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A NEW FAMILY OF POLYNO-EXPO-TRIGONOMETRIC
DISTRIBUTIONS WITH APPLICATIONS

FARRUKH JAMAL AND CHRISTOPHE CHESNEAU

Abstract. In this paper, a new family of polyno-expo-trigonometric distribu-
tions is presented and investigated. A special case using the Weibull distribution,
with three parameters, is considered as statistical model for lifetime data. The
estimation of the parameters are performed with the maximum likelihood method.
A numerical simulation study verifies that the empirical bias and mean squared
error of the obtained maximum likelihood estimates tend to zero as the sample
size increases. Three real life data sets are then analyzed. We show that our
model has a good fit in comparison to other well-known powerful models in the
literature.

Keywords: Trigonometric distribution, Probability density function, Weibull distribu-

tion, Maximum likelihood estimation.
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1. Introduction

Over the last decades, the modeling and prediction of physical phenomena have
been improved considerably thanks to the emergence of various families of proba-
bility distributions. The construction of statistical models which capture possible
small and/or complex variations in such phenomena still remains a great challenge
for the statistician. To reach this goal, nonstandard distributions involving trigono-
metric functions in the definition of the probability density function (pdf) have been
developed. Among the most useful of them, let us mention the sine distribution (see
[11]), the cosine distribution (see [15]), the beta trigonometric distribution (see [14]),
the Von Mises distribution (see [9] and [17]), the sine square distribution (see [2]),
the sin-skew logistic distribution (see [6]), the SS distribution (see [13]) and the CS
distribution (see [7]). All these references show that trigonometric functions can play
an important role in statistical analysis with great impacts in various applications.
They motivate deeper research in this direction. This paper provides a contribution
to the subject. Based on a new theoretical result, we introduce and study a new
family of distributions involving trigonometric functions. To be more specific, the
related pdf has the feature to be defined by a quotient of two functions using polyno-
mial, exponential, sine and cosine functions. The richness of this definition have the
merit to ensure a great flexibility of the pdf, opening the door to the construction of
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statistical models with goodness of fit. A special focus is done on a new distribution
with three parameters, using the Weibull distribution as baseline distribution. We
show in what contact it can be used as a statistical model for lifetime data.

The remaining part of this paper is organized as follows. Our new family of
distributions is introduced in Section 2, with some interesting special cases, including
the one using the Weibull distribution. In Section 3, maximum likelihood estimates
of the parameters of interest are investigated and simulation results assess their
convergence. The importance of our family of distributions is illustrated in Section
4 by considering three real life data sets. The proofs of our theoretical result is
postponed in Section 5.

2. A new family of distributions

2.1. A theoretical result. The result below presents a new cumulative distri-
bution function (cdf) of a random variable with support

[
0, π

2

]
using polynomial,

exponential and trigonometric functions.

Theorem 2.1. For any a ≥ 0, b ∈ [0, 1] and c ≥ 0, let A(y) be the function defined
by

A(y) =
(
c+

π

2
e−a

π
2

) sin (y)− bye−ay cos (y)

cos (y) + (c+ ye−ay) sin (y)
, y ∈

[
0,
π

2

]
. (1)

Then, the function B(y) defined below possesses the properties of a cdf:

B(y) =


1 if y >

π

2
,

A(y) if y ∈
[
0,
π

2

]
,

0 if y < 0.

(2)

The proof of this result is postponed in Section 5. To the best of our knowledge,
the cdf B(y) given by (1) is new in the literature. Following the spirit of complex
trigonometric distributions (see [13] and [7] for instance), let us mention that it is
based on a mathematical definition only; its is not based on stochastic representation
or physical interpretation.

2.2. Genesis of the family. Starting from the new cdf B(y) given by (1), we
are able to create a wide variety of distributions from a former cdf F (x). More
precisely, let F (x) be a cdf and G(x) be the function defined by G(x) = B

(
π
2
F (x)

)
=

A
(
π
2
F (x)

)
, i.e.

