
HAL Id: hal-02049767
https://hal.science/hal-02049767

Submitted on 26 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The one dimensional semi-classical Bogoliubov-de
Gennes Hamiltonian with PT symmetry: generalized

Bohr-Sommerfeld quantization rules.
Abdelwaheb Ifa, Michel L. Rouleux

To cite this version:
Abdelwaheb Ifa, Michel L. Rouleux. The one dimensional semi-classical Bogoliubov-de Gennes Hamil-
tonian with PT symmetry: generalized Bohr-Sommerfeld quantization rules.. Group 32 (32nd Inter-
national Colloquium on Group Theoretical Methods in Physics), Jul 2018, Prague, Czech Republic.
pp.012049, �10.1088/1742-6596/1194/1/012049�. �hal-02049767�

https://hal.science/hal-02049767
https://hal.archives-ouvertes.fr


The one dimensional semi-classical Bogoliubov-de

Gennes Hamiltonian with PT symmetry: generalized

Bohr-Sommerfeld quantization rules

A Ifa
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Abstract. We present a method for computing first order asymptotics of semiclassical spectra
for 1-D Bogoliubov-de Gennes (BdG) Hamiltonian from Supraconductivity, which models the
electron/hole scattering through two SNS junctions. This involves: 1) reducing the system
to Weber equation near the branching point at the junctions; 2) constructing local sections
of the fibre bundle of microlocal solutions; 3) normalizing these solutions for the “flux norm”
associated to the microlocal Wronskians; 4) finding the relative monodromy matrices in the
gauge group that leaves invariant the flux norm; 5) from this we deduce Bohr-Sommerfeld (BS)
quantization rules that hold precisely when the fibre bundle of microlocal solutions (depending
on the energy parameter E) has trivial holonomy. Such a semi-classical treatement reveals
interesting continuous symetries related to monodromy. Details will appear elsewhere.

1. Bogoliubov-de Gennes Hamiltonian

BdG Hamiltonian describes the dynamics of a pair of quasi-particles electron/hole in the Theory
of Supraconductivity [2]. We consider a narrow metallic 1-D wire (Normal Metal N) connected
to Supraconducting bulks S through a SNS junction, and compute the excitation spectrum in
the normal contact region as a function of gate voltage, when electronic levels transform into
phase sensitive Andreev levels. The wire, or lead, is identified with a 1-D structure, the interval
x ∈ [−L,L] (case of a perfect junction) or x ∈ [−L + ℓ/2, L − ℓ/2] (“dirty junction”), where
ℓ ≪ L. The reference energy in the lead is Fermi level EF . The pair electron/hole is acted upon
by two kinds of potentials:

(1) the “order parameter” ∆(x) times a phase function eiφ(x)/2, which is the potential due to
Cooper pairs in the supraconducting bulk. This potential, subject to self-consistency relations, is
priori unknown. Namely, inside S, ∆(x)eiφ(x)/2 is a solution of Ginzburg-Landau (or Pitaevskiy)
equations, and shows typically a vortex profile (in 2-D). In BdG Hamiltonian it is assumed,
however, that ∆(x)eiφ(x)/2 is an “effective” potential. Inside N, superconducting gap ∆(x) ≡ 0:
quasi-particles live in the “clean metal”. For |x| ≥ L+ ℓ, ∆(x) = ∆0 > 0.

We assume that the phase function φ(x) is constant near the junction, and gauge the
interaction by φ− = −φ+ = −φ in the superconducting banks, so that φ(x) = sgn(x)φ. We



assume further that this equality holds everywhere: since ∆(x) = 0 inside N, the discontinuity
of x 7→ φ(x) is irrelevant.

(2) a smooth chemical potential µ(x): typically µ(x) is flat in N and drops smoothly to the
band bottom in the superconducting banks S. In our model we assume again µ(x) to be constant
in the superconducting bank, i.e. µ(x) = µ0 when |x| ≥ L + ℓ. Andreev currents at energy E
occur only if µ(x) ≥ E in [−L,L].

