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SEMI-CLASSICAL GREEN FUNCTIONS

Let H(x, p) ∼ H 0 (x, p) + hH 1 (x, p) + • • • be a semi-classical Hamiltonian on T * R n , and Σ E = {H 0 (x, p) = E} a non critical energy surface. Consider f h a semi-classical distribution (the "source") microlocalized on a Lagrangian manifold Λ which intersects cleanly the flow-out Λ + of the Hamilton vector field X H 0 in Σ E . Using Maslov canonical operator, we look for a semi-classical distribution u h satisfying the limiting absorption principle and H w (x, hD x )u h = f h (semi-classical Green function). In this report, we elaborate (still at an early stage) on some results announced in [AnDoNaRo1] and provide some examples, in particular from the theory of wave beams.

Introduction

Our general motivation is to solve equations like (H -E)u h = f h , with f h (x) = h -n f x h , f ∈ L 2 (R n ), a "localized function" at x 0 = 0. In case H = -h 2 ∆, we apply h-Fourier transform

F h u h (ξ) = e -ixξ/h u h (x) dx to get F h u h (ξ) = F 1 f (ξ)
ξ 2 -E . If E < 0, this is an elliptic equation, and u h has the same form as f h . If E > 0 however, (1) u + (x; E, h) = (2πh) -n e ixξ/h F 1 f (ξ) ξ 2 -E -i0 dξ is defined through regularisation, so to satisfy the limiting absorption principle. Actually,

u + (x; E, h) = E + f h , E + = i h ∞ 0
e -it(H-E)/h dt is the forward parametrix. When f h (x) is replaced by δ(xx 0 ), u + is the Green function. Such a distribution is very singular since there are infinitely many classical trajectories linking the "source"

x 0 to x in time t; so it is suitable to consider instead F 1 f with compact support.

This problem has of course received considerable attention [Ke], [Ba], [Ku]; our special purpose is to reformulate it in terms of Maslov canonical operator, and describe the solution globally, including unfolding of Lagrangian singularities; this is of special importance in the context of wave propagation.

More generally, let f h = f (•; h) be a semi-classical Lagrangian distribution (or oscillatory integral) defined on the manifold M (for all practical purposes, we shall assume here M = R n ), i.e. locally f (x; h) = (2πh) -n/2 e iϕ(x,θ)/h a(x, θ; h) dθ where ϕ(x, θ) is a non-degenerate phase function in the sense of [Hö], and a(x, θ; h) = a 0 (x, θ) + 

= | det ϕ ′′ | -1/2 |dξ| 1/2
. The (oscillating) principal symbol of f in Λ ϕ is then defined (up to the factor dµ ϕ ) as e iφ(ξ)/h A 0 (ξ) = e iφ(ξ)/h e iπ sgn ϕ ′′ /4 a 0 (x(ξ), θ(ξ))

where φ is a "reduced phase function". Conversely, assume ι : Λ → T * M is a smooth Lagrangian immersion, with a smooth positive half-density √ dµ, it can be parametrized locally by phase functions ϕ in canonical charts ι ϕ : U ϕ → T * M . These phases can be chosen coherently, and define a class of "reduced phase functions" φ, parametrizing ι locally. This gives the fibre bundle of phases L h , including Maslov indices, equipped with transition functions. We are also given local smooth halfdensities |dµ ϕ | 1/2 on Λ, defining the fibre bundle of half-densities Ω 1/2 , equipped with transition functions. The collection of these objects make a fibre bundle Ω 1/2 ⊗ L h over Λ. A section of Ω 1/2 ⊗ L h will be written as

f (x; h) = K h (Λ,µ) A (x; h) where K h (Λ,µ
) is called Maslov canonical operator. The "reduced phase function" and the "principal symbol" of f are defined invariantly. See [M], [Du], [Iv], [DoZh], [DNS] for details.

So our general aim is to construct, in term of Maslov canonical operators, a representation of E + f . Here are some examples of f (expressed in a single chart):

(1) Λ = {(x, ∂ x ϕ) : x ∈ M }. WKB functions f (x, h) = e iϕ(x)/h a(x, h) or in Fourier representation (2)
f (x; h) = e iπn/4 (2πh) n/2 e i(xp+S(p))/h A(p; h) dp (such an integral conveniently normalized including a phase factor, will be written

* (• • •); here sgn x • p) ′′ = -n).
(2) Gaussian functions f (x; h) = 1 h n exp(-ω 2 •x 2 2h ) or more general (superposition of) coherent states.