G(x) =
(
c+

π

2
e−a

π
2

) sin
(
π
2
F (x)

)
− bπ

2
F (x)e−a

π
2
F (x) cos

(
π
2
F (x)

)
cos
(
π
2
F (x)

)
+
(
c+ π

2
F (x)e−a

π
2
F (x)
)

sin
(
π
2
F (x)

) ,
x ∈ R. (3)



A NEW FAMILY OF POLYNO-EXPO-TRIGONOMETRICDISTRIBUTIONS WITH APPLICATIONS3

Then, G(x) is a cdf. Indeed, since B(y) has the properties of a cdf of a random
variable with support

[
0, π

2

]
by Theorem 2.1 and π

2
F (x) ∈

[
0, π

2

]
, then G(x) has

the properties of a cdf by composition with respect to the support. For the sake
of conciseness, the family of distributions characterized by G(x) will be denoted
by TransSC(F ; a, b, c) (as Transformation of distributions using Sine and Cosine
functions). In the same spirit, contrary to those in [13] or in [7] defined as a quotient
of trigonometric functions only, it has the advantage to modulate functions of various
natures: polynomial, exponential and trigonometric. This point is crucial, as we
shall see in the application section (Section 4). Moreover, observe that the parameter
a is related to the exponential term, b is related to the cosine term in the numerator
and c has influence in the denominator as a sole variable.

Remark 1. For x such that F (x) 6= 1, an alternative expression of G(x) in term of
tangent function is given by

G(x) =
(
c+

π

2
e−a

π
2

) tan
(
π
2
F (x)

)
− bπ

2
F (x)e−a

π
2
F (x)

1 +
(
c+ π

2
F (x)e−a

π
2
F (x)
)

tan
(
π
2
F (x)

) , x ∈ R.

As usual, the pdf of the TransSC(F ; a, b, c) distribution is defined by g(x) = G′(x)
almost surely. Due to the massiveness of its expression we omit it here; it is however
given in the proof of Theorem 2.1. Some special cases of the TransSC(F ; a, b, c)
distribution with a more tractable pdfs are presented below.

2.3. Some special cases. First of all, we consider the TransSC(F ; 0, 0, c) distri-
bution, corresponding to TransSC(F ; a, b, c) with a = 0, b = 0 and c ≥ 0. The cdf
given by (3) becomes

G(x) =
(
c+

π

2

) sin
(
π
2
F (x)

)
cos
(
π
2
F (x)

)
+
(
c+ π

2
F (x)

)
sin
(
π
2
F (x)

) , x ∈ R.

The pdf is given by

g(x) =
π

2

(
c+

π

2

) cos2
(
π
2
F (x)

)
f(x)[

cos
(
π
2
F (x)

)
+
(
c+ π

2
F (x)

)
sin
(
π
2
F (x)

)]2 .
The fact that G(x) has the properties of a cdf is immediate. Table 1 presents some
special cases of the TransSC(F ; 0, 0, c) distribution with well-known cdfs F (x) of
random variables of various support.

Let us now consider the TransSC(F ; 0, b, 0) distribution, corresponding to
TransSC(F ; a, b, c) with a = 0, b ∈ [0, 1] and c = 0. The cdf given by (3) be-
comes

G(x) =
π

2

sin
(
π
2
F (x)

)
− bπ

2
F (x) cos

(
π
2
F (x)

)
cos
(
π
2
F (x)

)
+ π

2
F (x) sin

(
π
2
F (x)

) , x ∈ R.
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Table 1. Some special cases of the TransSC(F ; 0, 0, c) distribution
with the related pdf g(x).

F (x) Support g(x) Param.

Uniform (0, α) π
2α

(
c+ π

2

) cos2( π2αx)
[cos( π2αx)+(c+ π

2α
x) sin( π2αx)]2

(α, c)

Exp. (0,+∞) π
2

(
c+ π

2

) sin2(π2 e
−αx)αe−αx

[sin(π2 e
−αx)+(c+π

2
(1−e−αx)) cos(π2 e

−αx)]2
(α, c)

Weibull (0,+∞) π
2

(
c+ π

2

) sin2
(
π
2
e−αx

β
)
αβxβ−1e−αx

β

[
sin
(
π
2
e−αxβ

)
+
(
c+π

2
(1−e−αxβ )

)
cos
(
π
2
e−αxβ

)]2 (α, β, c)

Fréchet (0,+∞) π
2

(
c+ π

2

) cos2
(
π
2
e−αx

−β
)
αβx−β−1e−αx

−β

[
cos
(
π
2
e−αx−β

)
+
(
c+π

2
e−αx−β

)
sin
(
π
2
e−αx−β

)]2 (α, β, c)

