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Abstract

The F-measure is a classification performance
measure, especially suited when dealing with
imbalanced datasets, which provides a com-
promise between the precision and the recall
of a classifier. As this measure is non convex
and non linear, it is often indirectly optimized
using cost-sensitive learning (that affects dif-
ferent costs to false positives and false nega-
tives). In this article, we derive theoretical
guarantees that give tight bounds on the best
F-measure that can be obtained from cost-
sensitive learning. We also give an original
geometric interpretation of the bounds that
serves as an inspiration for CONE, a new al-
gorithm to optimize for the F-measure. Using
10 datasets exhibiting varied class imbalance,
we illustrate that our bounds are much tighter
than previous work and show that CONE
learns models with either superior F-measures
than existing methods or comparable but in
fewer iterations.

1 Introduction

The F-measure (van Rijsbergen, 1974) is a performance
measure used in classification to evaluate the ability of
a classifier to predict the labels of new instances with
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a good recall and a good precision (as an harmonic
mean of these two measures). It is the most commonly
used measure in imbalanced settings where using the
accuracy of the classifier would greatly favor the ma-
jority class (Chandola et al., 2009; Lopez et al., 2013).
This measure is parameterized by a parameter � that
controls the relative importance of the precision and
the recall. For � < 1 (resp. � > 1), more importance
is given to the precision (resp. recall), with � = 1,
they are considered equally important. The F-measure
can be expressed in terms of the true positive rate
and true negative rate of the model. These rates are
count-based measures which makes the F-measure, in
addition to being non convex, unsuitable for direct
optimization (Narasimhan et al., 2015a).

Several methods have been studied to solve the F�-
measure optimization problem. They can roughly be
separated into two categories: Decision Theoretic Ap-

proaches (DTA) (Dembczyński et al., 2017) which tries
to find the classifier that maximizes the expectation of
the F-measure. More precisely, these methods usually
fit a probabilistic model during training followed by
an inference procedure at prediction time (Decubber
et al., 2018). The probabilistic model can be learned by
optimizing a “simpler” surrogate function (e.g., (Dem-
bczynski et al., 2011; Jansche, 2005; Ye et al., 2012;
P.M. Chinta and Murty, 2013)). The second cate-
gory consists of Empirical Utility Maximization (EUM)

methods that learn multiple accurate models with differ-
ent parameters and keep the model which maximizes
the F-measure (Busa-Fekete et al., 2015; Joachims,
2005; Musicant et al., 2003; Parambath et al., 2014;
Zhao et al., 2013; Narasimhan et al., 2015b). In this
second category, the parameters can be the different
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classification thresholds for probabilistic models (Busa-
Fekete et al., 2015; Joachims, 2005; Zhao et al., 2013;
Narasimhan et al., 2015b) or the costs on the clas-
sification errors for cost-sensitive methods (Musicant
et al., 2003; Parambath et al., 2014; Koyejo et al., 2014).
EUM methods focus on estimation on a possibly infi-
nite training set while DTA approaches are concerned
with generalization performance (Dembczyński et al.,
2017). Ye et al. (2012) shows that both categories
of methods give asymptotically the same results and
propose heuristics to decide on the category to use
depending on the context.

The work presented in this paper falls into the EUM

based methods within a cost-sensitive classification ap-
proach. Indeed, by taking into account some per-class
misclassification-costs, cost-sensitive learning aims at
dealing with problems induced by class-imbalanced
datasets. One of the few recent papers addressing the
F-measure optimization, from a theoretical point of
view, (see also (Busa-Fekete et al., 2015; Zhao et al.,
2013; Koyejo et al., 2014; Narasimhan et al., 2015b)) is
the work from (Parambath et al., 2014) . The authors
propose a grid-based approach to find the optimal
costs for which a cost-sensitive classifier would give
the best F-measure. They theoretically prove that,
with a sufficiently precise grid, one can be arbitrarily
close to the optimal F-measure. However, this method
relies on a relatively loose result which imposes to
parse the whole grid leading an unnecessary compu-
tational burden. The methods proposed by Koyejo
et al. (2014) and by Narasimhan et al. (2015b) achieve
good performances with a limited time budget using
a cost-sensitive approach. They roughly consist of fit-
ting a probabilistic model then using a threshold in
order to optimize the F-measure. In the first cases the
threshold is tuned on a validation set while an itera-
tive process based on the bisection algorithm (Boyd
and Vandenberghe, 2004). However we will see that,
despite their simplicity (and the theoretical guarantees
provided), it is possible to achieve higher performance
by training (a few) number of models. Indeed tuning a
model is not enough and we need to learn a different
hyperplane to take the costs on each class into account.
In this article, we propose a novel tighter theoretical
result for cost-sensitive-based algorithms which allows
us to derive a new efficient algorithm for F-measure
optimization. Our contributions can be summarized as
follows:

• we demonstrate tight theoretical guarantees on
the F-measure of classifiers obtained from cost-
sensitive learning;

• we give a geometric interpretation of the theoreti-
cal guarantees: they can be represented as unreach-
able regions (cones) in a 2D space where the x-axis

gives the value of a parameter t that controls the
relative costs of the considered classes, and the
y-axis gives the F-measure of the corresponding
cost-sensitive classifier;

• going beyond traditional asymptotic analysis, we
study the actual behavior of our bounds, on real
datasets, showing it is much tighter than previous
existing results;

• inspired by our bounds and their interpretation,
we introduce an algorithm to explore the space
of costs: our experiments show the relevance of
(i) using our algorithm compared to other base-
lines (such as Parambath et al. (2014)), and (ii)
retraining the model iteratively compared to the
previously described methods (Koyejo et al. (2014);
Narasimhan et al. (2015b)) that only tune an offset
or threshold.

In Section 2, we introduce the notations and present our
theoretical bound on the optimal F-measure based on a
cost-sensitive approach and the pseudo-linear property
of the F-measure. We give a geometric interpretation
in Section 3 and introduce an algorithm that iteratively
selects classification costs that lead to a near-optimal
F-measure. Section 4 is devoted to the experiments on
real datasets. These experiments show the effective-
ness of the proposed bounds from a practical point of
view. Furthermore, they show that it is possible to
reach higher performance than a single model tuned
a posteriori or much faster than grid search methods.
We finally conclude in Section 5.

2 Theoretical Bounds

Because of limited space, the following proofs focus on
the binary classification case, the multi-class results
are given in the supplementary material.

2.1 Notations

Let X = (x1, ..., xm), where xi 2 Rn, be the set of
m training instances and Y = (y1, ..., ym) their cor-
responding label, where y 2 {0, 1}. Let H be a fam-
ily of hypothesis e.g., linear separators. For a given
hypothesis h 2 H learned from (X,Y), the errors
that h makes can be summarized in an error profile,
noted E(h), which, in the binary case can be defined
as (FN(h), FP(h)).

In a binary setting, P is the proportion of positive
instances and N the proportion of negative examples.
We also denote by e the vector (e1, e2) where e1 and
e2 are respectively the proportion of False Negative
(FN) examples and the proportion of False Positive
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(FP) ones as introduced previously. We then denote
as E(H) the set of all possible error profiles for a given
set of hypotheses: an error profile e = (e1, e2) is in
E(H) if there exists an hypothesis h 2 H that yields
proportions of e1 false negatives and e2 false positives.

We first recall the definition of F-measure for any value
of �:

F� =
(1 + �2)(P � FN)

(1 + �2)P � FN + FP
.

Using the above notations, the F-measure, F�(e), de-
fined in terms of the error profile e can be rewritten
as:

F�(e) =
(1 + �2)(P � e1)

(1 + �2)P � e1 + e2
.

2.2 Pseudo linearity property

The F-measure is a linear-fractional function, i.e. it can
be written as the ratio of two affine functions of the
error profile. We briefly recall how to show that the
F-measure is a pseudo-linear function, which is one of
the main property of linear-fractional function. This
property is the starting point of the demonstration of
our main theoretical result.
Definition 1. [from Rapcsák (1991)] A real differen-

tiable function f defined on an open convex set C ⇢ Rq

is said to be pseudo-convex if for every e, e0 2 C,

hrf(e), (e0 � e)i � 0 =) f(e0) � f(e),

where rf denotes the gradient of the function f .

The pseudo-convexity is used to define the pseudo-
linearity as we see below.
Definition 2. A function f defined on an open convex

C is said to be pseudo-linear if both f and �f are

pseudo-convex.

It is now easy to show that the F-measure has the
property of pseudo-linearity.
Proposition 1. The F-measure is a pseudo-linear

function.

Proof 1. See Supplementary Material.

Using this property, we are able, using a result from
Alberto and Laura (2009) to give a link between the
F-measure and a cost-sensitive function, i.e. a function
which assigns weights to each classes.
Proposition 2. [Theorem 3.3.9 from Alberto and

Laura (2009)] Let f be a non-constant differentiable

function on an open convex set C 2 Rq, q > 0. Then

f is pseudo-linear on C if and only if the following

properties hold:

(i) each of the level sets of f is the intersection of C

with a hyperplane;

(ii) rf(e) 6= 0 for all e 2 C.