The case of a perfect junction (∆ “hard-wall potential”) has been considered in [5], see also
[4] for a SFS junction, and makes use scattering matrix techniques. In this work, justifying semi-
classical techniques as in [8] (also in the multi-dimensional case) we rather consider an imperfect
(or “dirty”) junction: ∆(x)eiφ(x)/2 is a smooth function. In a neighborhood of [−L,L], say
x ∈ [−L− ℓ, L+ ℓ], the system is described at the classical level by BdG Hamiltonian

P(x, ξ) =

(
ξ2 − µ(x) ∆(x)eiφ(x)/2

∆(x)e−iφ(x)/2 −ξ2 + µ(x)

)
(1)

The energy surface: ΣE = {det(P −E) = −(ξ2−µ(x))2 −∆(x)2+E2 = 0} = Λ<
E ∪Λ>

E splits
into 2 branches separated in momentum space, so consists of two microlocal wells. Interaction
between these wells gives the imaginary parts of the resonances for the electron/hole scattering,
and will be ignored in this paper. Because of smoothness of x 7→ ∆(x), the reflections occur
inside [−L,L], we denote by (±xE , ξE) ∈ Λ>

E , the one-parameter family of “branching points”

defined by ∆(±xE) = E with xE near x0 ∈ [L− ℓ
2 , L + ℓ

2 ], ∆(x0) > 0. We do not consider the
problem of “clustering” of eigenvalues as E → 0 = EF (Fermi level). In the “hard wall potential”
limit for x near x0, the potential ∆(x) can be safely approximated by a linear function such that
∆(x0) = E0, and µ(x) by a constant µ. So near x0 we assume that

φ(x) = φ, µ(x) = µ > E, ∆(x) = E + α(x− xE)

for large α > 0. Condition aE = (xE , ξE) ∈ ΣE gives ξ2E = µ > E, ∆(xE) = E.
The physical mechanism goes roughly as follows (see [5] for a detailed exposition): An

electron e− moving in the metallic lead, say, to the right, with energy 0 < E ≤ ∆ below
the gap and kinetic energy K+(x) = µ(x) +

√
E2 −∆(x)2 is reflected back as a hole e+ from

the supraconductor, injecting a Cooper pair into the superconducting contact. The hole has
kinetic energy K−(x) = µ(x) −

√
E2 −∆(x)2, and a momentum of the same sign as this of

the electron. When inf [−L,L]K−(x) > 0 it bounces along the lead to the left and picks up a
Cooper pair in the supraconductor, transforming again to the original electron state, a process
known as Andreev reflection. This works also the other way in Λ<

E , since Hamiltonian system
conserves both charge and energy. Actually, the hole can propagate throughout the lead only
if inf [−L,L] µ(x) ≥ E. Otherwise, it is reflected from the potential µ(x) in the junction, and
Andreev levels are quenched at higher energies, i.e. transform into localized electronic states.

For a rescaled “Planck constant” h so that h ≪ ℓ, we consider Weyl h-quantization of BdG
Hamiltonian P(x, hDx) on L2(I)⊗C2, I = [−(L+ ℓ), L+ ℓ], which is self-adjoint when imposing
Dirichlet boundary conditions at ∂I. Phase-sensitive Andreev states carry supercurrents that
turn out to be proportional to the φ-derivative of the eigen-energies of P(x, hDx).

We have σyP(φ)σy = −P(−φ), with σy =

(
0 −i
i 0

)
, accounting for “negative energies”. We

shall assume here E > 0. When potentials are even functions (typical for metals), P(x, hDx)
verifies PT symmetry ∨IP(x, hDx) = P(x, hDx)I∨ which is essential for our approach to work.

At least formally, since BdG is only defined locally near N, removing boundary conditions
leads to “resonances” (i.e. metastable states or quasi-particles with a finite life-time). Thus for
simplicity we have assumed that (1), together with its semi-classical quantization, describes the
system not only in I, but on the whole real line, provided h ≪ ℓ ≪ L. Thus P(x, hDx) extends
to L2(R)⊗C2,



Our general goal is to give a precise mathematical meaning to these “resonances”. Here we
content to compute their real parts through Bohr-Sommerfeld quantization rules.

2. Monodromy operator, scattering matrix: an outlook

a) Schrödinger operator on the real line.

