the AIC and BIC scores, where we find the very general principles of
model selection proposed in [Akaike, 1970] and [Schwartz, 1978]:

ScoreAIC(B,D) = logL(D|θ ML,B)−Dim(B) (7)

ScoreBIC(B,D) = logL(D|θ ML,B)− 1
2

Dim(B) logN (8)

where N is the size of the dataset and Dim(B) the size of the Bayesian network,
namely the number of independent parameters to describe the set of conditional
probability distributions associated with the graph.
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Dim(B) =
n

∑
i=1

(ri−1)qi (9)

with ri denoting the cardinality of Xi and qi=∏X j∈pa(Xi) r j denoting the number of
configurations of Xi’s parents.

Assumptions about the prior distribution of the parameters lead to a second ap-
proximation of the marginal likelihood, the BDe score (Bayesian Dirichlet Equiva-
lent) [Heckerman et al, 1994]:

ScoreBDe(B,D) = p(B)
n

∏
i=1

qi

∏
j=1

Γ (αi j)

Γ (Ni j +αi j)

ri

∏
k=1

Γ (Ni jk +αi jk)

Γ (αi jk)
(10)

with αi jk=N′×P(Xi = xk, pa(Xi) = x j|Bc) where Bc is the a priori structure encoding
no conditional independence (completely connected graph) and N′ is a number of
”equivalent” samples defined by the user.

If this probability distribution estimated in the structure Bc is uniform, we find
a case of a priori non-informative uniform αi jk= N′

riqi
proposed initially by [Buntine,

1991] and often called BDeu score in the literature.
These different scores satisfy two important properties: score equivalence and

decomposability. The first property refers to the fact that two equivalent structures in
the Markov sense must obtain the same score [Chickering, 1995; Heckerman et al,
1994]. The second property indicates that a (global) scoring function Score can be
written as the sum (or product...) local scores s involving only a variable Xi and its
parents in the graph: Score(B,D)=∑

n
i=1 s(Xi, pa(Xi)).

Searching the DAG Space

Using the scoring functions described above, learning a Bayesian network structure
can be seen as an optimization problem. An exhaustive search of the space of acyclic
directed graphs (DAGs) is impossible. Many heuristics or metaheuristics were then
proposed for this purpose. One example is the so-called Maximum Weight Spanning
Tree (MWST) [Chow and Liu, 1968; Heckerman et al, 1994], K2 algorithm [Cooper
and Herskovits, 1992] and its variants [Bouckaert, 1993] that use a priori knowledge
of an ordering on nodes, or the greedy search in the DAG space [Chickering et al,
1995] or in the space of class equivalence representatives [Auvray and Wehenkel,
2002; Chickering, 2002].

Other meta-heuristics are also possible: simulated annealing, genetic algorithms
[Larrañaga et al, 1996; Delaplace et al, 2007; Auliac et al, 2007; Muruzabal and
Cotta, 2007], particle swarm optimization [Wang and Yang, 2010] or ant colonies.
Due to the size of the considered neighborhoods (quadratic for a greedy search),
these methods are often limited to problems of a thousand variables.
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5.3 Hybrid Learning

Hybrid approaches combine the advantages of both constraint and score-based
methods. Among the recent methods, some allow to deal with problems with several
thousands or even hundreds of thousands of variables. The principle of such meth-
ods is in two steps. The first one is to determine the local vicinity of each variable.
This neighborhood can be either all parents and children (without distinction) of the
variable, Markov-blanket (parents, children and parents of children). Several stud-
ies have specifically addressed this local identification such as MMPC [Tsamardinos
et al, 2006] for parents-children or IAMB [Tsamardinos et al, 2003], PCMB [Peña
et al, 2007] or MBOR [Rodrigues De Morais and Aussem, 2008] for the Markov-
blanket. The second step, illustrated for example in MMHC algorithm [Tsamardinos
et al, 2006], is to perform a kind of global optimization greedy search, exploring a
DAG space constrained by local neighborhoods previously discovered.

5.4 Classification

5.4.1 Generative versus Discriminant Learning

While conventional learning methods aim to find a Bayesian network that is a good
generative model for the joint probability distribution P(X1...Xn), existing classi-
fication models (commonly called classifiers) learning in seeking to build a good
predictive model for P(C|X1...Xn) where C is the class variable to predict. Maximiz-
ing ”discriminative” likelihood related to the predictive model is unfortunately more
complex than the generative case. The solution has no simple analytical expression
and must be obtained by gradient descent methods [Friedman et al, 1997; ?; Greiner
et al, 2002; Pernkopf and Bilmes, 2005]. In practice, the classifier is obtained by
searching a specific structure taking into account the specific role of the class vari-
able C, but applying conventional structure learning algorithms that maximize the
marginal likelihood. Then the network parameters can be estimated either conven-
tionally as in the previous section, or by optimizing the ”discriminative” likelihood.

5.4.2 Structures for Bayesian Network Classifiers

The first Bayesian network model proposed for classification is the naive Bayes
network NB. This network assumes that the class variable C and other attributes
X1 to Xn are directly dependent, but the observable variables Xi are independent
conditionally to C . This strong hypothesis leads to the structure shown in Figure 4.