(3) A conormal distribution with Λ = T

* N R n , N = {x n = 0} (3) f (x; h) = * e ix n p n /h A(x ′ , p n ) dp n (4) Λ = {x = X(ϕ, ψ) = ϕω(ψ), p = P (ϕ, ψ) = ω(ψ), ϕ ∈ R}, ω ∈ S n-1 , f identifies with a
"Bessel beam", see Sect. 4.

Hypotheses and main result

Let Λ 0 → T * M , Λ 1 → T * M be smooth embedded Lagrangian manifolds, Λ 1 with a smooth boundary ∂Λ 1 (isotropic manifold). Following [MelUh], we say that (Λ 0 , Λ 1 ) is an intersecting pair iff Λ 0 ∩ Λ 1 = ∂Λ 1 and the intersection is clean, i.e.

∀ρ ∈ ∂Λ 1 T ρ Λ 0 ∩ T ρ Λ 1 = T ρ ∂Λ 1
In particular, near each ρ ∈ T * M , there is a canonical transform mapping Λ 0 to T * 0 R n = {x = 0} and Λ 1 to

Λ 0 + = {(x, ξ) : x = (0, x n ), ξ = (ξ ′ , 0), x n ≥ 0}
i.e. the flow-out of T * 0 R n by the Hamilton vector field X ξ n = ((0, • • • , 0, 1), 0) of ξ n , passing through x = 0, ξ 0 = (ξ ′ , 0).

Let now H(x, p; h) = H 0 (x, p) + hH 1 (x, p) + • • • be a symbol of class S 0 (m) and H w (x, hD x ; h) its Weyl quantization, as a bounded operator on L 2 (M ). Assume (A.1) The energy surface

Σ E = H -1 0 (E) is non critical. (A.2) The set L = Σ E ∩ Λ is compact. (A.
3) The Hamiltonian vector field X H 0 is transverse to Λ along L.

For t ≥ 0, let g t H 0 = exp tX H 0 , Λ t = g t H 0 (Λ), and Λ + = t≥0 g t H 0 (L). The pair (Λ, Λ + ) define a Lagrangian intersection, and L = ∂Λ + . We assume also (A.4) The Hamilton flow g t H 0 | L extends for all t > 0. (A.5) |π x (g t H 0 | L )| → ∞ as t → ∞ (non trapping condition). Let ψ be a system of coordinates on L, completed (locally near L) to coordinates (ψ, τ ) on Λ and to coordinates (ψ, t) on Λ + , so that the positive measure on Λ (square of half-density) takes the form dµ = |dτ ∧ dψ|. This implies the measures dµ t = (g t * H 0 ) -1 (dµ) on Λ t and dµ + = |dt ∧ dψ| on Λ + . We shall consider a partition of unity subordinated to a covering of the pair (Λ, Λ + ), with cut-off functions (of small enough support) χ 0 ∈ C ∞ 0 (Λ), that depends only on τ (the "radial variable" on Λ), with χ 0 (τ ) ≡ 1 near L = {τ = 0}, and χ 0 ∈ C ∞ 0 (Λ + ), that depends only on t, χ 0 (t) ≡ 1 near t = 0. Let also χ T ∈ C ∞ (R + ), χ T ≡ 1 for t ≤ T /2, χ T ≡ 0 for t ≥ T /2 where T is so large that x / ∈ π x (g t H 0 | L ) if t ≥ T (using the non-trapping condition (A.5)). For simplicity, we state our main result [START_REF] Anikin | Maslov's canonical operator on a pair of Lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sides[END_REF] in the case Λ = T * 0 M , so that all solutions of Hamilton equations start from some (0, p), with p ∈ supp A. Representing E + as a sum of Maslov canonical operators associated with the pair (Λ, Λ + ) in particular we shall retrieve the theorem on propagation of singularities for wave-front sets WF h u ⊂ WF h (Hu) ∪ Char H.