Pareto (α,+∞) π
2

(
c+ π

2

) sin2
(
π
2

(α/x)k
)
kαkx−k−1

[sin(π2 (α/x)k)+(c+π
2

(1−(α/x)k)) cos(π2 (α/x)k)]2
(α, k, c)

Lomax (0,+∞) π
2

(
c+ π

2

) sin2
(
π
2

(1+(x/s))−k
)
(k/s)(1+(x/s))−k−1

[sin(π2 (1+(x/s))−k)+(c+π
2

(1−(1+(x/s))−k)) cos(π2 (1+(x/s))−k)]2
(s, k, c)

Normal R π
2

(
c+ π

2

) cos2(π2 Φ((x−µ)/σ))(1/
√

2πσ2)e−(x−µ)2/σ2

[cos(π2 Φ((x−µ)/σ))+(c+π
2

Φ((x−µ)/σ)) sin(π2 Φ((x−µ)/σ))]2
(µ, σ, c)

The pdf is given by

g(x) =
π2

24

[
bπ2(F (x))2 + 4(1− b) cos2

(
π
2
F (x)

)]
f(x)[

cos
(
π
2
F (x)

)
+ π

2
F (x) sin

(
π
2
F (x)

)]2 , x ∈ R. (4)

Again, note that the fact that G(x) has the properties of a cdf is immediate.
To illustrate the crucial role of b in the nature of g(x), let us remark that, when

b = 0, it is reduced to

g(x) = g0(x) =
π2

4

cos2
(
π
2
F (x)

)
f(x)[

cos
(
π
2
F (x)

)
+ π

2
F (x) sin

(
π
2
F (x)

)]2 , x ∈ R.

When b = 1, the trigonometric term in the numerator disappears; g(x) is reduced
to

g(x) = g1(x) =
π4

24

(F (x))2f(x)[
cos
(
π
2
F (x)

)
+ π

2
F (x) sin

(
π
2
F (x)

)]2 , x ∈ R.

Remark 2. Another point of view is that g(x) is a mixture of 2 pdfs: g1(x) and g0(x)
with weights (b, 1− b). Indeed, we can write g(x) = bg1(x) + (1− b)g0(x).

Table 2 shows some special cases of the TransSC(F ; 0, b, 0) distribution with
well-known cdfs F (x) of various support.

We can now investigate the TransSC(F ; a, 0, 0) distribution, corresponding to
TransSC(F ; a, b, c) with a ≥ 0, b = 0 and c = 0. The cdf given by (3) becomes

G(x) =
π

2
e−a

π
2

sin
(
π
2
F (x)

)
cos
(
π
2
F (x)

)
+ π

2
F (x)e−a

π
2
F (x) sin

(
π
2
F (x)

) , x ∈ R.
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Table 2. Some special cases of the TransSC(F ; 0, b, 0) distribution
with the related pdf g(x).

F (x) Support g(x) Param.

Uniform (0, α) π2

24α

[
bπ2( xα )2+4(1−b) cos2( π2αx)

]
[cos( π2αx)+ π

2α
x sin( π2αx)]2

(α, b)

Exp. (0,+∞) π2

24

[bπ2(1−e−αx)2+4(1−b) sin2(π2 e
−αx)]αe−αx

[sin(π2 e
−αx)+π

2
(1−e−αx) cos(π2 e

−αx)]2
(α, b)

Weibull (0,+∞) π2

24

[
bπ2(1−e−αx

β
)2+4(1−b) sin2

(
π
2
e−αx

β
)]
αβxβ−1e−αx

β

[
sin
(
π
2
e−αxβ

)
+π

2
(1−e−αxβ ) cos

(
π
2
e−αxβ

)]2 (α, β, b)

Fréchet (0,+∞) π2

24

[
bπ2e−2αx−β+4(1−b) cos2

(
π
2
e−αx

−β
)]
αβx−β−1e−αx

−β

[
cos
(
π
2
e−αx−β

)
+π

2
e−αx−β sin

(
π
2
e−αx−β

)]2 (α, β, b)

Pareto (α,+∞) π2

24

[
bπ2(1−(α/x)k)2+4(1−b) sin2

(
π
2

(α/x)k
)]
kαkx−k−1

[sin(π2 (α/x)k)+π
2

(1−(α/x)k) cos(π2 (α/x)k)]2
(α, k, b)