This model is still used and has many advantages: a completely determined struc-
ture (by hypothesis) and a reduced number of parameters that can estimated very
simply by maximum likelihood (ML). This simplicity perfectly corresponds to the
principle of parsimony, so even if the assumptions are not verified in practice, the
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C

X2X1 X3 Xn

Fig. 4 Naive Bayes classifier

naive Bayes classifier often achieves very good performances.
Many extensions have been proposed for relaxing the strong assumption of con-

ditional independence of variables X1,.., Xn in the context of the class variable C.
Finding the best dependency model between variables Xi (conditionally to the class
C) is as hard as learning a Bayesian network structure. The most common extensions
are the heuristic algorithm TANB (Tree Augmented Naive Bayes) [Friedman et al,
1997] where variables Xi are connected by a maximum spanning tree, and FANB
(Forest Augmented Naive Bayes) [Keogh and Pazzani, 1999] where variables Xi are
connected by a forest (set of unconnected sub-trees) .

When data is complete, it is also possible to use the Markov blanket property
of the class variable C. Indeed, this subset MB of variable X1,.., Xn is such that
P(C|MB,X\MB)=P(C|MB). This set is defined by all parents, children and other
parents of the class variable C. The local identification methods described above
allow to determine this set.

6 Main Variants of Probabilistic Graphical Models

6.1 Influence Diagrams

Influence diagrams [Howard and Matheson, 1984; Shachter, 1986] are intuitive ex-
tensions of probabilistic models for modeling and decision making under uncer-
tainty (see Chapter 17 of Volume 1 for more details). They have three kinds of
nodes:

• chance nodes (circles) corresponding to random variables as in Bayesian net-
works,

• decision nodes (rectangles) representing the decisions and actions that can be
chosen by a decision maker and

• utility nodes (diamonds) assessing the gain/cost or satisfaction provided by each
taken decision.

Example 2 The influence diagram of Figure 5 is a simple toy example that models
the reasoning and decision making problem for an agent regarding starting a car
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trip or postponing it depending on traffic jams. In this example, we have some un-
certain information about traffic jam and delays. The aim is to model the decision
of starting a trip or postponing it.

Rush hour
traffic
Jam

Delay

Leaving

Value
Leaving=go&Delay=No, 10
Leaving=go&Delay=Yes, 4
Leaving=post pone&Delay=No, 2
Leaving=post pone&Delay=Yes, 8

Leaving|Rush
Rush Yes No

Leaving post pone go

p(Rush)
Yes No
.25 .75

p(Jam|Rush)
Rush Yes No
Yes .9 .1
No .3 .7

p(Delay|Jam)
Jam Yes No
Yes .95 .05
No .15 .85

Fig. 5 Example of an influence diagram

In this example, the uncertain information bears on the influence relationships
between three variables Rush hour, traffic Jam and Delay. The decision (node Leav-
ing) of starting the trip or postponing it is taken only knowing whether it is a rush
hour or not. The satisfaction provided for the decision maker by the different deci-
sions depends on the taken decision and the fact that there were delays or not at the
time taking the decision.

As shown in the previous example, influence diagrams involve a Bayesian net-
work component to encode the uncertain information part and a decisional com-
ponent to model decisions and utilities. Such models allow to compactly encode
decision problems under uncertainty and they are mainly used for finding the op-
timal decisions or strategies to take in the presence of some evidence. Of course,
influence diagrams may involve many decision nodes and utility nodes. Moreover,
decision nodes can be linked to model sequential decision making problems.

The set of all decisions that can be chosen are called strategies or policies,
and the main reasoning task using influence diagrams is to find the optimal pol-
icy, namely the policy maximizing the expected accumulated utility [Howard and
Matheson, 1984]. Regarding inference algorithms in influence diagrams, the exist-
ing approaches are generally divided into direct and indirect methods. Direct meth-
ods operate directly on the influence diagram in order to find the optimal policy.
The variable elimination algorithm is among the direct methods. Indirect methods
first translate the influence diagram into another structure then answer queries using
the obtained structure. Most used secondary structures used in practice are decision
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trees (a method for decision analysis), Bayesian networks and junction trees. See
[Shachter and Bhattacharjya, 2010] for more inference algorithms for solving influ-
ence diagrams.

A more general framework for decision making and planning under uncertainty
is the one of Markov Decision Processes (MDPs) and their generalizations like Par-
tially Observable Markov Decision Processes (POMDPs). MPDs are used for com-
puting the optimal strategies for a decision making purpose. A strategy here simply
means a sequence of actions. Like influence diagrams, probability and expected
utility theories are the basis for taking the optimal decisions. In MDPs, the rewards
associated with states and actions are used to compare the benefit of a given strat-
egy. MDPs are not really considered as belief graphical models because they do not
assume any DAG structure (indeed, cycles are allowed in MDPs).

6.2 Dynamic Bayesian Networks

Bayesian networks model static problem, namely, they do not explicitly integrate
any temporal or sequential information. Dynamic Bayesian networks (DBNs) [Mur-
phy, 2002] allow to model dynamic or stochastic processes by taking into ac-
count explicitly the temporal dimension. For example, one can model with a causal
Bayesian network the uncertain information regarding a medical state at any given
moment and model the transitions between the states.

A0 B0

C0

A1 B1

C1

At Bt

Ct

Fig. 6 Example of a dynamic Bayesian network

Figure 6 shows a dynamic Bayesian network where at each time slice, three ran-
dom variables representing states compose a Bayesian network. Transitions from
one time slice to another are modeled through transition probability tables. For in-
stance, at time slice 1, the state A1 depends on variables B0 and C0 of time slice 0.