Theorem 1: Let Ω ⊂ M be a bounded domain. Under hypotheses (A.1)-(A.5) above, there is u = u h , solution of H w (x, hD x ; h)u h = f h , satisfying the limiting absorption principle, which can generically be cast in the following form

(4) u(x, h) = * (1 -χ 0 (τ (p))A(p) H(0, p) -E e ipx/h dp + ε 0 0 dt * e iΦ(t,x,η)/h e -iΘ(t,x,η) | det J (t, x, η)| -1/2 χ T (t)χ 0 (t) χ 0 τ (η) A(η) dη dt + K h (Λ + ,dµ + ) χ T (•)(1 -χ 0 (•))e -iΘ A +
up to O(h) terms; the summands on the right hand side are boundary, transient and wave part, respectively. In Eq.( 4), Φ(t, x; η) solves Hamilton-Jacobi equation (see Sect.3), and

Θ(t, x, η) = t 0 H 1 • exp(sX H 0 (0, η))
ds is the integral of the sub-principal 1-form, where we recall H 1 is the sub-principal symbol of H. Moreover J (t, x, η) is a Jacobian computed from Hamilton-Jacobi equation.

The case when Λ is slightly "tilted" with respect to the vertical plane, i.e. has generating function φ(x, ξ) = xξ + S(ξ) can be formulated in a very similar way (see Sect.3). For more general f 's, the boundary part should be written as K h (Λ,µ)

(1-χ 0 )A H (x; h), and the transient part as the integral over t of a phase factor times K h (Λ t ,µ t ) χ T (•) χ 0 (•)χ 0 (•)A t (x; h), A t being the solution of the transport equation along the projection of exp tX H 0 with initial data A(η).

The boundary part is microlocalized on Λ, the wave part on Λ + . Let us make first a few comments:

1) (4) can be interpreted as "integrated" Van Vleck Formula [CdV], which expresses the semiclassical propagator e -itH/h acting on a localized function.

2) The wave part contributes generally at x ∈ Ω only if t → Φ(t, x, η) has a non-degenerate critical point for all η ∈ supp f : let hD x n be the "model" operator, and f (x; h) = * e ixp/h A(p) dp.

Then [MelUh] 

u h (x) = i h ∞ 0 χ T (t) dt * e i(x ′ ξ ′ +(x n -t)ξ n )/h A(ξ) dξ
verifies the limiting absorption principle and hD

x n u(x, h) = f (x, h) + O(h ∞ ) for
x n ≤ T /2; still u h has no "wave part".

3) Formula ( 4) is also valid near a focal point x ∈ Ω, or more generally when x is linked to x 0 through a trajectory containing several focal points. The wave-part simplifies outside the focal points to a WKB form, involving non trivial Maslov indices passing the first focal point.

4) The phase function Φ(t, x, η) can be also replaced by a Lagrangian action, in the spirit of [DNS]. This will be discussed in detail in a future work.

We illustrate Theorem 1 by computing u h explicitely in the 2-D case for Helmholtz operator with constant coefficient as in (1), but f with compact support. Let f also be radially symmetric; its Fourier transform g = F 1 f is again of the form g(p) = g(|p|) = g(r) and extends holomorphically to

C 2 . For E = k 2 , k > 0, we rewrite (1) as u h (x) = u(x) = u 0 (x) + u 1 (x) with u 0 (x) = k + i ε (2πh) 2 2π 0 dθ ∞ 0 exp[i|x|r cos θ/h] g(r) r 2 -(k + i ε) 2 dr u 1 (x) = 1 (2πh) 2 2π 0 dθ ∞ 0 exp[i|x|r cos θ/h] g(r) r + k + i ε dr
To compute u 0 we use contour integrals. When θ ∈] -π 2 , π 2 [, we shift the contour of integration to the positive imaginary axis and get by the residues formula (5)