Lomax (0,+∞) π2

24

[
bπ2

(
1−(1+(x/s))−k

)2
+4(1−b) sin2

(
π
2

(1+(x/s))−k
)]

(k/s)(1+(x/s))−k−1

[sin(π2 (1+(x/s))−k)+π
2

(1−(1+(x/s))−k) cos(π2 (1+(x/s))−k)]2
(s, k, b)

Normal R π2

24

[bπ2(Φ((x−µ)/σ))2+4(1−b) cos2(π2 Φ((x−µ)/σ))](1/
√

2πσ2)e−(x−µ)2/σ2

[cos(π2 Φ((x−µ)/σ))+π
2

Φ((x−µ)/σ) sin(π2 Φ((x−µ)/σ))]2
(µ, σ, b)

The pdf is given by

g(x) =
π2

23
e−a

π
2

(1+F (x))

[
2ea

π
2
F (x) − (2− aπF (x)) sin2

(
π
2
F (x)

)]
f(x)[

cos
(
π
2
F (x)

)
+ π

2
F (x)e−a

π
2
F (x) sin

(
π
2
F (x)

)]2 , x ∈ R.

Standard mathematical arguments prove that G(x) has the properties of a cdf.

2.4. The TSCW(α, β, b) distribution. Among all the special cases of the TransSC(F ;
a, b, c) distribution presented in the previous subsection, thanks to its faculty to
possibly vanish the trigonometric term in the numerator of its pdf, we focus our
attention on the TransSC(F ; 0, b, 0) distribution. Moreover, in order to construct a
lifetime distribution with a great flexibility in the pdf, we consider the baseline cdf
F (x) of the well-known Weibull distribution: F (x) = 1 − e−αxβ , α, β, x > 0. The
related distribution is denoted by TSCW(α, β, b) or TSCW for short. Then, the
pdf (4) becomes

g(x) =
π2

24

[
bπ2(1− e−αxβ)2 + 4(1− b) sin2

(
π
2
e−αx

β
)]
αβxβ−1e−αx

β[
sin
(
π
2
e−αxβ

)
+ π

2
(1− e−αxβ) cos

(
π
2
e−αxβ

)]2 , x > 0

(5)
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The hazard rate function (hrf) is given by

h(x) =
g(x)

1−G(x)

=
π2

24

[
bπ2(1− e−αxβ)2 + 4(1− b) sin2

(
π
2
e−αx

β
)]
αβxβ−1e−αx

β[
sin
(
π
2
e−αxβ

)
+ π

2
(1− e−αxβ) cos

(
π
2
e−αxβ

)] ×

1[
sin
(
π
2
e−αxβ

)
− π

2
cos
(
π
2
e−αxβ

)
e−αxβ + b

(
π
2

)2
(1− e−αxβ) sin

(
π
2
e−αxβ

)] ,
x > 0. (6)

Some plots of the pdf (5) and hrf (6) are displayed in Figures 1 and 2 for selected
parameters values for (α, β, b). The flexibility of the curves shapes can be observed,
illustrating the versatility of the TSCW(α, β, b) distribution.
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Figure 1. Plots for pdf of the TSCW distribution.

In the rest of this study, we focus our attention on the TCSW(α, β, b) distribution
and prove its merits in terms of modelling in prediction.

3. Simulation study

In this section we provide a graphical Monte Carlo simulation study which aims
to compare the precision of the different maximum likelihood estimates (MLEs) of
the supposed unknown parameters (α, β, b) of the TCSW distribution. The MLEs

of α, β and b are naturally denoted by α̂, β̂ and b̂ respectively. The computations
are performed by using R programs. We generate N = 1000 samples of different
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Figure 2. Plots for hrf of the TSCW distribution.

sizes: n = 20, 25,. . . , 300 from TCSW distribution with the given parameters values
α = 2, β = 1.5 and b = 0.3. We also calculate the empirical bias and mean square
error (MSE) of the MLEs. For h = α, β and b in turn, they are respectively defined
by

Biash =
1

N

N∑
i=1

(ĥi − h), MSEh =
1

N

N∑
i=1

(ĥi − h)2.

The results of this simulation study are given in Figures 3 and 4.
From these figures, we observe that when n increases, the empirical biases and

MSEs approach to 0 in all cases.