Reasoning and inference in DBNs is not so different from these tasks in standard
BNs. Most of the applications of DBNs use MPE and MAP queries. For instance,
the popular decoding task in DBNs is simply an MPE query searching for the most
likely configuration of non-observed variables given the observed ones.

Well-known DBNs are Hidden Markov Models (HMMs) composed of two types
of nodes:



20 Salem Benferhat, Philippe Leray, and Karim Tabia

• State nodes: They represent internal states of the system and they cannot be di-
rectly observed.

• Outcome nodes: They model the variables representing the outputs of the system
which can be observed.

S0 S1 S2 S3 Sn

Y0 Y1 Y2 Y3 Yn

In HMMs, each output variable Yi depends only on the state Si, namely ∀ j 6=i,
Yi⊥S j|Si. Moreover, each state Sk depends only in the previous immediate state
Sk−1, namely ∀i< j<k, Sk⊥Si|S j. HMMs have been successfully applied in many
tasks, especially annotation in speech recognition and more generally in sequence
analysis.

Inference in HMMs consists mainly in the decoding tasks consisting in comput-
ing the most likely sequence of state variables based on the outcomes. The well-
known Viterbi decoding procedure allows to solve efficiently this problem in simple
HMMs. Of course, one could answer any other query for an HMM like computing
any probability of interest. Note that more complex forms of HMMs like hierar-
chical ones may require extra computational costs to achieve inference. Note also
that other special cases of DBNs exist like the well-known Kalman filters [Mur-
phy, 2002] also known as linear dynamic systems. They are state-space models like
HMMs but involve continuous variables with linear-Gaussian distributions.

6.3 Credal Networks

Credal networks are probabilistic graphical models based on imprecise probabilities.
Imprecise probability theory [Walley, 2000; Levi, 1980] generalizes probability the-
ory to encode imprecise and ill-known information. A key notion in this theory is
the one of credal set.

Definition 5 (Credal set). A credal set is a convex set of probability distributions.

Probabilistic graphical models based on credal sets are called credal networks [Coz-
man, 2000; Mauá et al, 2014].

Definition 6 (Credal network). A credal network CN=<G,K> is a probabilistic
graphical model where

• G=<V , E> is a directed acyclic graph (DAG) encoding conditional indepen-
dence relationships where V ={A1,A2, ..,An} is the set of variables of interest (Di
denotes the domain of variable Ai) and E is the set of edges of G.

• K={K1,K2, ..,Kn} is a collection of local credal sets, each Ki is associated with
the variable Ai in the context of its parents pa(Ai).
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Such credal networks are called separately specified credal networks as the only
constraints on probabilities are specified in local tables for each variable in the con-
text of its parents. Note that in practice, in local tables, one can either specify a set
of extreme points characterizing the credal set as in JavaBayes3 software or directly
local interval-based probability distributions as in shown in the following example.

F

A S

B

F p(F)
T [.01,.05]
F [.95,.99]

B p(B)
T [.05,.15]
F [.85,.95]

p(S|F)
F S=T S=F
T [.7,.9] [.1,.3]
F [.2,.4] [.6,.8]

p(A|B,F)
B F A=T A=F
T T [.95, 1] [0,.05]
T F [.85,.95] [.05,.15]
F T [.8,.9] [.1,.2]
F F [.95,.95] [.05,.05]

Fig. 7 Example of an interval-based credal network over four variables A, B, F and S.

A credal network CN is often seen as a set of Bayesian networks BNs, each en-
coding a joint probability distribution. In this case, each BN has exactly the same
structure as the CN (hence they encode the same conditional independence rela-
tions). Regarding the parameters, for each variable Ai, ∀ai∈Di,

pBN(ai|pa(ai))∈Ki(ai|pa(ai)).

Reasoning with CNs amounts to answering queries as that of Bayesian networks.
In CNs, one can for instance compute posterior probabilities given an evidence. For
MPE and MAP queries, different criteria may be used to characterize the optimal
instantiations of query variables given an evidence [Antonucci and Campos, 2011].
For instance, in credal network classifiers, a class is selected if it is not dominated
by any other class [Zaffalon, 2002]. Without surprise, inference in credal network is
harder than in Bayesian networks since inference in CNs considers sets of probabil-
ity measures [Mauá et al, 2014].

6.4 Markov Networks

Markov networks [Pearl, 1988a; Lauritzen, 1996], also knwon as Markov Random
Fields (MRFs) or simply undirected graphical models are undirected probabilistic
graphical models widely used in some applications like computer vision [Wang et al,
2013]. Undirected graphs can encode dependency relationships making them useful

3 http://www.cs.cmu.edu/˜javabayes/Home/
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in particular in modeling problems where the probabilistic interactions among the
variables are somehow undirected or symmetrical. Moreover, Markov networks can
encode some independence statements that DAG structures fail to encode like the
famous misconception problem [Koller and Friedman, 2009].