∞ 0 exp[i|x|r cos θ/h] g(r) r 2 -(k + i ε) 2 dr + ∞ 0 exp[-|x|r cos θ/h] g(ir) r 2 + (k + i ε) 2 idr = 2iπ g(k + i ε) 2(k + i ε) exp[i|x|(k + i ε) cos θ/h] while for θ ∈] π 2 , 3π 2 [, (6) 
∞ 0 exp[i|x|r cos θ/h] g(r) r 2 -(k + i ε) 2 dr - ∞ 0 exp[|x|r cos θ/h] g(-ir) r 2 + (k + i ε) 2 idr = 0
Summing up ( 5) and ( 6), integrating over θ ∈]0, 2π[ and letting ε → 0, we obtain

u 0 (x) = iπg(k) (2πh) 2 π/2 -π/2 exp[i|x|k cos θ/h] dθ+ ∞ 0 dr r 2 + k 2 π/2 -π/2 g(ir) - 3π/2 π/2 g(-ir) exp[-|x|| cos θ|/h] dθ
Since g(ir) = g(-ir), the latter integral vanishes, so we end up with

u 0 (x) = iπg(k) (2πh) 2 π/2 -π/2 exp[i|x|k cos θ/h] dθ
It is readily seen that

WF h u 0 ⊂ {x = 0} ∪ {(x, k x |x| ), x = 0} = Λ ∪ Λ + Consider now u 1 . We let ε → 0 and set g(r) = g(r) r(r+k) . Since g(r) √ r ∈ L 1 (R + ), we have u 1 (x) = H 0 ( g)( |x| h )
, where H 0 denotes Hankel transform of order 0. Let χ ∈ C ∞ 0 (R 2 ) be radially symmetric, and equal to 1 near 0, since WF h f h = {x = 0}, we have

g = F h (χf h ) + O(h ∞ ) = (2πh) -2 F h (χ) * g + O(h ∞ )
so in the expression for u 1 we may replace mod O(h ∞ ), g(r) by a constant times g(r) = (F h (χ) * g)(r) r(r+m)

(see [Bad] for 2-D convolution and Fourier transform in polar coordinates). To estimate WF h u 1 , we compute again the Fourier transform of (1χ) g where χ is a cut-off equal to 1 near 0, and we find it is again O(h ∞ ) if χ ≡ 1 on supp χ. This shows that WF h u 1 ⊂ {x = 0}. See also [MelUh], Prop.

2.3. Note that the decomposition u 0 + u 1 is directly related with the corresponding one in Theorem 1 as the sum of the boundary (u 1 ), and the wave part (u 0 ). We conjecture that the transient part in Theorem 1 can be removed (taking a limit supp χ 0 → ∅) when the Hamiltonian flow X H 0 enjoys some non-degeneracy properties (see Sect.3), as in the case of a geodesic flow.

Maslov canonical operators associated with (Λ, Λ + )

Proof of Theorem 1 consists first in looking at the propagator e -itH/h acting on Lagrangian distribution f h as above, i.e. the solution of the Cauchy problem hD t +H w (x, hD x ) v = 0, v| t=0 = f h .

Next step is to integrate with respect to t after introducing the partition of unity above.

In this report, we shall content to construct the phase functions by solving Hamilton-Jacobi equation. First we recall from [Hö],Thm 6.4.5 the following: 

Φ(y ′ , 0; η) = φ(y ′ ), ∂Φ ∂y (0; η) = η
We consider here the case of a "maximally singular" chart U for Λ where Λ = Λ φ has generating function φ(x, ξ) = S(ξ) + xξ. Even if Λ is a plane, the outgoing manifold Λ + may be very complicated far away from x 0 , but changing the canonical charts, we can proceed step by step.

Without loss of generality we can also assume here E = 0, S(0) = 0, ∂ ξ S(0) = 0. Let η, τ such that τ + H(0, η) = 0, by Theorem 2 (after slightly changing the notations), there exists Φ(x, t; η, τ ) such that ( 7)

∂Φ ∂t + H(x, ∂Φ ∂x ) = 0 Φ(x, 0; η, τ ) = S(η) + xη ∂Φ ∂x (0, 0; η, τ ) = η, ∂Φ ∂t (0, 0; η, τ ) = τ
Moreover, when τ is small enough, the intersecting pair (Λ, Λ + ) for energy level H = 0 extends to a smooth family of intersecting pairs (Λ, Λ + (τ )) for energy levels H = -τ

