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The one dimensional semi-classical Bogoliubov-de Gennes Hamiltonian with PT symmetry: generalized Bohr-Sommerfeld quantization rules

We present a method for computing first order asymptotics of semiclassical spectra for 1-D Bogoliubov-de Gennes (BdG) Hamiltonian from Supraconductivity, which models the electron/hole scattering through two SNS junctions. This involves: 1) reducing the system to Weber equation near the branching point at the junctions; 2) constructing local sections of the fibre bundle of microlocal solutions; 3) normalizing these solutions for the "flux norm" associated to the microlocal Wronskians; 4) finding the relative monodromy matrices in the gauge group that leaves invariant the flux norm; 5) from this we deduce Bohr-Sommerfeld (BS) quantization rules that hold precisely when the fibre bundle of microlocal solutions (depending on the energy parameter E) has trivial holonomy. Such a semi-classical treatement reveals interesting continuous symetries related to monodromy. Details will appear elsewhere.

Bogoliubov-de Gennes Hamiltonian

BdG Hamiltonian describes the dynamics of a pair of quasi-particles electron/hole in the Theory of Supraconductivity [START_REF] Bardeen | [END_REF]. We consider a narrow metallic 1-D wire (Normal Metal N) connected to Supraconducting bulks S through a SNS junction, and compute the excitation spectrum in the normal contact region as a function of gate voltage, when electronic levels transform into phase sensitive Andreev levels. The wire, or lead, is identified with a 1-D structure, the interval x ∈ [-L, L] (case of a perfect junction) or x ∈ [-L + ℓ/2, L -ℓ/2] ("dirty junction"), where ℓ ≪ L. The reference energy in the lead is Fermi level E F . The pair electron/hole is acted upon by two kinds of potentials:

(1) the "order parameter" ∆(x) times a phase function e iφ(x)/2 , which is the potential due to Cooper pairs in the supraconducting bulk. This potential, subject to self-consistency relations, is priori unknown. Namely, inside S, ∆(x)e iφ(x)/2 is a solution of Ginzburg-Landau (or Pitaevskiy) equations, and shows typically a vortex profile (in 2-D). In BdG Hamiltonian it is assumed, however, that ∆(x)e iφ(x)/2 is an "effective" potential. Inside N, superconducting gap ∆(x) ≡ 0: quasi-particles live in the "clean metal". For |x| ≥ L + ℓ, ∆(x) = ∆ 0 > 0.

We assume that the phase function φ(x) is constant near the junction, and gauge the interaction by φ -= -φ + = -φ in the superconducting banks, so that φ(x) = sgn(x)φ. We assume further that this equality holds everywhere: since ∆(x) = 0 inside N, the discontinuity of x → φ(x) is irrelevant.

(2) a smooth chemical potential µ(x): typically µ(x) is flat in N and drops smoothly to the band bottom in the superconducting banks S. In our model we assume again µ(x) to be constant in the superconducting bank, i.e. µ(x) = µ 0 when |x| ≥ L + ℓ. Andreev currents at energy E occur only if µ(x) ≥ E in [-L, L].

The case of a perfect junction (∆ "hard-wall potential") has been considered in [5], see also [START_REF] Cayssol | [END_REF] for a SFS junction, and makes use scattering matrix techniques. In this work, justifying semiclassical techniques as in [8] (also in the multi-dimensional case) we rather consider an imperfect (or "dirty") junction: ∆(x)e iφ(x)/2 is a smooth function. In a neighborhood of [-L, L], say x ∈ [-L -ℓ, L + ℓ], the system is described at the classical level by BdG Hamiltonian

P(x, ξ) = ξ 2 -µ(x) ∆(x)e iφ(x)/2 ∆(x)e -iφ(x)/2 -ξ 2 + µ(x) (1) 
The energy surface:

Σ E = {det(P -E) = -(ξ 2 -µ(x)) 2 -∆(x) 2 + E 2 = 0} = Λ < E ∪ Λ > E
splits into 2 branches separated in momentum space, so consists of two microlocal wells. Interaction between these wells gives the imaginary parts of the resonances for the electron/hole scattering, and will be ignored in this paper. Because of smoothness of x → ∆(x), the reflections occur inside [-L, L], we denote by (±x E , ξ E ) ∈ Λ > E , the one-parameter family of "branching points" defined by ∆(±x