At the representation level, Markov networks depart from Bayesian networks by
the use of undirected links in the graph and the use of potential functions or factors
associated to maximal cliques (subsets of variables) instead of local CPTs associated
to variables individually. A potential function θc associated to a clique c can be any
non-negative function on the domain of c (Cartesian product of variables involved
in c). Formally,

Definition 7 (Markov network). A Markov network MN=<G,Θ> is specified by:

i) A graphical component G consisting of a undirected graph where vertices repre-
sent the variables and edges represent direct dependence relationships between
variables. Intuitively, any variable Ai is independent of any other variable A j
given all Ai’s immediate neighbors. Generally, the graph G is represented as a
clique tree to allow parametrization.

ii) A numerical component Θ allowing to weight the uncertainty relative to each
cliqueci∈C using local potential functions.

A clique is a fully connected subset of nodes in the graph and it is used to factor-
ize the joint probability distribution over the set of variables as a product of potential
functions associated with cliques.

The joint probability distribution encoded by a MN is factored as follows:

p(a1..an) =
1
Z ∏

c∈C
θc(c[a1..an]), (11)

where Z is a normalization constant while θc denotes the potential of clique c and
θc(c[a1..an]) is the potential of the configuration of variables involved in c.

Inference in Markov networks can be performed by algorithms based on clique
trees such as the junction tree algorithms [Lauritzen and Spiegelhalter, 1990]. Note
finally that there exist probabilistic graphical models mixing both directed and undi-
rected edges, they are called Chain graphs [Lauritzen and Wermuth, 1989].

Next section provides an overview of two belief graphical models based on alter-
native uncertainty theories: possibility theory and ranking functions.

7 Non Probabilistic Belief Graphical Models

To overcome the limitations of classical probability theory, many alternative uncer-
tainty frameworks have been developed, essentially since the sixties. Such theories,
often generalizing probability theory, allow to model and reason with different forms
of uncertain information such as qualitative information, imprecise knowledge and
so on. However, like in the probabilistic case, in order to use such settings in real
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world applications, many issues have to be solved such as the compactness of the
representation, the easiness of elicitation from an expert, learning from empirical
data, the computational efficiency of the reasoning tasks, etc.

7.1 Possibilistic Graphical Models

Like Bayesian networks which compactly encode joint probability distributions,
possibilistic ones [Fonck, 1997; Gebhardt and Kruse, 1996] aim to compactly pos-
sibility distributions. This latter is alternative uncertainty representation particularly
suited for handling incomplete or qualitative information.

7.1.1 Possibility Theory

Possibility theory [Zadeh, 1999; Dubois and Prade, 1988; Giles, 1982] is a well-
known uncertainty theory. It is based on the concept of possibility distribution π

which associates every state ω∈Ω with a degree in the interval [0,1] expressing a
partial knowledge over the world. The degree π(ω) represents the degree of com-
patibility (or consistency) of the interpretation ω with the available knowledge. By
convention, π(ω)=1 means that ω is fully consistent with the available knowledge,
while π(ω)=0 means that ω is impossible. π(ω)>π(ω ′) simply means that ω is
more compatible than ω ′.

As in probabilistic models, independence relations are fundamental as they al-
low to factorize joint possibility distributions. Such relations are also heavily ex-
ploited by inference algorithms to efficiently answer queries. The concept of event
and variable independence is closely related to the one of possibilistic conditioning.
There are different views of the possibilistic scale [0, 1] used to assess the uncer-
tainty. Hence, different interpretations result in different conjunction operators that
are used to perform the conditioning task (eg. product, min, Łukasiewicz t-norm).

Two major definitions of possibilistic conditioning are however used in the litera-
ture. The first one is called product-based conditioning (also known as possibilistic
Dempster rule of conditioning [Shafer, 1976]) stems from a quantitative view of
the possibilistic scale. This semantics views a possibility distribution as a special
plausibility function in the context of Dempster-Shafer theory. More precisely, a
possibility distribution π corresponds to a consonant (nested) plausibility function.
Hence, the underlying conditioning meets Dempster rule of conditioning and it is
formally defined as follows (it is assumed that Π(φ)>0):

π(w|pφ) =

{
π(w)
Π(φ) if w ∈ φ ;
0 otherwise.

(12)

In the qualitative setting, the possibilistic scale is ordinal and only the relative
order of events matters. Accordingly, a min-based conditioning operator is proposed



24 Salem Benferhat, Philippe Leray, and Karim Tabia

in [Dubois and Prade, 1990]:

π(w|mφ) =

1 if π(w)=Π (φ ) and w ∈ φ ;
π(w) if π(w)< Π (φ ) and w ∈ φ ;
0 otherwise.

(13)

While there are many similarities between the quantitative possibilistic and the prob-
abilistic frameworks, the qualitative one is significantly different.

The main definitions of the concept of independence in a possibilistic setting are:

• No-interactivity: This concept proposed in [Zadeh, 1975] can be stated as fol-
lows:

Definition 8 (No-interactivity). Let X , Y and Z be three disjoint sets of variables
and having the domains DX , DY and DZ respectively. X is said to not interact with
Y conditionally to Z and denoted X⊥Y |Z iff ∀xi∈DX , y j∈DY , zk∈DZ ,

Π(X=xi,Y =y j|Z=zk)=min(Π(X=xi|Z=zk), Π(Y =y j|Z=zk)).