Λ + (τ ) = {(x, ξ) ∈ T * M, ∃t ≥ 0, ∃(y, η) ∈ Λ, (x, ξ) = exp tX H (y, η), τ + H(y, η) = 0}
intersecting along L(τ ) given by η n = η n (η ′ , τ ), with η n (ξ ′ 0 , 0) = 0. So near x = x 0 we can assume, possibly after permuting the ξ-coordinates, that H(0; ξ ′ 0 , 0) = 0, ∂H ∂ξ n (0; ξ ′ 0 , 0) = 0, and for τ small enough, the equation τ +H(x, ξ) = 0 is equivalent to ξ n = ξ n (x, ξ ′ , τ ), with ξ n (0, ξ ′ 0 , 0) = 0. Now we want to set τ = 0 and therefore, given (x, η), solve the equation ∂Φ ∂t = 0 for t ≥ 0. As we have seen, uniqueness of solutions doesn't always hold, as shows the "model case" hD x n . Namely, the phase function given by Hamilton-Jacobi theory is Φ(x, t; η) = φ(x ′ , x nt, η), so ∂ t Φ = 0 iff η n = 0, for all t. However the phase parametrizing Λ + is given for small t by Taylor expansion

Φ(x, t; η) = xη + S(η) -tH(x, η) + t 2 2 ∂ ξ H(x, η)∂ x H(x, η) + • • •
The following assumption in turn ensures existence of a finite number of solutions t = t(x; η) > 0 of ∂Φ ∂t = 0. Denote by Exp t x 0 η = π x (exp tX H 0 (x 0 , η)) the projection of the bicharacteristic of H starting from (x 0 , η) near (x 0 , ξ 0 ) at time 0. Assume:

(A ′ 0 ) ∃Ω ξ ⊂ R n open (small) neighborhood of ξ 0 , such that if x = Exp t
x 0 η for some t > 0, and η ∈ Ω ξ , then the map ξ → Exp t

x 0 ξ is a local diffeomorphism near η; in other terms, x 0 and x are not conjugated along any trajectory that links them together within time t, with initial momentum ξ.

The set of such x is an open set Ω x .

Proposition 1: Under hypothesis (A ′ 0 ), for all (x, η) ∈ Ω x × Ω ξ there is a finite number of t j = t j (x, η) > 0 (1 ≤ j ≤ N ) solutions of ∂ t Φ(x, t; η) = 0 and t j are non degenerate critical points.

Moreover (A ′

0 ) is generically fulfilled before occurence of the first focal point, as show the following examples.

Let H 0 be a geodesic flow, E > 0, f conormal to N = {x 0 } ; Ω x is a small enough ball centered at x 0 , (geodesic ball), or Ω x is a neighborhood of a minimal geodesic {y = Exp s x 0 η, 0 ≤ s ≤ t 0 } for η in some small neighborhood of η 0 . This applies when f is as in (2) and supp A is localized near η 0 .

The same holds with f as in (3) conormal to the hypersurface N = {x n = 0} (or more generally to a surface N of positive codimension in M ). For instance when N = {x n = 0}, (A ′ 0 ) holds with Ω ξ an open (small) neighborhood of η = (0, • • • , 1), and Ω x a neighborhood of a minimal geodesic from N to some x 1 . This follows from a well-known property of minimal geodesics (see e.g. [HeSj], Proposition 6.3). In case of a Schrödinger operator with principal symbol H 0 (x, ξ) = ξ 2 + V (x) -E (where E is a scattering energy) we use Maupertuis-Jacobi principle to reduce again to a Riemannian metric d E given by ds = (E -V (x)) 1/2 |dx|. So we arrive at the same conclusions, the metric d E being conformal to the standard metric. We proved the following:

Proposition 2: Under the minimality assumptions above, (A ′ 0 ) holds. For η ∈ Ω ξ and x = Exp t

x 0 (η) ∈ Ω x , 0 < t < t 0 , the Lagrangian manifold Λ t = exp tX H (Λ φ ) has same rank as Λ, and is of the form Λ Φ(t,•) . In particular

exp tX H 0 (Λ φ ) = {(x, ∂ x Φ(t, x; η)) : ∂ η Φ(t, x; η) = 0} ⊂ {exp tX H 0 (x, η), (x, η) ∈ T * N ⊥ }
Moreover for all (x, η) ∈ Ω x × Ω ξ there is a unique t(x, η) > 0 solution of ∂ t Φ(x, t; η) = 0 and t(x, η) is a non degenerate crtical point.