E ) = E with x E near x 0 ∈ [L -ℓ 2 , L + ℓ 2 ], ∆(x 0 ) > 0.
We do not consider the problem of "clustering" of eigenvalues as E → 0 = E F (Fermi level). In the "hard wall potential" limit for x near x 0 , the potential ∆(x) can be safely approximated by a linear function such that ∆(x 0 ) = E 0 , and µ(x) by a constant µ. So near x 0 we assume that

φ(x) = φ, µ(x) = µ > E, ∆(x) = E + α(x -x E ) for large α > 0. Condition a E = (x E , ξ E ) ∈ Σ E gives ξ 2 E = µ > E, ∆(x E ) = E.
The physical mechanism goes roughly as follows (see [5] for a detailed exposition): An electron e -moving in the metallic lead, say, to the right, with energy 0 < E ≤ ∆ below the gap and kinetic energy K + (x) = µ(x) + E 2 -∆(x) 2 is reflected back as a hole e + from the supraconductor, injecting a Cooper pair into the superconducting contact. The hole has kinetic energy 2 , and a momentum of the same sign as this of the electron. When inf [-L,L] K -(x) > 0 it bounces along the lead to the left and picks up a Cooper pair in the supraconductor, transforming again to the original electron state, a process known as Andreev reflection. This works also the other way in Λ < E , since Hamiltonian system conserves both charge and energy. Actually, the hole can propagate throughout the lead only if inf [-L,L] µ(x) ≥ E. Otherwise, it is reflected from the potential µ(x) in the junction, and Andreev levels are quenched at higher energies, i.e. transform into localized electronic states.

K -(x) = µ(x) -E 2 -∆(x)
For a rescaled "Planck constant" h so that h ≪ ℓ, we consider Weyl h-quantization of BdG Hamiltonian P(x, hD x ) on L 2 (I) ⊗ C 2 , I = [-(L + ℓ), L + ℓ], which is self-adjoint when imposing Dirichlet boundary conditions at ∂I. Phase-sensitive Andreev states carry supercurrents that turn out to be proportional to the φ-derivative of the eigen-energies of P(x, hD x ).

We have σ y P(φ)σ y = -P(-φ), with σ y = 0 -i i 0 , accounting for "negative energies". We shall assume here E > 0. When potentials are even functions (typical for metals), P(x, hD x ) verifies PT symmetry ∨ IP(x, hD x ) = P(x, hD x )I ∨ which is essential for our approach to work. At least formally, since BdG is only defined locally near N, removing boundary conditions leads to "resonances" (i.e. metastable states or quasi-particles with a finite life-time). Thus for simplicity we have assumed that (1), together with its semi-classical quantization, describes the system not only in I, but on the whole real line, provided h ≪ ℓ ≪ L. Thus P(x, hD x ) extends to L 2 (R) ⊗ C 2 , Our general goal is to give a precise mathematical meaning to these "resonances". Here we content to compute their real parts through Bohr-Sommerfeld quantization rules.

2. Monodromy operator, scattering matrix: an outlook a) Schrödinger operator on the real line.

We first recall from [START_REF] Arnold | Geometrical methods in the theory of ordinary differential equations[END_REF] basic facts for a 1-D Schrödinger operator with a compactly supported potential V . The generalized wave-functions u with energy E = k 2 > 0 satisfy

-h 2 u ′′ (x) + V (x)u(x) = Eu(x) (2) 
and outside supp V ,

-h 2 u ′′ (x) = k 2 u(x) (3) 
defines the state space Z ≈ C 2 of the "free particle", spanned by f 1 (x) = e ikx/h , f 2 (x) = e -ikx/h . The monodromy operator M (k) :

f 1 + Bf 2 → Af 1 is such that M (k) = 1/A -B/A -B/A 1/A ∈ SU(1, 1)
In particular, |A| 2 + |B| 2 = 1. We call |A| 2 the transmission coefficient and |B| 2 the reflection coefficient. Along with the passage from the left to the right of the support of V , consider the passage from the right to the left. The corresponding solution v of ( 2) is e -ikx/h + B 2 e ikx/h to the right of suppV , and A 2 e -ikx/h to the left. The scattering matrix is defined as