Let us consider the set of error profile {e 2 R2
| (1 +

�2)P�e1+e2 > 0} (which is always the case in practice
with the F-measure). Then according to the previous
theorem, we rewrite (i) as follows:
It exists a : R ! R2 and b : R ! R such that

F (e) = t () ha(t), ei+ b(t) = 0,

which can be rewritten :

ha(F (e)), ei+ b(F (e)) = 0. (1)

For the F-measure, the functions a and b are defined
by a(t) = (1 + �2

� t, t) and b(t) = (1 + �2)P (t � 1).
The term ha(t), ei can be seen as a weighted error loss
function, and thus a(t) can be seen as the costs to
assign to each class.

2.3 Bounds on the optimal F-measure

We now show the importance of the function a and
of the parameter t to characterize the difference of
F-measure between any two error profiles.

Step 1: impact of a change in the error profile

We first derive the relation between the difference in F-
measure (F ) and the difference in error profile (e). We
thus consider e and e0 any two error profiles and denote
by F (e) and F (e0) the corresponding F-measures.

From the pseudo-linearity property (Eq. (1)), we have:

0 = ha(F (e)), ei+ b(F (e)), (2)
0 = ha(F (e0)), e0i+ b(F (e0)). (3)

We now develop ha(F (e0)), e� e0i and make the differ-
ence in F-measure appears in its expression.

ha(F (e0)), e� e0i = ha(F (e0)), ei+ b(F (e0)),

= ha(F (e0)), ei � ha(F (e)), ei

�b(F (e)) + b(F (e0)),

ha(F (e0)), e� e0i = (F (e0)� F (e))

·
�
(1 + �2)P1 � e1 + e2

�
,

where the first line uses the linearity of the inner prod-
uct and Eq. (3). The second uses Eq. (2) and the last
line uses the definition of a and b defined in Section 2.2.

Now we can rewrite the difference in F-measure as:

F (e0)� F (e) = �e · ha(F (e0)), e� e0i, (4)

where �e =
1

(1 + �2)P � e1 + e2
.
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Step 2: bounds on the F-measure F (e0)

We suppose that we have a value of t for which a
weighted-classifier with weights a(t) has been learned.
This classifier has an error profile e and a F-measure
F (e). We now imagine a hypothetical classifier that
is learned with weights a(t0), and we denote by e0 the
error profile of this classifier. For any value of t0, we
derive an upper bound on the on the F-measure F (e0)
that this hypothetical classifier can achieve.

Starting from the result obtained in Eq. 4, we have:

F (e0)� F (e)

= �e (ha(t
0), ei � ha(t0), e0i) ,

= �e (ha(t), ei+ ha(t0)� a(t), ei � ha(t0), e0i) ,

= �e (ha(t), ei+ (t0 � t)(e2 � e1)� ha(t0), e0i) ,

 �e (ha(t), e
0
i+ "1 � ha(t0), e0i+ (t0 � t)(e2 � e1)) ,

 �e ((t� t0)(e02 � e01) + "1 + (t0 � t)(e2 � e1)) ,

 �e"1 + �e · (e2 � e1 � (e02 � e01))(t
0
� t).

We have successively used the linearity of the in-
ner product, introduced a(t) and its definition in
the first three equalities. The first inequality uses
ha(t), ei  ha(t), ebesti+ "1, the sub-optimality of the
a(t)-weighted-error classifier. The value of "1 repre-
sents the excess of risk of the classifier which aim to
minimize the a(t)-weighted-error. More precisely, it
represents the difference of risk between our classifier
and the best classifier hbest (in terms on a(t)-weight-
error) in our set of hypothesis H. We denote by ebest
the error profile associated to hbest. This inequality
is still true if we replace ebest by any vector e0. We
finally apply the definition of a.
The quantities e02 and e01 remain unknown, but can be
tightly bounded. The result of this development can
be summarized into the following proposition (see the
supplementary material for the derivation of the values
of Mmin and Mmax).
Proposition 1. Let e be the error profile obtained

with a classifier trained with the parameter t and F (e)
its associated F-measure value. Let us also consider �e

as defined in Eq. (4) and "1 > 0 the sub-optimality of

our linear classifier. Then for all t0 < t:

F (e0)  F (e) + �e"1 + �e · (e2 � e1 �Mmax)(t
0
� t),

where Mmax = max
e00

2E(H)
s.t. F (e00)>F (e)

(e002 � e001)

and, for all t0 > t:

F (e0)  F (e) + �e"1 + �e · (e2 � e1 �Mmin)(t
0
� t),

where Mmin = min
e00

2E(H)
s.t. F (e00)>F (e)

(e002 � e001).