Extending the geodesic γ beyond the first focal point occuring in some Λ t for some t = t 0 . we only need another representation of the phase function. Using the mixed representation for Lagrangian manifolds, we know that for any k = 0, • • • , n, (k = 0 corresponds to a maximally singular chart, k = n to a regular chart, they are mapped onto each other by Fourier transform), there exists a partition of variables x = (x ′ , x ′′ ) ∈ R k ×R n-k and ξ = (ξ ′ , ξ ′′ ), such that if π : R 2n → R n , (x, ξ) → (x ′ , ξ ′′ ), then rank d π = n. In such a chart, the generating function for Λ t takes the form φ(x, η) = x ′′ η ′′ +S(x ′ , η ′′ ).

We can reformulate Hamilton-Jacobi equations as in (7) in these coordinates, which has again a unique solution for small tt 0 . Generically (i.e. under an assumption (A ′ k ) modeled after (A ′ 0 ) in the new (x, ξ) coordinates), one still obtains a non degenerate phase function, which contributes to the fibre bundle L h over Λ + together with Maslov index of γ. More explicit formulae will be given elswewhere.

Of course, γ may contribute a finite number of times in the expression for the Green function at x, and a finite number of γ contribute to the wave part of the phase function.

Using eikonal coordinates.

The computations above can be simplified using special coordinates adapted to Λ, called eikonal coordinates.

Let ι : Λ → T * M be a smooth embedded Lagrangian manifold. The 1-form p dx is closed on Λ, so locally exact, and p dx = dS on any simply connected domain U . Such a S is called an eikonal (or action) and is defined up to a constant. Assume dS = 0 on Λ, then S can be chosen as a coordinate on U , which we complete by smooth functions ψ ∈ R n-1 .

We use here eikonal coordinates to construct a phase function solving Hamilton-Jacobi equation in case of a positively homogeneous Hamiltonian of degree m with respect to p. To fix ideas, we take P (s, ψ), Ẋ(s, ψ) = P (s, ψ), ∂ p H(X, P = mH(X, P ) = m and S(t, ψ) = S 0 + mt is the action on Λ + . So m dt = P (t, ψ), dX(t, ψ) = P (t, ψ), Ẋ(t, ψ) dt + P (t, ψ), X ψ (t, ψ) dψ

It follows that P (t, ψ), Ẋ(t, ψ) = m and P (t, ψ), ∂ ψ X(t, ψ) = 0. Now we complete the coordinate system ψ on Λ by a smooth function r such that L is given by r = 1, and set Φ(x, (t, ψ, r)) = mt + r P (t, ψ), x -X(t, ψ)

where r can be interpreted as a Lagrange multiplier. Let us check that Φ satisfies Hamilton-Jacobi equation. We have (10)

∂ t Φ = Φ = m + r Ṗ , x -X(t, ψ)r P, Ẋ = m(1r) + r Ṗ (t, ψ), x -X(t, ψ)

∂ r Φ = P (t, ψ), x -X(t, ψ)

∂ ψ Φ = r ∂ ψ P (t, ψ), x -X(t, ψ)

Last 2 equations in ( Φ, ∂ r Φ, ∂ ψ Φ) = 0 give an homogeneous linear system with determinant det(P, P ψ ).

On x = 0 we get |p| = n(0) > 0, and in dimension n = 2, p = n(0) t (cos ψ, sin ψ). It follows that det (P, P ψ ) = |n(0)| 2 so for small t, we get x -X(t, ψ) 0, so the phase is critical with respect to (ψ, r) for x = X(t, ψ). Substituting into the last equation ( 10) we get Φ = 0 when r = 1. We complete the proof that Φ is a generating function for Λ + by checking d∂ t φ, d∂ ψ Φ, d∂ r Φ are linearly independent on the set x = X(t, ψ). This can be done by examining the variational system associated with Hamilton equations.