• Conditional independence: Proposed in [Fonck, 1997], this definition of inde-
pendence can be stated as follows:

Definition 9 (Conditional independence). Let X , Y and Z be three disjoint sets
of variables and having the domains DX , DY and DZ respectively. X is said to be
independent of Y conditionally to Z iff ∀xi∈DX , y j∈DY , zk∈DZ ,

Π(X=xi|Y =y j,Z=zk)=Π(X=xi|Z=zk) and Π(Y =y j|X=xi,Z=zk)=Π(Y =y j|Z=zk)

Note that in Definition 9, the statement Π(X=xi|Y =y j,Z=zk)=Π(X=xi|Z=zk) does
not imply Π(Y =y j|X=xi,Z=zk)=Π(Y =y j|Z=zk) in a min-based possibilistic setting.
The conditional independence relations of Definition 9 are graphoids [Fonck, 1997].
Note also that conditional independence relations of Definition 9 are stronger than
no-interactivity relations of Definition 8, namely conditional independence implies
no-interactivity but the converse is not guaranteed.

7.1.2 Possibilistic Networks

A possibilistic network PN=<G,Θ> is specified by:

i) A graphical component G consisting of a directed acyclic graph (DAG) where
vertices represent the variables and edges encode conditional independence rela-
tionships between variables.

ii) A numerical component Θ allowing to weight the uncertainty relative to each
variable using local possibility tables. The possibilistic component consists in a
set of local possibility tables θi=π(Ai|pa(Ai)) for each variable Ai in the context
of its parents pa(Ai) in the network PN.

Note that all the local possibility distributions θi must be normalized, namely
∀i=1..n, for each parent context pa(ai), maxai∈Di(π(ai | pa(ai))=1.
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Example 3 Figure 8 gives an example of a possibilistic network over four Boolean
variables A, B, C and D.

A B

C D

A π(A)
T 1
F .4

B π(B)
T .1
F 1

C A π(C|A)
T T .3
F T 1
T F .2
F F 1

D B A π(D|AB)
T T T .4
F T T 1
T T F .2
F T F 1
T F T 1
F F T 1
T F F 1
F F F .1

Fig. 8 Example of a possibilistic network

In the possibilistic setting, the joint possibility distribution is factorized using the
following possibilistic counterpart of the chain rule:

π(a1,a2, ..,an) =⊗n
i=1(π(ai|pa(ai))). (14)

where ⊗ denotes the product or the min-based operator depending on the quanti-
tative or the qualitative interpretation of the possibilistic scale [Dubois and Prade,
1988].

Most of the works dealing with inference in PNs are more or less direct adap-
tations of probabilistic network inference algorithms. For instance, inference algo-
rithms like variable elimination, message passing, junction tree, etc. are directly
adapted for PNs. In [Benferhat et al, 2002], PNs are encoded in the form of possi-
bilistic logics bases (the two representations are semantically equivalent and encode
a possibility distribution) and inferences could be achieved using possibilistic logic
inference rules and mechanisms. PNs could be seen as approximate models of some
imprecise probabilistic models. In [Benferhat et al, 2015b], an approach based on
probability-possibility transformations is proposed to perform approximate MAP
inference in credal networks where MAP inference is very hard [Mauá et al, 2014].

As probabilistic graphical models, possibilistic ones either model the subjective
knowledge of an agent (for example, the authors in [Dubois et al, 2017] use possi-
bilistic networks to encode expert’s knowledge for a human geography problem) or
represent the knowledge learnt from empirical data or a combination of subjective
beliefs and empirical data. Learning PNs from data amounts to derive the structure
and the local possibility tables of each variable from a dataset. Learning PNs makes
sense within quantitative interpretations of possibility distributions and it is suit-
able especially in case of learning with imprecise data, scarce datasets and learning
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from datasets with missing values [Tabia, 2016]. Similar to learning the structure of
Bayesian networks, two main approaches are used for possibilistic networks struc-
ture learning:

i) Constraint-based methods where the principle is to detect conditional indepen-
dence relations I by performing a set of tests on the training dataset then try to
find a DAG that satisfies I seen as a set of constraints. A constraint-based possi-
bilistic network structure learning algorithm called POSSCAUSE is proposed in
[Sangesa et al, 1998]. This algorithm is based on a similarity measure between
possibility distributions to check conditional independences. The main disadvan-
tage of constraint-based methods is that the search space is very large even for a
small number of variables.
ii) Score-based methods: They are based on heuristics that start with a completely
disconnected (or completely connected) DAG. At each iteration, the heuristic
adds (or removes) an arc and evaluates the quality of the new DAGs with re-
spect to the training dataset. The best DAG at each iteration is selected using
a score function. The key issues of score-based methods are the scoring func-
tions and the heuristics used to search the DAG space. For the heuristics, one
can make use of the ones defined for Bayesian networks (eg. K2 algorithm, sim-
ulated annealing, etc.). However, for the score functions, they are assumed to
assess how much a given structure captures the independence relations in the
training sample. Examples of possibility theory-based scoring functions are pos-
sibilistic network non-specificity [Borgelt and Kruse, 2003] and specificity gain
[Sangesa et al, 1998].

Parameter learning is needed to fill the local tables once the structure is learnt from
data or elicited by an expert. For possibilistic networks, parameter learning from
data consists basically in deriving conditional local possibility distributions from
data. There are two main approaches for learning the parameters [Haddad et al,
2015]:

i) Transformation-based approach: It first consists in learning probability distri-
butions from data then transforming them into possibilistic ones using probability-
possibility transformations [Benferhat et al, 2015a].
ii) Possibilistic-based approach: Such approaches stem from some quantitative
interpretations of possibility distributions. For instance, a possibility distribution
is viewed as a contour function of a consonant belief function [Shafer, 1976].