We first recall from [1] basic facts for a 1-D Schrödinger operator with a compactly supported
potential V . The generalized wave-functions u with energy E = k2 > 0 satisfy

−h2u′′(x) + V (x)u(x) = Eu(x) (2)

and outside supp V ,
−h2u′′(x) = k2u(x) (3)

defines the state space Z ≈ C2 of the “free particle”, spanned by f1(x) = eikx/h, f2(x) = e−ikx/h.
The monodromy operator M(k) : f1 +Bf2 7→ Af1 is such that

M(k) =

(
1/A −B/A

−B/A 1/A

)
∈ SU(1, 1)

In particular, |A|2 + |B|2 = 1. We call |A|2 the transmission coefficient and |B|2 the reflection
coefficient. Along with the passage from the left to the right of the support of V , consider the
passage from the right to the left. The corresponding solution v of (2) is e−ikx/h + B2e

ikx/h to
the right of suppV , and A2e

−ikx/h to the left. The scattering matrix is defined as

S(k) =

(
A B

−BA/A A

)
∈ U(2)

S(k) remains unitary and symmetric for complex values of k. Resonances of (2) are then defined
as E = k2 ∈ C, where k is a pole of S, and physical resonances those with Imk > 0. Thus E
is a resonance iff the solution of (3) is purely outgoing as x → +∞ and x → −∞. The poles
coincide with the poles of meromorphic extension of the resolvent (P − k2)−1 from the physical
half-plane ImE < 0 to the second sheet ImE > 0.

b) Monodromy matrix for BdG equation: heuristics.

Now we discuss BdG equation (P(x, hDx) − E)U = 0 for large |x|, i.e. (within our
approximation above) when |x| ≥ L + ℓ, so ∆(x) = ∆0, µ(x) = µ0 > E. Solutions are of
the form

U(x;h) =

(
a b
c d

)(
eikx/h

eiℓx/h

)

µ0 + E ± i∆0 ∈ {k2, ℓ2}, so eigenfrequencies are (±k,±k), k =
√
µ0 + E + i∆0, and the

corresponding solutions as follows:

Let φ(x) = sgn(x)φ, Z be the 2-D complex line bundle spanned by F±
1 (x) =

(eiφ(x)/2
−i

)
e±ikx/h

(associated with the scattering process e+ → e−), and Z the 2-D complex line bundle spanned

by F±
2 (x) =

(
eiφ(x)/2

i

)
e±ikx/h (associated with the scattering process e− → e+).

The space of solutions of exponential type for BdG is Z ⊕ Z, and Z,Z are orthogonal for
the usual pointwise Hermitian product in C2. Declare that E ∈ C is a Z-resonance iff the
Z-component of the wave function solving BdG equation is outgoing and evanescent (“physical
solution”) at infinity, i.e.

U(x, h) = A
(eiφ/2

−i

)
eikx/h, x → +∞

U(x, h) = B
(
e−iφ/2

−i

)
e−ikx/h, x → −∞



Similarly we say that E is a Z-resonance iff the Z-component of the wave function is outgoing
(and evanescent) at infinity, i.e.

U(x, h) = A
(eiφ/2

i

)
e−ikx/h, x → +∞

U(x, h) = B
(e−iφ/2

i

)
eikx/h, x → −∞

So for both sets of resonances, the corresponding solution is simultaneously decaying, and
outgoing at ±∞. These sets of resonances need not coincide (although they come up in
pairs), but their real parts are given by Bohr-Sommerfeld quantization rules. Namely, define
the monodromy operator MZ(k) acting on Z according to the formula

(
e−iφ/2

−i

)
eikx/h +B

(
e−iφ/2

−i

)
e−ikx/h 7→ A

(
eiφ/2

−i

)
eikx/h

and similarly for MZ(k). It is plausible to expect that MZ(k),MZ (k) ∈ U(1, 1), and that the

corresponding scattering matrices SZ(k), SZ(k) have a meromorphic extension to the complex

plane, their poles defining the resonances EZ and EZ . Actually, we shall construct “relative
monodromy operators” in the “classically allowed region”. In particular the relative monodromy
operators are in U(1,1) for some specific Lorenzian form which is constructed below.