S(k) = A B -BA/A A ∈ U(2)
S(k) remains unitary and symmetric for complex values of k. Resonances of (2) are then defined as

E = k 2 ∈ C,
where k is a pole of S, and physical resonances those with Imk > 0. Thus E is a resonance iff the solution of ( 3) is purely outgoing as x → +∞ and x → -∞. The poles coincide with the poles of meromorphic extension of the resolvent (P -k 2 ) -1 from the physical half-plane ImE < 0 to the second sheet ImE > 0.

b) Monodromy matrix for BdG equation: heuristics. Now we discuss BdG equation (P(x, hD x ) -E)U = 0 for large |x|, i.e. (within our approximation above) when |x| ≥ L + ℓ, so ∆(x) = ∆ 0 , µ(x) = µ 0 > E. Solutions are of the form

U (x; h) = a b c d e ikx/h e iℓx/h µ 0 + E ± i∆ 0 ∈ {k 2 , ℓ 2 }, so eigenfrequencies are (±k, ±k), k = √ µ 0 + E + i∆ 0 ,

and the corresponding solutions as follows:

Let φ(x) = sgn(x)φ, Z be the 2-D complex line bundle spanned by

F ± 1 (x) = e iφ(x)/2
-i e ±ikx/h (associated with the scattering process e + → e -), and Z the 2-D complex line bundle spanned by F ± 2 (x) = e iφ(x)/2 i e ±ikx/h (associated with the scattering process e -→ e + ). The space of solutions of exponential type for BdG is Z ⊕ Z, and Z, Z are orthogonal for the usual pointwise Hermitian product in C 2 . Declare that E ∈ C is a Z-resonance iff the Z-component of the wave function solving BdG equation is outgoing and evanescent ("physical solution") at infinity, i.e.

U (x, h)

= A e iφ/2 -i e ikx/h , x → +∞ U (x, h) = B e -iφ/2 -i e -ikx/h , x → -∞
Similarly we say that E is a Z-resonance iff the Z-component of the wave function is outgoing (and evanescent) at infinity, i.e.

U (x, h) = A e iφ/2 i e -ikx/h , x → +∞ U (x, h) = B e -iφ/2 i e ikx/h , x → -∞
So for both sets of resonances, the corresponding solution is simultaneously decaying, and outgoing at ±∞. These sets of resonances need not coincide (although they come up in pairs), but their real parts are given by Bohr-Sommerfeld quantization rules. Namely, define the monodromy operator M Z (k) acting on Z according to the formula

e -iφ/2 -i e ikx/h + B e -iφ/2 -i e -ikx/h → A e iφ/2 -i e ikx/h
and similarly for

M Z (k). It is plausible to expect that M Z (k), M Z (k) ∈ U(1, 1)
, and that the corresponding scattering matrices S Z (k), S Z (k) have a meromorphic extension to the complex plane, their poles defining the resonances E Z and E Z . Actually, we shall construct "relative monodromy operators" in the "classically allowed region". In particular the relative monodromy operators are in U(1,1) for some specific Lorenzian form which is constructed below.

Bohr-Sommerfeld quantization rules

In this work, we content to determine the real parts of the resonances, extending to this setting the method of positive commutators elaborated in [START_REF] Sjöstrand | Density of states oscillations for magnetic Schrödinger operators[END_REF], [9] and [10]. Imaginary parts may be determined as in [START_REF] Rouleux | Tunneling effects for h-Pseudodifferential Operators, Feshbach resonances and the Born-Oppenheimer approximation[END_REF]. We obtain Bohr-Sommerfeld quantization rules for the quasi-particle, alternating even and odd quantum numbers associated with the electron and the hole. In the sequel we will sketch a proof of the following result:

Theorem 1: Let x 0
-x 0 η ρ (y; h) dy be the semi-classical actions (see Proposition 8 below) ρ = 1 for the electron, ρ = -1 for the hole. Bohr-Sommerfeld quantization conditions near E 0 are given at first order by:

γ E η ρ (y; h) dy -hφ + hπ + O(h 2 ) = 2πnh; n ∈ Z
Here γ E denotes integral over the loop γ E obtained by gluing together Λ > E and Λ < E , if we ignore tunneling in momentum space.