7.2 Kappa Networks

Kappa networks, also known as OCF-based networks, are belief graphical models
based on ranking function also called ordinal conditional functions (OCF) [Spohn,
1988].
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7.2.1 Ranking Functions

Ranking functions is an ordinal setting that has been successfully used for model-
ing revision of agents’ beliefs [Darwiche and Pearl, 1996]. OCFs are very useful for
representing uncertainty and several works point out their relevance for representing
agents’ beliefs and defining belief change operators for updating the current beliefs
in the light of new information [Ma and Liu, 2008]. OCF-based networks [Halpern,
2001] are graphical models expressing the beliefs using OCF ranking functions. The
graphical component allows an easy and compact representation of influence or in-
dependence relationships existing between the domain variables while OCFs allow
an easy quantification of belief strengths. OCF-based networks are less demand-
ing than probabilistic networks (where exact probability degrees are needed). In
OCF-based networks, belief strengths, called degrees of surprise, may be regarded
as order of magnitude probability estimates which makes easier the elicitation of
agents’ beliefs.

An OCF (also called a ranking or kappa function) denoted κ is a mapping from
the universe of discourse Ω to the set of ordinals (here, we assume to a set of in-
tegers). κ(wi) is called a disbelief degree (or degree of surprise). By convention,
κ(wi)=0 means that wi is not surprising and corresponds to a normal state of affairs
while κ(wi)=∞ denotes an implausible event. The relation κ(wi)<κ(w j) means that
wi is more plausible than w j. The function κ is normalized if there exists at least one
possible interpretation w∈Ω such that κ(w)=0. The disbelief degree κ(φ) of an ar-
bitrary event φ⊆Ω is defined as follows:

κ(φ) = min
wi∈φ

(κ(wi)). (15)

Conditioning is defined in this setting as follows (it is assumed that κ(φ)6=∞):

κ(wi|φ) =
{

κ(wi)−κ(φ) if wi ∈ φ ;
∞ otherwise. (16)

7.2.2 OCF-based Networks

A Kappa network shares the same graphical concepts with Bayesian networks and
differs only in the use of local conditional OCF instead of conditional probability
tables. Namely, the numerical component of a Kappa network Θ={κ(Ai|pa(Ai)), i=
1..n} consists in a set of local kappa functions for each node Ai in the context of its
parents Ui) as shown in the following example.

Example 1. In Figure 9, we have a Kappa network over four Boolean variables A,
M, N and P.

The joint Kappa function over the set of variable A1,.., An encoded by a Kappa
network is factorized as follows:
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N

A P

M

κ(N)
N=F N=T

6 0

κ(P|N)
N P=F P=T
F 0 20
T 10 0

κ(A|N)
N A=F A=T
F 0 0
T 10 0

κ(M|A,P)
A P M=F M=T
F F 0 30
F T 3 0
T F 0 0
T T 0 100

Fig. 9 Example of a Kappa network

κ(a1..an) =
n

min
i=1

(κ(ai|pa(ai)).

Many issues still have to be addressed for OCF-networks. For instance, parametriz-
ing an OCF-network is recently studied in [Eichhorn and Kern-Isberner, 2015]. In
[Eichhorn et al, 2016], the relationships between OC-networks and CP-networks
(graphical models of conditional preferences) are studied.

As mentioned earlier, belief graphical models have been studies in most uncer-
tainty frameworks in order to provide compact representation and efficient analysis
and reasoning tools. In the context of evidence theory, evidential networks [Simon
et al, 2008] are graphical models based on Dempster Shafer theory.

Belief graphical models are also studied in the framework of Valuation-Based
Systems (V BS for short) [Shenoy, 1992, 1993b]. V BS are designed to represent and
reason with uncertain information in expert systems. They can capture some uncer-
tainty settings including propositional calculus, probability theory, evidence theory,
ranking functions , and possibility theory.

In the V BS setting, the main concepts used to encode uncertain information are
the ones of variables and valuations where each valuation encodes the knowledge
about a subset of variables. The graphical representation of a V BS is a valuation
network (V N).

A V N does not rely on a DAG structure and it is based on algebraic properties of
the marginalization, conditioning and merging operations for the propagation of the
information associated with the graph valuations. The graphical component of a V N
consists of vertices corresponding to variables, nodes corresponding to valuations,
edges representing domains of valuations or tails of domains of conditionals and
arcs denoting the heads of domains of conditionals. A V N provides a decomposi-
tion of a joint valuation. This latter is obtained combining local valuations.
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8 Applications

8.1 Main Application Domains

Belief graphical models have been widely adopted and used in various fields. A lot
of common tasks encountered in many real world applications can be addressed by
belief graphical models. Examples of such tasks are classification, annotation, diag-
nosis and troubleshooting, sensitivity analysis, explanation, planning, forecasting,
control and decision making to name a few. Belief graphical models are success-
fully used in computer vision [Wang et al, 2013], fraud detection and computer
security [Ye et al, 2004; An et al, 2006], risk analysis [Weber et al, 2012], diagno-
sis and assistance in medical decision [Long, 1989], forensic analysis [Biedermann
and Taroni, 2012], information retrieval [de Cristo et al, 2003], detection of military
targets [Antonucci et al, 2009], bioinformatics [Mourad et al, 2011], pattern recog-
nition [Zaarour et al, 2004], spam detection (as in the SpamAssassin system) and
computer intrusions, etc. The reasons for this success are manifold. In particular,
belief graphical models are suitable for knowledge representation and for reasoning
and decision-making tasks during the operational phase of the system. The modular
and intuitive nature of graphical models make them efficient tools for representing
uncertain and complex knowledge. Moreover, the ease of modeling with such mod-
els and the possibility to learn them automatically from data, and the effectiveness
of inference are some of the very important benefits provided by belief graphical
models.