3. Bohr-Sommerfeld quantization rules

In this work, we content to determine the real parts of the resonances, extending to this setting
the method of positive commutators elaborated in [12], [9] and [10]. Imaginary parts may be
determined as in [11]. We obtain Bohr-Sommerfeld quantization rules for the quasi-particle,
alternating even and odd quantum numbers associated with the electron and the hole. In the
sequel we will sketch a proof of the following result:

Theorem 1: Let
∫ x0

−x0
ηρ(y;h) dy be the semi-classical actions (see Proposition 8 below) ρ = 1

for the electron, ρ = −1 for the hole. Bohr-Sommerfeld quantization conditions near E0 are
given at first order by:

∮

γE

ηρ(y;h) dy − hφ+ hπ +O(h2) = 2πnh; n ∈ Z

Here
∮
γE

denotes integral over the loop γE obtained by gluing together Λ>
E and Λ<

E , if we ignore

tunneling in momentum space.

4. Microlocal solutions in Fourier representation near the branching points

a) Reduction of the system.

In h-Fourier representation, Fhu(ξ) = (2πh)−1/2
∫
e−ixξ/hu(x) dx the local Hamiltonian near

a = aE = (xE , ξE), Pa takes the form :

Pa(−hDξ, ξ) =

(
ξ2 − µ eiφ/2(E − αhDξ − αxE)

e−iφ/2(E − αhDξ − αxE) −ξ2 + µ

)
(4)



By PT symmetry Pa′ = IPaI near a′ = a′E = (−xE, ξE). Solving the system Pa(−hDξ , ξ)Û =

0, Û =
(ϕ̂1

ϕ̂2

)
gives second order ODE for u(ξ) = exp[−i

∫ ξ
g(s)ds/h]ϕ̂2(ξ),

P a(−hDξ , ξ, h)u(ξ) =
E2

α2
u(ξ) (5)

P a(−hDξ, ξ, h) = (hDξ)
2 + α−2(ξ2 − µ)2 + h2(ξ2 − µ− E)−2(2ξ2 + µ+ E)

After E-dependent scalings β =
√
α(2ξE)

−3/2 > 0, E1 = (2ξE)
−2E, ξ = 2ξEβωξ

′ + ξE, ω = ±1

(ξ′ is “local momentum”) we obtain P a
ω(−hDξ′ , ξ

′, h)uω(ξ
′) =

(
E1
β

)2
uω(ξ

′), where

P a
ω(−hDξ′ , ξ

′;h) = (−hDξ′)
2 + (ξ′ + βωξ′2)2 + h2β2f(ωβξ′)

is an anharmonic Schrödinger operator. The lower order term f(z) = (2z2 + 2z + 3
4 + E1)(z

2 +
z − E1)

−2 has a pole on Λ>
E where the linear approximation of ∆(x) breaks down. The linear

approximation only holds for small ξ′. Consider the map

ιa :
∑

ω=±1

Kerh(P
a
ω −

(E1ω

β

)2
) → Kerh(Pa − E) (6)

where Kerh denotes the microlocal kernel. The index ω is to be chosen carefully with the com-
plex germ of solutions having the right decay beyond the branching points ±xE . We shall endow
the RHS of (6) with a Lorenzian structure and “diagonalize” ιa in some orthogonal subspaces.

b) The normal form of Helffer-Sjöstrand

When E1 <
1
4 , we take P a

ω microlocally to its normal form, namely:

Proposition 2 [9]: There exists an analytic diffeomorphism t 7→ F0(t) defined in a neighborhood
of 0, F0(0) = 0, with inverse G0, and a real analytic phase function φβ(ξ

′, θ), defined in a
neighborhood of (0,0), of the form φβ(ξ

′, θ) = ξ′θ+gβ(ξ
′, θ), gβ(ξ

′, θ) = O(|ξ′, θ|3), parametrizing
the canonical transformation κβ : (∂θφβ, θ) 7→ (ξ′, ∂ξ′φβ), such that F0 ◦ pβ ◦ κβ = p0. At the
semi-classical level, there is a (formally) unitary FIO operator A defined microlocally near (0,0)

Av(ξ′, h) = (2πh)−1

∫ ∫
eiϕ(ξ

′,η,θ)/hc(ξ′, η, θ, h)eib(ξ
′,η,θ,h)v(η, h) dηdθ

and a real valued analytic symbol

F (t, β, h) = F0(t, β) + hF1(t, β) + h2F2(t, β) + · · ·

with F1(t, β) = −1
2 such that

A∗F (Pω, β, h)A = P0(η, hDη) =
1

2

(
(hDη)