Microlocal solutions in Fourier representation near the branching points a) Reduction of the system.

In h-Fourier representation, F h u(ξ) = (2πh) -1/2 e -ixξ/h u(x) dx the local Hamiltonian near a = a E = (x E , ξ E ), P a takes the form :

P a (-hD ξ , ξ) = ξ 2 -µ e iφ/2 (E -αhD ξ -αx E ) e -iφ/2 (E -αhD ξ -αx E ) -ξ 2 + µ (4) 
By PT symmetry P a ′ = IP a I near a ′ = a ′ E = (-x E , ξ E ). Solving the system P a (-hD ξ , ξ) U = 0, U = ϕ 1 ϕ 2 gives second order ODE for u(ξ) = exp[-i ξ g(s)ds/h] ϕ 2 (ξ),

P a (-hD ξ , ξ, h)u(ξ) = E 2 α 2 u(ξ) (5) 
P a (-hD ξ , ξ, h) = (hD ξ ) 2 + α -2 (ξ 2 -µ) 2 + h 2 (ξ 2 -µ -E) -2 (2ξ 2 + µ + E) After E-dependent scalings β = √ α(2ξ E ) -3/2 > 0, E 1 = (2ξ E ) -2 E, ξ = 2ξ E βωξ ′ + ξ E , ω = ±1 (ξ ′ is "local momentum") we obtain P a ω (-hD ξ ′ , ξ ′ , h)u ω (ξ ′ ) = E 1 β 2 u ω (ξ ′ )
, where

P a ω (-hD ξ ′ , ξ ′ ; h) = (-hD ξ ′ ) 2 + (ξ ′ + βωξ ′2 ) 2 + h 2 β 2 f (ωβξ ′ )
is an anharmonic Schrödinger operator. The lower order term f (z) = (2z 2 + 2z + 3 4 + E 1 )(z 2 + z -E 1 ) -2 has a pole on Λ > E where the linear approximation of ∆(x) breaks down. The linear approximation only holds for small ξ ′ . Consider the map

ι a : ω=±1 Ker h (P a ω - E 1 ω β 2 ) → Ker h (P a -E) (6) 
where Ker h denotes the microlocal kernel. The index ω is to be chosen carefully with the complex germ of solutions having the right decay beyond the branching points ±x E . We shall endow the RHS of ( 6) with a Lorenzian structure and "diagonalize" ι a in some orthogonal subspaces.

b) The normal form of Helffer-Sjöstrand When E 1 < 1 4 , we take P a ω microlocally to its normal form, namely:

Proposition 2 [9]: There exists an analytic diffeomorphism t → F 0 (t) defined in a neighborhood of 0, F 0 (0) = 0, with inverse G 0 , and a real analytic phase function φ β (ξ ′ , θ), defined in a neighborhood of (0,0), of the form

φ β (ξ ′ , θ) = ξ ′ θ+g β (ξ ′ , θ), g β (ξ ′ , θ) = O(|ξ ′ , θ| 3 ), parametrizing the canonical transformation κ β : (∂ θ φ β , θ) → (ξ ′ , ∂ ξ ′ φ β ), such that F 0 • p β • κ β = p 0 .
At the semi-classical level, there is a (formally) unitary FIO operator A defined microlocally near (0,0)

Av(ξ ′ , h) = (2πh) -1 e iϕ(ξ ′ ,η,θ)/h c(ξ ′ , η, θ, h)e ib(ξ ′ ,η,θ,h) v(η, h) dηdθ
and a real valued analytic symbol

F (t, β, h) = F 0 (t, β) + hF 1 (t, β) + h 2 F 2 (t, β) + • • • with F 1 (t, β) = -1 2 such that A * F (P ω , β, h)A = P 0 (η, hD η ) = 1 2 (hD η ) 2 + η 2 -h , A * A ≡ Id
The function F 0 , taking the period T (E) of Hamilton vector flow for P a ω at energy (E 1 /β) 2 to 2π, involves an elliptic integral, which requires sometimes the use of formal calculus.