Figure 1: Geometric interpretation of both theoretical
results: our bound on the left and the one from Param-
bath et al. (2014) on the right. Note that our "cone" is
not symmetric compared to the other one. On the left,
the slanted values represent the slope of our cone on
each side : �e·(e2�e1�Mmax) and �e·(e2�e1�Mmin).

With this first result, we give an upper bound on the
reachable F-measures for any value of t0 given an ob-
served value of F-measure with the parameter t. A
geometric interpretation and an illustration of this re-
sult will be provided in Section 3.1.
Corollary 1. Given the same assumptions and consid-

ering t? the value of t for which the best cost-sensitive

learning algorithm leads to a model with an error profile

e? associated to the optimal F-measure, we have: if

t? < t:

F (e?)  F (e) +�e"1 +�e · (e2 � e1 �Mmax)(t
?
� t),

and, if t? > t:

F (e?)  F (e) + �e"1 + �e · (e2 � e1 �Mmin)(t
?
� t).

This means that if we learn a model with a parameter
t sufficiently close to t? then, we guarantee to reach
the optimal F-measure up to a constant equal to �e"1.

3 Geometric Interpretation, CONE

In this section we provide a geometric interpretation of
our main result, i.e. Proposition 1 of Section 2.3 and
compare it to the bound introduced in Parambath et al.
(2014). We also show how this theoretical result can be
an inspiration to create an algorithm, CONE, which
optimizes the F-measure by wrapping a cost-sensitive
learning algorithm.

3.1 Unreachable regions

In Fig. 1 (left), we give a geometric interpretation of
the result from Prop. 1 in the 2-D space where t is the
x-axis and F is the y-axis. In this (t, F ) graph, the
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previous near-optimality result yields an upper cone of
values where F (e?) cannot be found. More precisely,
when a model is learned for a given value of t (with
weights a(t)), we measure the value F (e) of this model
and, given these two numbers, we are able to draw an
upper cone which represents the unreachable values of
F-measure for any t0 on the x-axis. Furthermore, given
"1, the sub-optimality of the cost-sensitive learning
algorithm for the weighted-0/1 loss, �e"1 corresponds
to the vertical offset of this cone, which means that the
peak of the cone is located at (t, F (e) + �e"1).

Note that, even if the authors were focusing on asymp-
totic results, the bound given in Parambath et al. (2014)
can also be interpreted geometrically. Their bound is
given as follows:

F (e?)  F (e) + � · (2"0M + "1),

where M = max
e2E(H)

kek2, � = (�2P )�1 and "0 is a

gap parameter defined as the `2 norm of the difference
between a weighted function a and the optimal one
a?. In the supplementary material, we detail how this
bound can, in fact, be rewritten for all t, t0 2 [0, 1] as:

F (e0)  F (e) + �"1 + 4M�|t0 � t|.

This bound also defines a cone which is, this time,
symmetric with a slope equal to 4�M , as illustrated in
Fig. 1 (right). Using real datasets, Section 4.2 compares
the cones produced by this bound and ours.

3.2 A bound-inspired algorithm

We now leverage the geometric interpretation from
Section 3.1 to design CONE (Cone-based Optimal
Next Evaluation), an iterative algorithm that wraps a
cost-sensitive classification algorithm (e.g., a weighted
SVM). At every iteration i, CONE proposes a new
value ti to be used by the cost-sensitive algorithm.
CONE is illustrated in Fig. 3 and is explained below.

The choice of ti is based on the area Zi�1 which we de-
fine as the union of all cones obtained from previous it-
erations. ti is chosen to reduce the maximum value of F
for which (t, F ) is not in any previous cone. To achieve
this goal, CONE keeps track of a list L, initialized
with the values 0 and 1, and enriched at each iteration
with the values of t that have been considered. The se-
lection of ti is done as follows: (i) search the value topt
which maximizes Fmax(t) = max{F, (t, F ) /2 Zi�1}, (ii)
search for the greatest value tl in L such that tl < topt
and the smallest value tr such that topt < tr. (iii) take
the middle of the interval [tl, tr] as the return value,

i.e. ti =
1

2
(tl + tr).