2 + η2 − h
)
, A∗A ≡ Id

The function F0, taking the period T (E) of Hamilton vector flow for P a
ω at energy (E1/β)

2

to 2π, involves an elliptic integral, which requires sometimes the use of formal calculus.

c) Weber equation and parabolic cylinder functions

Weber equation P0v = νhv, through change of variables η = (h/2)1/2ζ, ṽ(ζ) = v(η) scales to

−ṽ′′ +
1

4
ζ2ṽ =

(
ν +

1

2

)
ṽ



Fundamental solutions express as parabolic cylinder functions Dν , entire in C. The systems(
Dν(±ζ),D−ν−1(±iζ)

)
are fundamental solutions for any choice of ±. Integral representations

give asymptotic solutions of (P0 − νh)u(η) = 0 by stationary phase for real ν, E′2
1 =

2β2F (β−2E2
1 , β, h) = 2β2(ν + 1)h.

Dν

(
ε(h/2)−1/2η

)
= Γ(ν+1)

−2iπ
√
h
hE

2/4h
∫ (0+)
∞ exp

[
iΦν

ε(s; η)/h
]
ds

D−ν−1

(
iε(h/2)−1/2η

)
= Γ(−ν)

2iπ h−E2/4h
∫ (0+)
∞ exp

[
iΦ−ν−1

ε (s; η)/h
]
ds
s

with ε = ±1, E =
√

2(ν + 1)h, see [13]. This normalization is called Whittaker normalization.
Classically forbidden regions |η| > E lie on Stokes lines, classically allowed region |η| < E in
between, and 3 Stokes lines stem from each “turning point” η = ±E.

d) Microlocal solutions.

We apply asymptotic stationary phase to ADj , j ∈ {ν,−ν−1}. With h′ = β2h as a “rescaled”
Planck constant, we get:

Proposition 3: In Fourier representation, the image Ka
h(E) = Kerh(Pa(−hDξ, ξ)−E) of ιa is

a 2-D vector space spanned by the spinors Û j
ε,ω =

(ϕ̂1

ϕ̂2

)j
ε,ω

, (j, ε, ω) ∈ {ν,−ν − 1} × {−1, 1}2, of
the form:

Ûν
ε,ω = Cν

h′

∑
θω=±θ̂ω(ξ1)

(eiφ/2(ξ2−µ−E)−1/2Xν
ε,ω

(ξ2−µ−E)1/2

)
|ãνε,ω| exp[i(Φν

ε,ω + h′Rν
ω)/h

′] +O(h′)

Û−ν−1
ε,ω = C−ν−1

h′

∑
θω=±θ̂ω(ξ1)

ε sgn(θω)
(eiφ/2(ξ2−µ−E)−1/2X−ν−1

ε,ω

(ξ2−µ−E)1/2

)

|ã−ν−1
ε,ω | exp[i(Φ−ν−1

ε,ω + h′R−ν−1
ω )/h′] +O(h′)

Here θ̂ω(ξ1) is a critical point (from stationary phase), Φj
ε,ω + h′Rj

ω) the h′-dependent phase

functions, and Xj
ε,ω, |ãjε,ω| some positive amplitudes. Spinors U j

ε,ω verify the symmetry
†Û j

−ε,−ω = Û j
ε,ω for the “local time” reversal operator †u(ξ1) = u(−ξ1), and the constants Cj

h′

(from Whittaker normalization of Dν , D−ν−1) are related by Cν
h′C

−ν−1
h′ =

(
(2
√
h′)3π2 sinπν

)−1
.

5. Normalization

a) The microlocal Wronskian.

We extend to BdG Hamiltonian the classical “positive commutator method” using conserva-
tion of some quantity called a “quantum flux’ ([12], [9], [11], [10]).

Definition 4: Let P be (formally) self-adjoint, and Ua, V a ∈ Kh(E) be supported on Λ>
E. We

call the sesquilinear form Wa
ρ (U

a, V a) =
(
i
h [P, χa]ρU

a|V a
)
=
(
i
h [P, χa]ρÛ

a|V̂ a
)
the microlocal

Wronskian of (Ua, V a) in ωa
ρ . Here i

h [P, χa]ρ denotes the part of the commutator supported
microlocally on ωa

ρ (a small neighborhood of supp[P, χa] ∩ ΛE near ρ).