c) Weber equation and parabolic cylinder functions

Weber equation

P 0 v = νhv, through change of variables η = (h/2) 1/2 ζ, v(ζ) = v(η) scales to -v ′′ + 1 4 ζ 2 v = ν + 1 2 v
Fundamental solutions express as parabolic cylinder functions D ν , entire in C. The systems D ν (±ζ), D -ν-1 (±iζ) are fundamental solutions for any choice of ±. Integral representations give asymptotic solutions of (P 0 -νh)u(η) = 0 by stationary phase for real ν, We apply asymptotic stationary phase to AD j , j ∈ {ν, -ν -1}. With h ′ = β 2 h as a "rescaled" Planck constant, we get:

E ′ 2 1 = 2β 2 F (β -2 E 2 1 , β, h) = 2β 2 (ν + 1)h. D ν ε(h/2) -1/2 η = Γ(ν+1) -2iπ √ h h E 2 /4h (0 + ) ∞ exp iΦ ν ε (s; η)/h ds D -ν-1 iε(h/2) -1/2 η = Γ(-ν) 2iπ h -E 2 /4h (0 + ) ∞ exp iΦ -ν-1 ε (s; η)/h ds s with ε = ±1, E = 2(ν + 1)h,
Proposition 3: In Fourier representation, the image K a h (E) = Ker h (P a (-hD ξ , ξ) -E) of ι a is a 2-D vector space spanned by the spinors U j ε,ω = ϕ 1 ϕ 2 j ε,ω , (j, ε, ω) ∈ {ν, -ν -1} × {-1, 1} 2 , of the form: U ν ε,ω = C ν h ′ θω=± θω(ξ 1 ) e iφ/2 (ξ 2 -µ-E) -1/2 X ν ε,ω (ξ 2 -µ-E) 1/2 | a ν ε,ω | exp[i(Φ ν ε,ω + h ′ R ν ω )/h ′ ] + O(h ′ ) U -ν-1 ε,ω = C -ν-1 h ′ θω=± θω(ξ 1 ) ε sgn(θ ω ) e iφ/2 (ξ 2 -µ-E) -1/2 X -ν-1 ε,ω (ξ 2 -µ-E) 1/2 | a -ν-1 ε,ω | exp[i(Φ -ν-1 ε,ω + h ′ R -ν-1 ω )/h ′ ] + O(h ′ )
Here θ ω (ξ 1 ) is a critical point (from stationary phase), Φ j ε,ω + h ′ R j ω ) the h ′ -dependent phase functions, and X j ε,ω , | a j ε,ω | some positive amplitudes. Spinors U j ε,ω verify the symmetry † U j -ε,-ω = U j ε,ω for the "local time" reversal operator † u(ξ 1 ) = u(-ξ 1 ), and the constants

C j h ′ (from Whittaker normalization of D ν , D -ν-1 ) are related by C ν h ′ C -ν-1 h ′ = (2 √ h ′ ) 3 π 2 sin πν -1 .

Normalization

a) The microlocal Wronskian.

We extend to BdG Hamiltonian the classical "positive commutator method" using conservation of some quantity called a "quantum flux' ( [START_REF] Sjöstrand | Density of states oscillations for magnetic Schrödinger operators[END_REF], [9], [START_REF] Rouleux | Tunneling effects for h-Pseudodifferential Operators, Feshbach resonances and the Born-Oppenheimer approximation[END_REF], [10]).

Definition 4: Let P be (formally) self-adjoint, and U a , V a ∈ K h (E) be supported on Λ > E . We call the sesquilinear form

W a ρ (U a , V a ) = i h [P, χ a ] ρ U a |V a = i h [P, χ a ] ρ U a | V a the microlocal Wronskian of (U a , V a ) in ω a ρ .
Here i h [P, χ a ] ρ denotes the part of the commutator supported microlocally on ω a ρ (a small neighborhood of supp[P, χ a ] ∩ Λ E near ρ).