The cost sensitive classification algorithm then provides
a new value of Fi obtained from cost ti, which is used to

Input: training set S,
Input: weighted-learning algorithm wLearn,
Input: stopping criterion shouldStop.

Initialize L = {0, 1}, Z0 = ? and i = 1.
repeat
ti = findNextT (Zi�1, L)
classifieri = wLearn(1 + �2

� ti, ti, S)
Fi = F�(classifieri, S)
Vi = unreachableZone(ti, Fi, S, classifieri)
Zi = Zi�1 [ Vi

L = L [ {ti}
i = i+ 1

until shouldStop(i, classifieri, Zi, L)

Figure 2: CONE Algorithm

Figure 3: Illustration of the CONE algorithm in the
middle of its fourth iteration. The colored areas repre-
sent the unreachable regions in the (t, F )-space.

refine the unreachable area as Zi = Zi�1[Vi, where Vi

is the cone corresponding to (ti, Fi). In the case where
there are multiple values of t that maximize Fmax(t)
(e.g., at the beginning, or when some range of t values
yield F = 1), CONE selects as topt the middle of the
widest range at the first stage (i) (see the white dotted
lines in Fig. 3).

From a practical perspective, Zi can be represented
as a combination of linear constraints or as a very
dense grid of binary values (a rasterization of [0, 1]⇥
[0, 1], the (t, F ) space). Both approaches can be made
efficient (and negligible compared to wLearn). The
stopping criterion shouldStop can take different forms
including a fixed number of iterations, a fixed time
budget, or some rules on the current best F-measure
and the current upper bound maxt Fmax(t). While the
algorithm we describe selects a single next value of
t to consider, it can easily be generalized to produce
multiple values of t to consider in parallel (to exploit
parallel computing of multiple instances of wLearn).

By always selecting a ti that is in the middle of two
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Table 1: Datasets details. The Imbalance Ratio (I.R.)
is the ratio between negative and positive instances (or
between sizes of the largest and smallest classes, in a
multiclass setting).

Dataset Instances Classes I.R. Features
Adult 48842 2 3.19 123

Abalone10 4174 2 5.64 10
SatImage 6400 2 9.3 36
IJCNN’01 141691 2 9.39 22
Abalone12 4174 2 15.18 10
PageBlocks 5500 2 22.7 10

Yeast 1484 2 27.48 8
Wine 1599 2 28.79 11
Letter 20000 26 1.32 16
News20 19928 20 1.12 62061

previously tested t-values, CONE performs a progres-
sive refinement of a grid. We can (and do, in practice)
restrict the values of t in the (t, F )-space that the algo-
rithm considers. More precisely, we can limit the depth
of the progressive refinement to an integer value k. In
this case, and CONE will do at most 2k � 1 iterations,
in order to cover all possible values on a grid with
stride 1

2k . However, as the procedure is informed by
the theoretical bounds, we will see in Section 4.3 that
CONE finds good models in its very first iterations.

4 Experiments

The experiments from this section study the tightness
of our bounds and behavior of the CONE algorithm.

4.1 Datasets and experimental settings

Table 1 describes the datasets we used for our experi-
ments, with their Imbalance Ratio (I.R.). The higher
this ratio, the more one should expect that optimizing
the classification accuracy is a bad choice in terms of
trade-off between precision and recall. The datasets
IJCNN’01 and News20 are obtained from LIBSVM1.
The other ones come from the UCI repository2.

We reproduce the experimental settings from
Parambath et al. (2014) which we describe here. For
datasets with no explicit test set, 1

4 of the data is
kept for testing. The training set is split at random,
keeping 1

3 as the validation set, used to select the
hyper-parameters using the F1-measure. The penalty
constraint of the classifiers (hyper-parameter C) is con-
sidered in {2�6, 2�5, ..., 26}. In the experiments t is
taken in [0, 1] as t belongs in the image space of the

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
2https://archive.ics.uci.edu/ml/datasets.html

F-measure. Thus the class weights a(t) belongs to
[0, 1 + �2]. The maximal number of training iterations
is set to 50000. Fitting the intercept of the classifiers
is achieved by adding a constant feature with value
1. We report test-time F1-measure averaged over 5
experiments.