A crucial property of the microlocal Wronskian is to be invariant by Fourier transformation:
Wa

ρ (U
a, V a) = Wa

ρ (Û
a, V̂ a). The relation Wa

+(U
a, V a) +Wa

−(U
a, V a) = 0 doesn’t readily follow

as in the scalar case [10], the microlocal solutions being neither smooth in spatial of Fourier
representation near the branching point, but from a careful inspection, involving also formal
calculus. This is used essentially in Propositions 5 and 8 below. Choosing ε, ω such that εω = 1



we define a Lorenzian metric Wρ on the space of microlocal solutions near a. In the basis

Û j
ε,ω, j ∈ {ν,−ν − 1} we have, up to a constant factor:

ρWρ =

(
|Cν

h′ |2O(h′) Cν
h′C

−ν−1
h′ exp[−iπE′

1
2/4h′]

(
1 +O(h′)

)

Cν
h′C

−ν−1
h′ exp[iπE′

1
2/4h′]

(
1 +O(h′)

)
|C−ν−1

h′ |2O(h′)

)

Changing Whittaker normalization for the Dν ,D−ν−1 functions, and the microlocal solutions

by some constant phase factors, we can reduce to ρWρ =

(
0 1
1 0

)
+O(h′), and prove:

Proposition 5: Under PT symmetry above the microlocal Wronskians Wa
ρ endow Ka

h(E) (mod

h′) with a Lorenzian form Wa = 1
2 (Wa

+ −Wa
−). The same holds at a′, and the corresponding

structures on Ka
h × Ka∗

h and Ka′

h × Ka′∗
h are anti-isomorphic. The group of automorphisms

preserving Wa and Wa′ mod O(h′) is therefore U(1,1).

6. Spinors in the spatial representation

We compute Ua,j
ε,ω, U

a′,j
ε,ω in spatial representation, then extend along the branches ρ = ±1 of Λ>

E
with WKB solutions.

a) Spinors near the branching points.

Near a, a′ we apply inverse h-Fourier transform and get:

Proposition 6: Up to a constant phase factor

Uν
ε,ω(x, h) = 2ωβξEe

ixξE/h
∑

ρ=±
(eiφ/2(ξ2−µ−E)−1/2Xν

ε,ω

(ξ2−µ−E)1/2

)
|aνε,ω|

∣∣
θ1=θω(ξ1),ξ1=ξρω(x)

×
(Lρ

ω(x)
i

)−1/2
exp[i

(
Ψν,ρ

ε,ω(x) + h′Rν,ρ
ε,ω(x)

)
/h′](1 +O(h′))

U−ν−1
ε,ω (x, h) = 2ωβξEe

ixξE/h
∑

ρ=± ε sgn(θ1)
(eiφ/2(ξ2−µ−E)−1/2X−ν−1

ε,ω

(ξ2−µ−E)1/2

)
|ã−ν−1

ε,ω |
∣∣
θ1=θω(ξ1),ξ1=ξρω(x)

×
(Lρ

ω(x)
i

)−1/2
exp[i

(
Ψν,ρ

ε,ω(x) + h′Rν,ρ
ε,ω(x)

)
/h′](1 +O(h′))

Here
(
Lρ
ω(x)

)−1/2
is a real density (singular at x = xE), and ρ labels the branch of the La-

grangian manifold. The phases Ψj,ρ
ε,ω(x) + h′Rj,ρ

ε,ω(x), j ∈ {ν,−ν − 1} differ only by a constant.

b) WKB spinors away from the branching points

The Lagrangian manifold Λ>
E consists of 2 branches Λ>,ρ

E (or simply ρ) ρ = ±1 so that ρ = +1
belongs to the electronic state (ξ1 > 0 in the local coordinates near a above), resp. ρ = −1
to the hole state (ξ1 < 0). These states mix up when ∆(x) 6= 0, but we can sort them out
semiclassically, outside a, a′. Call the vector space of C2 generated by

(
1
0

)
the space of (pure)

electronic states, or electronic spinors, and this by
(0
1

)
the space of (pure) hole states, or hole

spinors.
The principal symbol P(x, ξ) has eigenvalues λρ = ρλ(x, ξ) = ρ

√
∆(x)2 + (ξ2 − µ(x))2. By

diagonalizing, we obtain a line bundle Λρ
E with fiber

Yρ(x, ξ) = (∆2 + (−ξ2 + µ+ ρ
√

∆2 + (ξ2 − µ)2 )2)−1/2

(
∆eiφ/2

−ξ2 + µ+ ρ
√

∆2 + (ξ2 − µ)2

)



Figure 1. Phase-space picture

Looking at the electronic state, we choose ρ = +1 so that λρ(xρ, ξρ)−E = 0, while λ−ρ(xρ, ξρ)−E
is elliptic. and similarly when looking at the hole state.