A crucial property of the microlocal Wronskian is to be invariant by Fourier transformation:

W a ρ (U a , V a ) = W a ρ ( U a , V a ). The relation W a + (U a , V a ) + W a -(U a , V a )
= 0 doesn't readily follow as in the scalar case [10], the microlocal solutions being neither smooth in spatial of Fourier representation near the branching point, but from a careful inspection, involving also formal calculus. This is used essentially in Propositions 5 and 8 below. Choosing ε, ω such that εω = 1 we define a Lorenzian metric W ρ on the space of microlocal solutions near a. In the basis U j ε,ω , j ∈ {ν, -ν -1} we have, up to a constant factor:

ρW ρ = |C ν h ′ | 2 O(h ′ ) C ν h ′ C -ν-1 h ′ exp[-iπE ′ 1 2 /4h ′ ] 1 + O(h ′ ) C ν h ′ C -ν-1 h ′ exp[iπE ′ 1 2 /4h ′ ] 1 + O(h ′ ) |C -ν-1 h ′ | 2 O(h ′ )
Changing Whittaker normalization for the D ν , D -ν-1 functions, and the microlocal solutions by some constant phase factors, we can reduce to ρW ρ = 0 1 1 0 + O(h ′ ), and prove:

Proposition 5: Under PT symmetry above the microlocal Wronskians W a ρ endow K a h (E) (mod h ′ ) with a Lorenzian form W a = 1 2 (W a + -W a -).
The same holds at a ′ , and the corresponding structures on

K a h × K a * h and K a ′ h × K a ′ * h
are anti-isomorphic. The group of automorphisms preserving W a and W a ′ mod O(h ′ ) is therefore U(1,1).

Spinors in the spatial representation

We compute U a,j ε,ω , U a ′ ,j ε,ω in spatial representation, then extend along the branches ρ = ±1 of Λ > E with WKB solutions.

a) Spinors near the branching points.

Near a, a ′ we apply inverse h-Fourier transform and get:

Proposition 6: Up to a constant phase factor

U ν ε,ω (x, h) = 2ωβξ E e ixξ E /h ρ=± e iφ/2 (ξ 2 -µ-E) -1/2 X ν ε,ω (ξ 2 -µ-E) 1/2 |a ν ε,ω | θ 1 =θω(ξ 1 ),ξ 1 =ξ ρ ω (x) × L ρ ω (x) i -1/2 exp[i Ψ ν,ρ ε,ω (x) + h ′ R ν,ρ ε,ω (x) /h ′ ](1 + O(h ′ )) U -ν-1 ε,ω (x, h) = 2ωβξ E e ixξ E /h ρ=± ε sgn(θ 1 ) e iφ/2 (ξ 2 -µ-E) -1/2 X -ν-1 ε,ω (ξ 2 -µ-E) 1/2 | a -ν-1 ε,ω | θ 1 =θω(ξ 1 ),ξ 1 =ξ ρ ω (x) × L ρ ω (x) i -1/2 exp[i Ψ ν,ρ ε,ω (x) + h ′ R ν,ρ ε,ω (x) /h ′ ](1 + O(h ′ ))
Here L ρ ω (x) -1/2 is a real density (singular at x = x E ), and ρ labels the branch of the Lagrangian manifold. The phases Ψ j,ρ ε,ω (x) + h ′ R j,ρ ε,ω (x), j ∈ {ν, -ν -1} differ only by a constant.

b) WKB spinors away from the branching points

The Lagrangian manifold Λ > E consists of 2 branches Λ >,ρ E (or simply ρ) ρ = ±1 so that ρ = +1 belongs to the electronic state (ξ 1 > 0 in the local coordinates near a above), resp. ρ = -1 to the hole state (ξ 1 < 0). These states mix up when ∆(x) = 0, but we can sort them out semiclassically, outside a, a ′ . Call the vector space of C 2 generated by 1 0 the space of (pure) electronic states, or electronic spinors, and this by 0 1 the space of (pure) hole states, or hole spinors.

The principal symbol P(x, ξ) has eigenvalues λ ρ = ρλ(x, ξ) = ρ ∆(x) 2 + (ξ 2 -µ(x)) 2 . By diagonalizing, we obtain a line bundle Λ ρ E with fiber Looking at the electronic state, we choose ρ = +1 so that λ ρ (x ρ , ξ ρ )-E = 0, while λ -ρ (x ρ , ξ ρ )-E is elliptic. and similarly when looking at the hole state.