4. Applications

In this section, we prove empirically the flexibility of the TSCW distribution
by considering three real life data sets. In particular, we aim to compare the TSCW
model related to the TSCW distribution with the competitive models listed in Ta-
ble 3. The definitions of the pdfs of these models are given in Appendix. The

goodness-of-fit of these model is explored by considering the following measures: −̂̀
(the maximized log-likelihood), AIC (Akaike information criterion), BIC (Bayesian
information criterion), CVM (Cramér-Von Mises), AD (Anderson-Darling) and KS
(Kolmogorov Smirnov) statistics with its p-value (PV). The numerical results in this
section are obtained by using R programs.

The first data set contains exact times of failure. More precisely, it consists in a
set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
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Figure 3. The biases for the selected parameter values for the TCSW
distribution.

Table 3. The competitive models of the TSCW distribution

Distributions Authors

Odd Burr Weibull (OBW) [1]
CS transformation of exponential (CS1E) [7]
Transmuted Weibull (TW) [4]
SS transformation of exponential (SSE) [13]

pressure (at the 90% stress level) until all had failed. Analysis of this data set can
also be found in [3] and [5]. These data are listed below: 0.0251, 0.0886, 0.0891,
0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773,
1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733,
1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881,
1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203,
2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
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Figure 4. The MSEs for the selected parameter values for the TCSW
distribution.

3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

The second data set represents the total milk production in the first birth of 107
cows from SINDI race. Further details are given in [8]. These data are listed below:
0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891,
0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671,
0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259,
0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912,
0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175,
0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470,
0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188,
0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694,
0.3635, 0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741,
0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747.
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The third data set is given by [12] and recently [18] use this data, consists of
thirty successive values of March precipitation (in inches) in Minneapolis/StPaul.
The data are listed below: 0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3,
3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48,
0.96, 1.89, 0.9, 2.05.

For the data sets 1, 2 and 3 respectively,

• Tables 4, 6 and 8 provide the values of goodness-of-fit measures for the TSCW
model and the competitors.
• The MLEs of the parameters, as well as their corresponding standard errors

(SEs) (in parentheses), are listed in Tables 5, 7 and 9.

Analysis of these results indicates that the TSCW model yields the best fit to the
data sets 1, 2 and 3 compared to the other models. In particular, for each of the
data set, it has the lowest AIC, BIC and the greatest PV.

• The plots of the fitted TSCW model are shown in Figures 5, 6 and 7.

Table 4. Goodness-of-fit measures for data set 1.

Model −̂̀ AIC BIC CVM AD KS PV
TCSW 120.4692 246.9384 253.9306 0.0694 0.4177 0.0748 0.7597

OBW 122.5244 253.0488 262.3717 0.1305 0.7672 0.1106 0.2882

CS1E 128.8944 263.7889 270.7811 0.3159 1.8822 0.1261 0.1632

TW 121.7353 249.4706 256.4628 0.1062 0.6292 0.0957 0.4600

SSE 125.4989 252.9978 255.3285 0.1155 0.6836 0.1490 0.0614
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Table 5. MLEs and SEs (in parentheses) for data set 1.

Model Estimates
TCSW 0.1492 1.5292 0.1304

(α, β, b) (0.0288) (0.1486) (0.0835)

OBW 10.1144 84.8733 0.0157 0.9720

(α, β, a, b) (7.6320) (16.7768) (0.0216) (0.0233)

CS1E 0.4739 2.0472 0.8540

(α, θ, λ) (0.8942) (7.4751) (0.1095)

TW 0.4739 2.0472 0.8540

(η, δ, λ) (0.8942) (7.4751) (0.1095)

SSE 0.2881

(θ) (0.0309)

Table 6. Goodness-of-fit measures for data set 2.

Model −̂̀ AIC BIC CVM AD KS PV
TCSW -24.4397 -42.8795 -34.8689 0.1438 0.9826 0.0603 0.8306

OBW -21.3459 -34.6919 -24.0006 0.2328 1.5297 0.0832 0.4490

CS1E -22.9599 -39.9197 -31.9013 0.1541 1.0697 0.0788 0.7601

TW -22.9188 -22.8377 -21.8192 0.1815 1.2233 0.0677 0.7122

SSE -24.3728 -36.7458 -32.4474 0.9567 6.1905 0.1424 0.0005

Table 7. MLEs and SEs (in parentheses) for data set 2.