Proposition 7 The microlocal kernel Kerh(P − E) on Λ>,ρ
E is one-dimensional space spanned

by

W ρ(x, h) = eiSρ(x,h)/h
(
wρ
0(x, h)Yρ(x, ∂xSρ) +O(h)

)
= eiSρ(x,h)/hW̃ ρ(x, h)

where wρ
0(x)|dx|1/2 is a smooth half-density. By the uniqueness property of WKB solutions

along simple bicharacteristics, the h (or h′)-dependent phase function Sρ(x, h) should coincide,

up to a constant (in a punctured neighborhood of a) with either one of Ψj,ρ
ε,ω(x) + h′Rj,ρ

ε,ω(x)
above, j ∈ {ν,−ν − 1}, and similarly for the half-densities.

7. Relative monodromy matrices

Now we look for connexion formulas. For each ε, ω, ρ = ±1, j ∈ {ν,−ν − 1}, the normalized

microlocal solutions Ua′,j,ρ
ε,ω are related to the extension Ua,k,ρ

−ε,−ω,ext of the normalized microlocal

solutions Ua,k,ρ
ε,ω along the bicharacteristics by a monodromy matrix

Ma,a′,ρ =

(
dρ11 dρ12
dρ21 dρ22

)
∈ U(1, 1)

(defined at least mod O(h′)) which we call a relative monodromy matrix. Since there is a pair of
particles, the symmetry between the Ma,a′,ρ and Ma′,a,ρ is order 4; Ma′,a,ρ ∈ U(1, 1) is obtained
by extending from the left to the right, and applying symmetry

ρMa′,a,ρ = I(Ma,a′,ρ)−1I =, ρ = ±1 (7)

where I denotes complex conjugation. We compute the coefficients dij = dρij . Considering

behavior of Ua′,j,ρ
e,ω in the classically forbidden region (according to scattering process e+ → e−

or e− → e+) we obtain

Ma,a′,ρ =

(
0 dρ12
dρ21 0

)
, dρ12 d

ρ
21 = 1



Note that if we do not look too closely at the relevant complex branches, as is the case when

computing BS, it makes no difference to choose instead Ma,a′,ρ =

(
dρ11 0
0 dρ22

)
, with d11

ρ
dρ22 = 1.

As in [12], [9], [11], [10], the argument consists now in extending microlocal solutions obtained
above from a to a′, and computing the resulting semi-classical action. So take first U1 equal to
Ua
1 = Uν,a

ε,ω near a, extend it along to a′ along the bicharacteristics ρ = ±1 by WKB. Evaluating

on ρ near a′ we find Ua′,ρ
1 = Uν,a,ρ

ε,ω,ext = dρ21U
−ν−1,a′,ρ
ε,ω . Similarly, take U2 starting at a′ and with

−ν − 1 instead of ν, we get Ua,ρ
1 = U−ν−1,a′,ρ

ε,ω,ext = eρ12U
ν,a,ρ
ε,ω , where eρ12 = ρ

(
dρ21
)−1

is the matrix

element of Ma′,a,ρ given in (7). We compute dρ21 in two different ways and compare the result.
(1) Using time-reversal and PT symmetries in the microlocal Wronskians, we get