Y ρ (x, ξ) = (∆ 2 + (-ξ 2 + µ + ρ ∆ 2 + (ξ 2 -µ) 2 ) 2 ) -1/2 ∆e iφ/2 -ξ 2 + µ + ρ ∆ 2 + (ξ 2 -µ) 2

Proposition 7

The microlocal kernel Ker h (P -E) on Λ >,ρ E is one-dimensional space spanned by W ρ (x, h) = e iSρ(x,h)/h w ρ 0 (x, h)Y ρ (x, ∂ x S ρ ) + O(h) = e iSρ(x,h)/h W ρ (x, h) where w ρ 0 (x)|dx| 1/2 is a smooth half-density. By the uniqueness property of WKB solutions along simple bicharacteristics, the h (or h ′ )-dependent phase function S ρ (x, h) should coincide, up to a constant (in a punctured neighborhood of a) with either one of Ψ j,ρ ε,ω (x) + h ′ R j,ρ ε,ω (x) above, j ∈ {ν, -ν -1}, and similarly for the half-densities.

Relative monodromy matrices

Now we look for connexion formulas. For each ε, ω, ρ = ±1, j ∈ {ν, -ν -1}, the normalized microlocal solutions U a ′ ,j,ρ ε,ω are related to the extension U a,k,ρ -ε,-ω,ext of the normalized microlocal solutions U a,k,ρ ε,ω along the bicharacteristics by a monodromy matrix

M a,a ′ ,ρ = d ρ 11 d ρ 12 d ρ 21 d ρ 22 ∈ U (1, 1)
(defined at least mod O(h ′ )) which we call a relative monodromy matrix. Since there is a pair of particles, the symmetry between the M a,a ′ ,ρ and M a ′ ,a,ρ is order 4; M a ′ ,a,ρ ∈ U (1, 1) is obtained by extending from the left to the right, and applying symmetry

ρM a ′ ,a,ρ = I(M a,a ′ ,ρ ) -1 I =, ρ = ±1 (7) 
where I denotes complex conjugation. We compute the coefficients d ij = d ρ ij . Considering behavior of U a ′ ,j,ρ e,ω in the classically forbidden region (according to scattering process e + → e - or e -→ e + ) we obtain

M a,a ′ ,ρ = 0 d ρ 12 d ρ 21 0 , d ρ 12 d ρ 21 = 1
Note that if we do not look too closely at the relevant complex branches, as is the case when computing BS, it makes no difference to choose instead M a,a ′ ,ρ = d ρ 11 0 0 d ρ

22

, with d 11 ρ d ρ 22 = 1. As in [START_REF] Sjöstrand | Density of states oscillations for magnetic Schrödinger operators[END_REF], [9], [START_REF] Rouleux | Tunneling effects for h-Pseudodifferential Operators, Feshbach resonances and the Born-Oppenheimer approximation[END_REF], [10], the argument consists now in extending microlocal solutions obtained above from a to a ′ , and computing the resulting semi-classical action. So take first U 1 equal to U a 1 = U ν,a ε,ω near a, extend it along to a ′ along the bicharacteristics ρ = ±1 by WKB. Evaluating on ρ near a ′ we find U a ′ ,ρ

1 = U ν,a,ρ ε,ω,ext = d ρ 21 U -ν-1,a ′ ,ρ ε,ω
. Similarly, take U 2 starting at a ′ and with

-ν -1 instead of ν, we get U a,ρ 1 = U -ν-1,a ′ ,ρ ε,ω,ext = e ρ 12 U ν,a,ρ ε,ω
, where e ρ 12 = ρ d ρ

21

-1 is the matrix element of M a ′ ,a,ρ given in [START_REF] Gérard | [END_REF]. We compute d ρ 21 in two different ways and compare the result. (1) Using time-reversal and PT symmetries in the microlocal Wronskians, we get

i h [P a ′ , χ a ′ ] ρ U 1 |U ν ε,ω = d ρ 21 i h [P a ′ , χ a ′ ] ρ U -ν-1 ε,ω |U ν ε,ω = = d ρ 21 W a ′ ρ U -ν-1 ε,ω , U ν ε,ω = d ρ 21 W a ′ ρ U -ν-1 ε,ω , U ν ε,ω = = -d ρ 21 W a ρ U -ν-1 -ε,-ω , U ν -ε,-ω = -d ρ 21 W a ρ U ν -ε,-ω , U -ν-1 -ε,-ω = -d ρ
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(2) Using the extensions described in Proposition 7. Near a ′ we have