We consider two different base cost-sensitive classifi-
cation algorithms (both implementations use LIBLIN-
EAR): linear SVM and Logistic Regression (LR) for
a fair comparison with Koyejo et al. (2014). We re-
port the performance of 5 different approaches: using
a single standard classification algorithm with hyper-
parameters tuned on the F-measure, the Grid wrap-
per proposed in Parambath et al. (2014) that regu-
larly splits the interval [0, 1] of t values, the algo-
rithm derived from our theoretical study, algorithm
2 from Narasimhan et al. (2015b) based on the bisec-
tion method, and finally, an additional baseline (with
the I.R. subscript), which consists in using a cost that
re-balances the classes (the cost c of a False Negative
is the proportion of positive examples in the dataset
and the cost of False Positive is 1� c).

About "1. The value of "1 (in all presented bounds)
represents the a(t)-weighted sub-optimality of the clas-
sifier, compared to the best one from the hypothesis
class. This sub-optimality cannot be computed effi-
ciently as it would require a learning algorithm that
produces optimal classifiers in terms of a(t)-weighted
error. We thus start by studying the impact of "1 in
Section 4.2 on our bounds. As the focus of this paper
is not on estimating "1, we then set "1 = 0 which is
computationnaly free, and shown by the experiment to
be a reasonable choice both in terms of bound analysis
(the bound is most of the time respected) and in terms
of overall results from the CONE algorithm.

4.2 Evaluation of the tightness of the bound

In this section, we aim at illustrating and showing the
tightness of our bounds. To do so, we consider the
(t, F ) values obtained by 19 weighted-SVM learned on
a regular grid of t values. For these same 19 models,
we consider the cones obtained from our bounds and
previous work (see Section 3.1 for details). Due to
space limitations, we show only two illustrations, with
two different datasets, but the supplementary material
contains similar illustrations for all datasets.

Impact of "1. Both our bounds and the one from
previous work are impacted by "1 which shows up
as an offset, multiplied by �e for our bounds, and
by � in previous work. As �e  �, our bounds are
less impacted by an increased "1. With the 19-SVM
setting, Fig. 4 shows the evolution of the maximum still-
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Table 2: Classification F-Measures for � = 1 with SVM and Logistic Regression algorithms. SVMG and LRT
G are

reproduced experiments of Parambath et al. (2014) and the subscript I.R. is used for the classifiers trained with a
cost depending on the Imbalance Ratio. The subscript B corresponds to the bisection algorithm presented by
Narasimhan et al. (2015b). LRT and LRT

I.R. are reproduced experiments of Koyejo et al. (2014). Finally the C

stands for our wrapper CONE and SVMT
C designed as a combination using the CONE + threshold. Reported

F-measure values are averaged over 5 experiments (standard deviation between brackets).

Dataset SVM SVMI.R. SVMG SVMC SVM
T
C LR

T
LR

T
I.R. LR

T
G LRB

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 66.4 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.6 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 31.8 (1.9) 30.8 (2.2) 30.7 (1.9) 30.7 (1.9) 31.6 (0.6)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 30.9 (2.0) 21.2 (11.1) 28.6 (1.9) 28.6 (1.9) 21.4 (4.6)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 62.6 (0.4) 59.4 (0.5) 56.5 (0.3) 56.5 (0.3) 59.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 16.3 (3.0) 15.5 (3.1) 17.0 (3.3) 17.0 (3.3) 17.7 (3.7)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 67.6 (4.0) 59.2 (8.1) 55.9 (6.4) 55.9 (6.4) 55.7 (5.7)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 35.4 (15.6) 37.4 (10.1) 39.9 (6.5) 27.6 (6.8) 27.6 (6.8)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 19.3 (7.9) 21.5 (3.7) 25.2 (4.5) 25.2 (4.5) 18.3 (7.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.3) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.5 (2.9) 49.6 (2.8) 50.4 (3.0) 48.8 (1.0) 48.2 (2.3) 49.1 (3.6) 47.0 (3.9)

Figure 4: Bounds on the F-measure as a function of
"1, the unknown sub-optimality of the SVM learning
algorithm. Results are shown on two datasets: Adult
(left) and Abalone12 (right).

achievable F-measure depending on the value of "1, with
a hard maximum at 1. The values of "1 are expressed
in number of points for an easier interpretation.

The bound from Parambath et al. (2014) gives loose
guarantees and the aggregate bound is most of the
time above 1. The values, before being clipped to 1
can for example start at F = 7 and end up at F = 40
(on Yeast, if plotted on the same range of "1 values).
This representation shows once again that our bounds
are very tight. On Abalone10 and Letter, where the
other bound starts below 1 (see supplementary), the
graph also confirms the fact that our bounds aref less
sensitive to the value of "1 (�e  �).