(
i
h [Pa′ , χa′ ]ρU1|Uν

ε,ω

)
= dρ21

(
i
h [Pa′ , χa′ ]ρU

−ν−1
ε,ω |Uν

ε,ω

)
=

= dρ21 Wa′
ρ

(
U−ν−1
ε,ω , Uν

ε,ω

)
= dρ21 Wa′

ρ

(
Û−ν−1
ε,ω , Ûν

ε,ω

)
=

= −dρ21 Wa
ρ

(
Û−ν−1
−ε,−ω, Û

ν
−ε,−ω

)
= −dρ21 Wa

ρ

(
Ûν
−ε,−ω, Û

−ν−1
−ε,−ω

)
= −dρ21

(2) Using the extensions described in Proposition 7. Near a′ we have Uρ
1,ext = eiφ/2W ρ(x, h) =

dρ21U
−ν−1,a′,ρ
ε,ω (by solving transport equation along ρ the amplitude picks up the phase factor

eiφ/2), so we need to compute
(
i
h [Pa′ , χa′ ]ρW

ρ(x, h)|Uν
ε,ω

)
. The amplitude W ρ(x, h) is actually

defined up to a real, constant factor C̃ρ.

Proposition 8: Let Ψ̃ν,a′,ρ
ε,ω (x) = x ξE + (2 ξE)3

α Ψν,a′,ρ
ε,ω (x). We have

( i
h
[Pa′ , χa′ ]ρW

ρ|Uν,a′,ρ
ε,ω

)
= 2 C̃ρ eiπ/4

∫
exp
[
i
(
S̃ρ(x;h)/h

]
β(x, h) (χa′

1 )′(x) dx (8)

where the amplitude β(x, h), real modO(h), is computed from the WKB solutions in Proposition
7, and

S̃ρ(x, h) = Sρ(x;h) −
(
xξE + Ψ̃

ν,a′,ρ)
ε,ω (x)− hRν

−ω

(
θ−ω(ξ

ρ
−ω(−x))

)
=

(2 ξE)3

α Ψν,a,ρ
−ε,−ω(x0)−

∫ x0

−x0
ηρ(y;h) dy + hRν

−ω

(
θ−ω(0)

)

Moreover, β(x, h) is also independent of x, so that, comparing the former expression (1) and (8)

for a suitable choice of C̃ρ, we get

dρ21 = −eiτ
ρ(h)/h

∫
(χa′

1 )
′(x) dx = eiτ

ρ(h)/h (9)

Here τρ(h) = h φ
2 + h π

4 −
∫ x0

−x0
ηρ(y;h) dy +Const., where Const. is evaluated at the boundaries

x = ±xE, and depends only on E′
1. It will eventually disappear from the final formula, by adding

to BS the contribution of the lower branch Λ<,ρ
E . Note that

∫ x0

−x0
ηρ(y;h) dy, ηρ(y;h) being the

derivative of the h′-depending phase function, is the semi-classical action.

8. Bohr-Sommerfeld quantization rules

We set F j,a,ρ
ε,ω = i

h [Pa, χa]ρU
j,a,ρ)
ε,ω , and similarly with a′. The set {Gj,♭

ε,ω = F j,♭,+
ε,ω − F j,♭,−

ε,ω : j ∈
{ν,−ν − 1}, ♭ ∈ {a, a′}} (or their h-Fourier transform) can be interpreted as a basis of the



microlocal co-kernel of P near a, a′. Following [10], we introduce Gram matrix Gρ of vectors Ûρ
1

and Ûρ
2 in this basis, namely G =

((
Û1|Ĝ−ν−1,a

ε,ω

) (
Û2|Ĝ−ν−1,a

ε,ω

)
(
Û1|Ĝν,a′

ε,ω

) (
Û2|Ĝν,a′

ε,ω

)
)
. Using symmetries we get

G = Gρ = 2

(
1 eρ12

−dρ21 −1

)

The condition det(G(ρ)) = 0 means that U1 is colinear to U2, i.e. there is a global section of

Kerh(P − E). Recall eρ12 = ρ
(
dρ21
)−1

; for ρ = +1 (electronic state) we get Imd+21 = 0, that is

sin
( τ (+)(h)

h

)
= 0. We eventually obtain BS by “surgery”: namely (ignoring tunneling) we cut

and paste the half-bicharacteristic Λ>,+
E in the upper-half plane ξ > 0 with its symmetric part

Λ<,−
E in ξ < 0 and add together the contributions. By symmetry, the constant term Const. in

τ+(h) drops out, while the other terms h φ
2 + h π

4 −
∫ x0

−x0
ηρ(y;h) dy add up, which yields BS for

the electronic state. We argue similarly for the hole state. This eventually gives Theorem 1.
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