Model Estimates
TCSW 6.2153 2.2506 0.8059

(α, β, b) (0.7736) (0.2221) (0.0640)

OBW 12.2141 73.0527 0.0813 0.8944

(α, β, a, b) (2.1468) (6.1504) (0.0590) (0.0349)

CS1E 0.2107 9.6883 0.1109

(α, θ, λ) (4.3198) (1.9894) (0.2559)

TW 0.4717 2.3229 -0.4801

(η, δ, λ) (0.0290) (0.2387) (0.2083)

SSE 2.2553

(θ) (0.1482)
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Table 8. Goodness-of-fit measures for data set 3.

Model −̂̀ AIC BIC CVM AD KS PV
TCSW 38.3101 82.6201 86.8237 0.0156 0.1212 0.0606 0.9999

OBW 38.6427 85.2855 90.8903 0.0219 0.1692 0.0689 0.9988

CS1E 41.8522 89.7045 93.9081 0.0702 0.4887 0.0964 0.9429

TW 38.3987 82.7978 87.0011 0.0172 0.1350 0.0750 0.9978

SSE 44.3714 92.7428 95.5452 0.0137 0.1057 0.2203 0.1087

Table 9. MLEs and SEs (in parentheses) for data set 3.

Model Estimates
TCSW 0.1574 2.1094 0.2480

(α, β, b) (0.0826) (0.2773) (0.2434)

OBW 10.2204 84.7145 0.0215 0.9706

(α, β, a, b) (3.2284) (9.1948) (0.0066) (0.0236)

CS1E 1.4770 17.0918 0.5383

(α, θ, λ) (4.0750) (4.7156) (0.0065)

TW 2.3166 1.9458 0.6174

(η, δ, λ) (0.5886) (0.2698) (0.6530)

SSE 3.6441

(θ) (0.1447)
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Figure 5. PP, QQ, epdf and ecdf plots of the TSCW distribution
for data set 1.
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Figure 6. PP, QQ, epdf and ecdf plots of the TSCW distribution
for data set 2.
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Figure 7. PP, QQ, epdf and ecdf plots of the TSCW distribution
for data set 3.
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5. Proofs

Proof of Theorem 2.1. It is clear that B(0) = 0, B
(
π
2

)
= 1 and, for any y ∈

[
0, π

2

]
,

cos (y) + (c+ ye−ay) sin (y) > 0. Let us now prove that B(y) is a nondecreasing
function for y ∈ R. Let us observe that B(y) is differentiable for y ∈ R excepted,
eventually, at the points 0 and π

2
(depending on the values of the parameters a, b

and c). Owing to the quotient rule for derivatives, for any y ∈
(
0, π

2

)
, we obtain

B′(y) = A′(y) =
(
c+

π

2
e−a

π
2

) A1(y)

A2(y)
,

where

A1(y) =
(
sin (y)− bye−ay cos (y)

)′ (
cos (y) +

(
c+ ye−ay

)
sin (y)

)
−

(
sin (y)− bye−ay cos (y)

) (
cos (y) +

(
c+ ye−ay

)
sin (y)

)′
and A2(y) = (cos (y) + (c+ ye−ay) sin (y))

2
.

We have A2(y) > 0. Let us investigate the sign of A1(y). By an expansion of their

terms and the trigonometric identities: 2 sin(y) cos(y) = sin(2y), cos2(y) = 1+cos(2y)
2

and sin2(y) = 1−cos(2y)
2

, we obtain

A1(y) =(
cos(y)− be−ay cos(y) + abe−ayy cos(y) + be−ayy sin(y)

) (
cos (y) +

(
c + ye−ay

)
sin (y)

)
−
(
sin (y)− bye−ay cos (y)

) (
(c + e−ayy) cos(y)− sin(y) + (e−ay − ae−ayy) sin(y)

)
=

1

2
e−2ay

(
2e2ay + 2by2 + eay(ay − 1 + b(ay − 1 + 2cy) + (ay − 1)((b− 1) cos(2y) + bc sin(2y))

)
=

1

2
e−2ay

(
2e2ay + 2by2 + 2bcyeay − eay(1− ay) (1 + b− (1− b) cos(2y) + bc sin(2y))

)
.

Since b ∈ [0, 1], c ≥ 0 and y ∈
(
0, π

2

)
, we have 1 − (1 − b) cos(2y) ≥ 0 and

bc sin(2y) ≥ 0. Let us now distinguish the case y ≥ 1
a

and the case y < 1
a
.