Visualizing unreachable zones. The grayed-out
areas in Fig. 5 are the unreachable zones. This figure
shows that the guarantees obtained with our bounds are
much more relevant than the ones from Parambath et al.
(2014). Indeed, it is only on two datasets (Abalone10
and Letter, see supplementary) that the previously

existing bound actually gives a maximum possible F-
measure that is below 1. Our bounds give unreachable
zones that go very close to the empirical points.

Looking at the cones with our tight bounds, we see that
sometimes a point is in the cone generated by another
point. This looks like a violation of our bounds but
it rather shows that "1 cannot be considered to be 0
in the current setting. Naturally, "1 6= 0 comes from
the fact that the weighted-SVM is not robust and not
optimal in terms of weighted-0/1 loss. Our intuition is
that the SVM is less and less optimal as the weights
become more extreme, such as when t gets closer to 0.

Bounds’ evolution across iterations. We now
study, with CONE, how the training performance
and the overall bound evolve as we add more models.
In CONE adding a model means doing one more iter-
ation, while with the grid approach Parambath et al.
(2014) it requires to re-learn all models (as all grid
locations change). Fig. 6 (and supplementary) illus-
trates that CONE tends to produce better models at
a lower cost. These figures also outline the fact that
our upper bound is tight and goes down quickly as we
add models.

4.3 Performance in F-measure at test time

Finally, we compare the performance of CONE
(SVMC), based on SVM algorithm against its com-
petitors: LRB for the method of Narasimhan et al.
(2015b), LRI.R. and LRT for Koyejo et al. (2014) and
SVMG/LRG for the method of Parambath et al. (2014).
We present the results of all methods in Tab. 2, giving
a budget of 19 models for relevant algorithms. Overall,
CONE performs at least as well as its competitors
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Figure 5: Unreachable region obtained from the same
19 (t, F ) points corresponding to learning weighted-
SVMs on a grid of t values. Cones are shown for the
Adult (left) and Abalone12 (right) datasets, and with
the bound from Parambath et al. (2014) (top) and with
our tighter bounds presented in Section 2.3 (bottom).

in average, and the very best results are obtained by
combining CONE with thresholding.

The baseline of using a simple SVM completely fails
on half of the datasets. The improved SVM which con-
sists in rebalancing the classes (SVMI.R.) still performs
worse than other approaches in average, and on most
datasets. Even with thresholding, the approaches that
learn a single model (LRT and LRT

I.R.) are still outper-
formed by the ones that learn multiple models with
different class-weights like ours (all subscripts C) and
the grid one (subscripts G). This last result shows that
it is insufficient to solely rely on tuning the threshold
of a single model.

Figure 6: Training performance of CONE versus
the grid approach from Parambath et al. (2014), to-
gether with their respective bounds (on Adult (left) and
Abalone12 (right)). We suppose "1 = 0, which explains
that we observe empirical values that are higher than
our upper bound (on Abalone12).

Figure 7: F-measure obtained on the test set for four
considered approaches on Adult (top) and Abalone12
(bottom) datasets, plotted as a function of the comput-
ing budget (number of weighted SVM to learn).

In average, both our approach and the grid approach
outperform all other considered approaches, including
the bisection algorithm LRB. We see that the results
of CONE are very similar to the grid approach SVMG.
However, looking at Fig. 7 at the bottom (but also in
supplementary), we see that the proposed method is
able to reach higher values with a limited number of
iterations, i.e. after training fewer models.

5 Conclusion

In this work, we have presented new bounds on
the F-measure based on a cost-sensitive classification
approach. These bounds have been shown to be
tighter than existing ones and less sensitive to the
sub-optimality of the learned classifier ("1). Further-
more, we have shown that our bounds are useful from
a practical point of view by deriving CONE, an algo-
rithm which iteratively selects class weights to reduce
the overall upper bound on the optimal F-measure.
Finally, CONE has been shown to perform at least as
well as its competitors on various datasets.
If this work focuses on the F-measure, it can be general-
ized to any other linear-fractional performance measure.
Our perspectives include estimating "1 (for example
using (Bousquet et al., 2004)), refining our framework
to improve the search space exploration or to adapt it
to SGD-based learning algorithms, and finally deriving
generalization guarantees.
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The goal of this document is to:

• detail the proof of the results provided in the main article,

• develop the multi-class extension,

• provide illustrations and results on all considered datasets,

• give numerical values used to plot the curves (for easier reproducibility).