Among the first applications based on probabilistic graphical models, opera-
tional for several years now, first there is the VISTA project [Horvitz and Barry,
1995] from the US space agency NASA to select from thousands of information
pieces available in real-time only those that could be relevant to be displayed on the
consoles of different operators. In the field of automatic navigation of submarines,
Lockheed Martin UUV [Martin, 1996] is an intelligent system for controlling an
autonomous underwater vehicle, developed by Hugin for Lockheed. In the field of
consumer software, the MicroSoft Lumiere project, initiated in 1993, aims to antic-
ipate the needs and problems of software users (Clippy, the assistant of MicroSoft
Office is the most popular product of this project). In the medical field, the system
PathFinder/Intellipath [Heckerman et al, 1992] is a Bayesian expert system for as-
sistance in identifying anomalies in samples of lymph tissues.

In recent years, there is a growing use of graphical models in computer vision
(denoising, segmentation, pose estimation, tracking, etc), automatic speech recog-
nition, human-machine interaction, finance and risk management, bioinformatics,
environmental modeling and management, medical applications, etc. For instance,
Bayesian networks are used in many diagnostic systems. Typically, in the medi-
cal area, the model is built by medical experts and it is basically used to perform
inferences regarding the potential causes/deceases/hypotheses/consequences corre-
sponding to the observed symptoms. In other domains like mechanical or electrical
systems, Bayesian network-based diagnosis systems are also built by experts and
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they are used for troubleshooting. In bioinformatics, BN graphs are learnt from data
and they are regarded as knowledge extraction tools. Several publications and books
present applications of belief graphical models and case studies in many real world
problems. For example, in [Pourret et al, 2008], the reader can find practical cases
in areas such as diagnosis and assistance in medical decision, forensics, etc. We
give below some examples of application of these models in the field of computer
security.

8.2 Applications in Computer Security

In computer security (which refers to the detection and prevention of any action
that could affect the availability or confidentiality or availability of information and
services), several problems were modeled using belief graphical models and solu-
tions have been implemented. One of the first projects that used a Bayesian network
in intrusion detection [Kumar and Spafford, 1994] proposed to model the depen-
dencies between several anomaly measures on various aspects of the activity of
a computer system (as the number of running processes, number of connections,
CPU time, etc.). The eBayes [Valdes and Skinner, 2000], one of the components of
the anomaly-based intrusion detection system EMERALD [Porras and Neumann,
1997], uses a naive Bayesian network. In eBayes, the root node represents the class
of TCP sessions while the attributes (such as the number of different IP addresses,
number of unique ports, etc.) describe these sessions. During the detection phase,
the attributes of the session to be analyzed are extracted and used by the Bayesian
classifier to determine the most probable class for this session among the classes
Normal and Abnormal corresponding to the normal sessions and abnormal ses-
sions respectively. Among the systems that used a graphical model to associate an
anomaly score to an audit event, the best known example is SPADE [Staniford et al,
2002] which is a plugin developed by Silicon Defense. SPADE is part of SPICE
which contains a second module for alert correlation. Installed on the intrusion de-
tection system Snort 4, it can detect some anomalies due to port scans by analyzing
the headers of TCP SYN packets and incoming UDP packets.

8.3 Software Platforms for Modeling and Reasoning with
Probabilistic Graphical Models

Regarding platforms and software tools, there are several products. One of the key
actors in the field of platforms and applications probabilistic models, Hugins 5 is
probably in the lead. This editor and consultant develops general platforms and so-

4 www.snort.org
5 http://www.hugin.com/
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lutions in many fields such as medicine, finance, industry, etc. The other platform
having imposed his name in the last two decades is Netica of the Norsys 6 com-
pany. Netica offers a complete platform for modeling and reasoning with Bayesian
networks and influence diagrams. It also offers several libraries and programming
interfaces for using graphical models from other applications. Analytica 7 is an-
other platform offering the same kind of solutions. Other platforms specialize in
certain types of applications and tasks like Agenarisk 8 offering solutions to the risk
analysis. Openmarkov 9 is a software for modeling and reasoning with Bayesian
networks, influence diagrams, and factored Markov models. There are also toolk-
its for some environments as BN toolbox 10 for Matlab, JavaBayes 11 for Java, etc.
We may also mention other toolkits for Bayesian networks as MensXMachina 12,
Causal Explorer 13, PMTK 14, etc.

9 Conclusion

Belief graphical models are compact and powerful tools for representing and rea-
soning with complex and uncertain information. They involve a set of principled
and well-established formalisms for learning, modeling and reasoning under uncer-
tainty. For modeling, they offer the advantage of being intuitive, modular and
come in several variants suitable for modeling different types of dependencies (con-
ditional, causal, sequential, etc.). In inference, they are effective and fit multiple
tasks such as classification, diagnosis, explaining, planning (see Chapter 10 of this
volume for the use of dynamic Bayesian networks in planning), etc.