If y ≥ 1
a
, we have eay(1 − ay) ≤ 0. Therefore, A1(y) ≥ 0 as a sum of positive

functions.
If y < 1

a
, we have eay(1− ay) > 0 and, by the inequality ex ≥ 1 + x, x ∈ R, with

x = −ay, we get eay(1−ay) ≤ 1. On the other side, we have −(1−b) cos(2y) ≤ 1−b
and, the inequality sin(x) ≤ x, x ≥ 0, gives bc sin(2y) ≤ 2bcy. Therefore,

A1(y) ≥ 1

2
e−2ay

(
2e2ay + 2by2 + 2bcyeay − (1 + b+ (1− b) + 2bcy)

)
= e−2ay

(
(e2ay − 1) + by2 + bcy(eay − 1)

)
.

Since a ≥ 0 and y ≥ 0, we have e2ay ≥ 1 and eay ≥ 1. Hence, A1(y) ≥ 0 as a
sum of positive functions. This proves A′(y) ≥ 0 for any y ∈

(
0, π

2

)
, implying that

B′(y) ≥ 0, so B(y) is a nondecreasing function for y ∈ R. This ends the proof of
Theorem 2.1. �
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Appendix

The considered pdf of Section 4 are given below.

• Odd Burr Weibull (OBW) by [1]:

g(x) = αβabxα−1(1 + xα)βb−1
[
1− (1 + xα)−β

]b−1
e−a[(1+xα)β−1]

b

, α, β, a, b, x > 0.

• CS transformation of exponential (CS1E) by [7]:

g(x) =
2πα

(
α sin

(
π
2
e−

x
λ

)
+ θ

(
cos
(
π
2
e−

x
λ

))3
)
e−

x
λ

λ
(
2α + θ sin

(
πe−

x
λ

))2 , α, θ, λ, x > 0.

• Transmuted Weibull (TW) by [4]:

g(x) =
η

δ

(x
δ

)η−1

e−(xδ )
η [

1− λ+ 2λe−(xδ )
η]
, η, δ, λ, x > 0.

• SS transformation of exponential (SSE) by [13]:

g(x) =
π

2
θe−θx sin

(π
2
e−θx

)
, θ, x > 0.
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[10] Y.M. Gómez, H. Bolfarine and H.W. Gómez, A New Extension of the Exponential Distribu-

tion, Revista Colombiana de Estadstica, 37(2014), No. 1, 25-34.



A NEW FAMILY OF POLYNO-EXPO-TRIGONOMETRICDISTRIBUTIONS WITH APPLICATIONS17

[11] G.K. Gilbert, The moon’s face; a study of the origin of its features, Bulletin of the Philosophical

Society of Washington, Washington, 12(1895), 241-292.

[12] D. Hinkley, On quick choice of power transformation, Applied Statistics, 26(1977), 67-69.

[13] D. Kumar, U. Singh and S.K. Singh, A new distribution using sine function - its application

to bladder cancer patients data, J. Stat. Appl. Pro., 4(2015), No. 3, 417-427.

[14] S. Nadarajah and S. Kotz, Beta trigonometric distributions, PEZ, 5(2006), 207-224.

[15] D.H. Raab and E.H. Green, A cosine approximation to the normal distribution, Psychome-

trika, 26(1961), No. 4, 447-450.

[16] M. Rasekhi, M. Alizadeh, E. Altun, G.G. Hamedani, A.Z. Afify and M. Ahmad, The Modified

Exponential Distribution with Applications, Pakistan Journal of Statistics, 33(2017), No. 5,

383-398.

[17] T. Strukov, Shift estimation and forms of Von Mises distribution, Journal of Mathematical

Sciences, 189(2013), No. 6, 992-996.

[18] A. Yusuf, B.B. Mikail, A.I. Aliyu and A.L. Sulaiman, The Inverse Burr Negative Binomial

Distribution with Application to Real Data, Statistics: A Journal of Theoretical and Applied

Statistics, 5(2016), No. 1, 53-65.

1Department of Statistics, Govt. S.A Postgraduate College Dera Nawab Sahib,
Bahawalpur, Punjab 63360, Pakistan, e-mail: farrukhjamalmphil@gmail.com

2LMNO, University of Caen Normandie, 14032, Caen, France