U ρ 1,ext = e iφ/2 W ρ (x, h) = d ρ 21 U -ν-1,a ′ ,ρ ε,ω
(by solving transport equation along ρ the amplitude picks up the phase factor e iφ/2 ), so we need to compute

i h [P a ′ , χ a ′ ] ρ W ρ (x, h)|U ν ε,ω . The amplitude W ρ (x, h) is actually defined up to a real, constant factor C ρ . Proposition 8: Let Ψ ν,a ′ ,ρ ε,ω (x) = x ξ E + (2 ξ E ) 3 α Ψ ν,a ′ ,ρ ε,ω (x). We have i h [P a ′ , χ a ′ ] ρ W ρ |U ν,a ′ ,ρ ε,ω = 2 C ρ e iπ/4 exp i S ρ (x; h)/h β(x, h) (χ a ′ 1 ) ′ (x) dx (8) 
where the amplitude β(x, h), real mod O(h), is computed from the WKB solutions in Proposition 7, and

S ρ (x, h) = S ρ (x; h) -xξ E + Ψ ν,a ′ ,ρ) ε,ω (x) -h R ν -ω θ -ω (ξ ρ -ω (-x)) = (2 ξ E ) 3 α
Ψ ν,a,ρ -ε,-ω (x 0 ) -x 0 -x 0 η ρ (y; h) dy + h R ν -ω θ -ω (0) Moreover, β(x, h) is also independent of x, so that, comparing the former expression (1) and ( 8) for a suitable choice of C ρ , we get d ρ 21 = -e iτ ρ (h)/h (χ a ′ 1 ) ′ (x) dx = e iτ ρ (h)/h (9)

Here τ ρ (h) = h φ 2 + h π 4 -

x 0 -x 0 η ρ (y; h) dy + Const., where Const. is evaluated at the boundaries x = ±x E , and depends only on E ′ 1 . It will eventually disappear from the final formula, by adding to BS the contribution of the lower branch Λ <,ρ E . Note that x 0 -x 0 η ρ (y; h) dy, η ρ (y; h) being the derivative of the h ′ -depending phase function, is the semi-classical action.

Bohr-Sommerfeld quantization rules

We set F j,a,ρ ε,ω = i h [P a , χ a ] ρ U j,a,ρ) ε,ω , and similarly with a ′ . The set {G j,♭ ε,ω = F j,♭,+ ε,ω -F j,♭,- ε,ω : j ∈ {ν, -ν -1}, ♭ ∈ {a, a ′ }} (or their h-Fourier transform) can be interpreted as a basis of the microlocal co-kernel of P near a, a ′ . Following [10], we introduce Gram matrix G ρ of vectors U ρ 1 and U ρ 2 in this basis, namely

G = U 1 | G -ν-1,a ε,ω U 2 | G -ν-1,a ε,ω U 1 | G ν,a ′ ε,ω Û2 | G ν,a ′ ε,ω
. Using symmetries we get

G = G ρ = 2 1 e ρ 12 -d ρ 21 -1
The condition det(G (ρ) ) = 0 means that U 1 is colinear to U 2 , i.e. there is a global section of Ker h (P -E). Recall e ρ 12 = ρ d ρ
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-1 ; for ρ = +1 (electronic state) we get Imd + 21 = 0, that is sin τ (+) (h) h = 0. We eventually obtain BS by "surgery": namely (ignoring tunneling) we cut and paste the half-bicharacteristic Λ >,+ E in the upper-half plane ξ > 0 with its symmetric part Λ <,- E in ξ < 0 and add together the contributions. By symmetry, the constant term Const. in τ + (h) drops out, while the other terms h φ 2 + h π 4 -

x 0 -x 0 η ρ (y; h) dy add up, which yields BS for the electronic state. We argue similarly for the hole state. This eventually gives Theorem 1.

Figure 1 .

 1 Figure 1. Phase-space picture

  see[START_REF] Whittaker | A Course of Modern Analysis[END_REF]. This normalization is called Whittaker normalization. Classically forbidden regions |η| > E lie on Stokes lines, classically allowed region |η| < E in between, and 3 Stokes lines stem from each "turning point" η = ±E.

d) Microlocal solutions.
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