Belief graphical models can be built by an expert or built automatically from data.
Building a graphical model by an expert is made easy by the fact that the process of
elicitation first performs a qualitative step which deals only with variables of inter-
est and their relationships. Secondly, the expert quantifies relationships locally (for
each variable in the context of his parents), which greatly facilitates the modeling
work and elicitation. A graphical model can be interpreted by an expert in particular
for validation purposes and can be used to support communication between multiple
experts. In addition, there are several frameworks for uncertainty that can be used
for the quantitative component and for inference on the built model. In the presence
of empirical data for the problem to be modeled, there are several learning tech-

6 http://www.norsys.com/
7 http://www.lumina.com/
8 http://www.agenarisk.com/
9 http://www.openmarkov.org/
10 http://code.google.com/p/bnt/
11 http://www.cs.cmu.edu/ javabayes/Home/
12 http://www.mensxmachina.org/software/pgm-toolbox/
13 http://www.dsl-lab.org/causal explorer/index.html
14 https://github.com/probml/pmtk3
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niques that can automatically build a model from this data.
Since the seminal works on probabilistic expert systems, the literature on graph-

ical models is abundant but several issues are still the topic of intense work in some
artificial intelligence communities. Indeed, belief graphical models often appear as
one of the main topics in most prestigious conferences in IA and several issues of
scientific journals are dedicated to them. The best indicator of the maturity of these
formalisms and their interest is undoubtedly their use in many sensitive applications
ranging from from computer security to medical and military applications.
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Fonck P (1997) A comparative study of possibilistic conditional independence and
lack of interaction. International Journal of Approximate Reasoning 16:149–171

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine
Learning 29(2-3):131–163

Gebhardt J, Kruse R (1996) Learning possibilistic networks from data. In: Proc. 5th
Int. Workshop on Artificial Intelligence and Statistics, 233–244, Fort Lauderdale,
pp 233–244

Geiger D, Verma T, Pearl J (1989) d-separation: From theorems to algorithms.
In: Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence
(UAI’89), Elsevier Science Publishing Company, Inc., New York, N. Y., pp 139–
148

Geiger D, Verma TS, Pearl J (1990) Identifying independence in Bayesian networks.
Networks 20:507–534

Giles R (1982) Foundation for a possibility theory. Fuzzy information and decision
processes pp 83–195

Greiner R, Su X, Shen B, Zhou W (2002) Structural extension to logistic regression:
Discriminative parameter learning of belief net classifiers. In: In Proceedings of
the Eighteenth Annual National Conference on Artificial Intelligence (AAAI-02,
pp 167–173

Haddad M, Leray P, Amor NB (2015) Learning possibilistic networks from data:
a survey. In: 2015 Conference of the International Fuzzy Systems Association
and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-
15), Gijón, Spain., June 30, 2015.

Halpern JY (2001) Conditional plausibility measures and Bayesian networks. J Artif
Int Res 14(1):359–389



36 Salem Benferhat, Philippe Leray, and Karim Tabia

Heckerman D (1998) A tutorial on learning with Bayesian network. In: Jordan MI
(ed) Learning in Graphical Models, Kluwer Academic Publishers, Boston

Heckerman D, Geiger D, Chickering M (1994) Learning Bayesian networks: The
combination of knowledge and statistical data. In: de Mantaras RL, Poole D (eds)
Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers, San Francisco, CA, USA, pp 293–301

Heckerman DE, Horvitz EJ, Nathwani BN (1992) Toward normative expert systems:
Part i. the pathfinder project. Methods of information in medicine 31(2):90–105

Henrion M (1986) Propagating uncertainty in Bayesian networks by probabilistic
logic sampling. In: Uncertainty in Artificial Intelligence 2 Annual Conference
on Uncertainty in Artificial Intelligence (UAI-86), Elsevier Science, Amsterdam,
NL, pp 149–163

Horvitz E, Barry M (1995) Display of information for time-critical decision mak-
ing. In: In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann, pp 296–305

Howard RA, Matheson JE (1984) Influence diagrams. The Principles and Applica-
tions of Decision Analysis 2:720–761

Jensen FV (1996) Introduction to Bayesien networks. UCL Press, University col-
lege, London

Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction
to variational methods for graphical models. Mach Learn 37(2):183–233,
DOI 10.1023/A:1007665907178, URL http://dx.doi.org/10.1023/
A:1007665907178

Keogh E, Pazzani M (1999) Learning augmented Bayesian classifiers: A compari-
son of distribution-based and classification-based approaches. In: Proceedings of
the Seventh International Workshop on Artificial Intelligence and Statistics, pp
225–230

Kimmig A, Van den Broeck G, De Raedt L (2016) Algebraic model counting.
International Journal of Applied Logic URL http://web.cs.ucla.edu/

˜guyvdb/papers/KimmigJAL16.pdf
Koivisto M (2006) Advances in exact Bayesian structure discovery in Bayesian net-

works. In: Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence
(UAI 2006), pp 241–248

Koivisto M, Sood K (2004) Exact Bayesian structure discovery in Bayesian net-
works. Journal of Machine Learning 5:549–573

Koller D, Friedman N (2009) Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press, URL http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=11886

Kumar S, Spafford EH (1994) An application of pattern matching in intrusion detec-
tion. Tech. Rep. CSD–TR–94–013, Department of Computer Scien’ces, Purdue
University, West Lafayette
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