Moreover we can reduce this generating function by eliminating t by stationary phase. Again, of course, this holds only for small t > 0, before unfolding of Lagrangian singularities.

  ha 1 (x, θ) + • • • an amplitude. With f we associate the critical set C ϕ = {(x, θ) ∈ M × R N : ∂ θ ϕ = 0} and ι ϕ : C ϕ → T * M with image the Lagrangian submanifold Λ ϕ = {(x, ∂ x ϕ) : (x, θ) ∈ C ϕ }. Choose local coordinates ξ ∈ R d on Λ ϕ and define the half-density in the local chart (C ϕ , ι ϕ ) by dµ ϕ

Theorem 2 :

 2 Denote the variable in T * R d by (y, η) = (y ′ , y d ; η ′ , η d ). Let H be a real valued, smooth Hamiltonian near (0, η) such that H(0, η) = 0, ∂ η d H(0, η) = 0, and let φ be a real valued, smooth function on R d-1 such that ∂ y ′ φ = η ′ . Then there exists in a neighborhood of 0 ∈ R d a unique real valued solution Φ(y; η) of Hamilton-Jacobi equation H(y, ∂ y Φ) = 0 satisfying the boundary condition

P

  Λ = {x = 0} intersects the energy surface H = 1 along L. Let us compute the eikonal S on Λ + . Integrating Hamilton equations we have x = X(t, ψ), p = P (t, ψ) where ψ ∈ R 2 , hence dS = p dx| Λ + = P (t, ψ), dX(t, ψ) . Since dx = 0 on Λ, we have S(0, ψ) = Const. = S 0 (s, ψ), Ẋ(s, ψ) ds By Hamilton equations and Euler identity, we have on H = 1.
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Example 2: We take H as in (8) with n(x) = n(|x|), n = 2 for simplicity and Λ = {x = X(ϕ, ψ) = ϕω(ψ), p = P (ϕ, ψ) = ω(ψ), ϕ ∈ R, ω ∈ S n-1 } ψ being the usual angles parametrizing ω ∈ S n-1 . When n = 2 this is the wave-front set of Bessel function f h (x; h) = J 0 ( |x| h ); such functions arise in the wave beam theory (see [Ki], [DoMaNa] and references therein), so we call f h a "Bessel beam".

Computing the action we find p dx| Λ = dϕ so coordinate ϕ will play the role of x in he previous Example. We have n(|x|) = n(ϕ), and ϕ = Const. on L = Λ ∩ {H = 1}. The argument above extends readily to this setting, in particular as in ( 9)

Now we can apply the results of [DNS], Sect.2.2 on eikonal coordinates for a Lagrangian manifold in a general position, with X ψ ( ϕ, ψ) of rank k. Here ϕ, ψ are coordinates in a local chart of Λ + in the extended phase space. More specifically, we take ψ = (t, ψ), ϕ = ϕ, try to make a change of variables ϕ = ϕ(x, t, ψ), and seek for a generating function of Λ + in the form Φ(x, (t, ψ, r)) as in the previous Example. Details will be given elsewhere.

More examples and perspectives.

The methods above apply in a number of situations as:

(1) The water-wave Hamiltonian H(x, hD x ; h) with H 0 (x, p) = |p| tanh |p|D(x) -E, together with Λ = {x = x 0 } has been discussed in [DoNa], [START_REF] Anikin | Asymptotics of Green function for the linear waves equations in a domain with a non-uniform bottom[END_REF], in relationship with (11) or Helmhotz operator H(x, hD x ) = -h 2 ∆n(x)

2 . The localized function f can be a Gaussian (even in x) or a Gaussian times a linear function (odd in x), or can be of antenna type, i.e. its Fourier transform localized in a cone in p.

(2) The kinetic part of Hamiltonian is of Lorenzian type (as -p 2 0 + p 2 1 ), and f a localized function (Gaussian) supported on Λ = {x = x 0 }, so that the semi-classical Green function u h is the linear response to f localized on Kelvin angle (or Mach cone).

It should also be possible to construct semi-classical Green functions in case the pair (Λ, Λ + ) is no longer intersecting cleanly, but glancing. We then need second-microlocalization, and introducing so called 2-phases, see e.g. [LaWi] in the standard (polyhomogeneous) calculus.