For the sake of clarity, we will remind each statement before giving its proof. We also recall the
notations and the definitions that are used for our purpose.
In the body of the paper, the error profile of an hypothesis h as been defined as E(h) = (e1(h), e2(h)) =
(FN(h), FP (h)) . In the binary setting and using the previous notations, the F-Measure is defined
by:

F (e) =
(1 + �2)(P � e1)

(1 + �2)P � e1 + e2
. (1)

1 Main results of the article

In this section, we provide all the proofs of the main article but only in the binary setting.

1.1 Pseudo-linearity of F-Measure

We aim to prove the following proposition, which plays a key role to provide a the bound on the
F-measure.

Proposition 1. The F-measure, F , is a pseudo-linear function.

Proof. We need to show that both F and �F are pseudo-convex, i.e. that we have:

hrF (e), (e0 � e)i � 0 =) F (e0) � F (e). (2)

1



The gradient of the F-measure is defined by:

rF (e) = �
1 + �2

((1 + �2)P � e1 + e2)2

✓
�2P + e2
P � e1

◆
.

We now develop the left hand side of the implication (2):

hrF (e), (e0 � e)i � 0,

�
1 + �2

((1 + �2)P � e1 + e2)2
⇥
(�2P + e2)(e

0

1 � e1) + (P � e1)(e
0

2 � e2)
⇤
� 0,

so,

�(�2P + e2)(e
0

1 � e1)� (P � e1)(e
0

2 � e2) � 0,

��2P (e01 � e1)� e01e2 + e1e2 + P (e2 � e02) + e1e
0

2 � e1e2 � 0,

��2P (e01 � e1) + P (e2 � e02) + e1e
0

2 � e01e2 � 0,

��2Pe01 + �2Pe1 + Pe2 � Pe02 + e1e
0

2 � e01e2 � 0.

so

��2Pe01 + Pe2 � e01e2 � ��2Pe1 + Pe02 � e1e
0

2.

Now we add �P (e1 + e01) on both side of the inequality, so we have:

��2Pe01 + Pe2 � e01e2 � P (e1 + e01) � ��2Pe1 + Pe02 � e1e
0

2 ��P (e1 + e01),

�(1 + �2)Pe01 + Pe2 � e01e2 � Pe1 � �(1 + �2)Pe1 + Pe02 � e1e
0

2 � Pe01.

Then, we add e1e01 on both sides:

�(1 + �2)Pe01 + Pe2 � e01e2 � Pe1 + e1e
0

1 � �(1 + �2)Pe1 + Pe02 � e1e
0

2 � Pe01 + e1e
0

1,

�(1 + �2)Pe01 � (P � e01)e1 + (P � e01)e2 � �(1 + �2)Pe1 � (P � e1)e
0

1 + (P � e1)e
0

2.

Finally, by adding (1 + �2)P 2 on both sides of the inequality and factorizing with the terms
�(1 + �2)Pe01 on the left (respectively �(1 + �2)Pe1 on the right), we get:

(1 + �2)P (P � e01)� (P � e01)e1 + (P � e01)e2 � (1 + �2)P (P � e1)� (P � e1)e
0

1 + (P � e1)e
0

2,

(1 + �2)P (P � e01)� (P � e01)e1 + (P � e01)e2 � (1 + �2)P (P � e1)� (P � e1)e
0

1 + (P � e1)e
0

2,

(P � e01)((1 + �2)P � e1 + e2) � (P � e1)((1 + �2)Pe01 + e02),

(1 + �2)(P � e01)((1 + �2)P � e1 + e2) � (1 + �2)(P � e1)((1 + �2)Pe01 + e02),

(P � e01)

(1 + �2)P � e01 + e02
�

(P � e1)

(1 + �2)P � e1 + e2
,

(1 + �2)(P � e01)

(1 + �2)P � e01 + e02
�

(1 + �2)(P � e1)

(1 + �2)P � e1 + e2
,

F (e0) � F (e).

The proof is similar for �F .
We have shown that both F and �F are pseudo-convex so F is pseudo-linear.

We can now use this property to derive our bound. However, we have seen that the bound still
depends on to other parameters Mmin and Mmax that we should compute.
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1.2 Computation of the values of Mmin and Mmax.

We aim to show how we can solve the optimization problems that define Mmin and Mmax and show
how it can be reduced to a simple convex optimization problem where the set of constraints is a
convex polygon.

Computation of Mmax

Now, we would like to give an explicit value for Mmax. This value can be obtained by solving the
following optimization problem:

max
e02E(H)

e02 � e01 s.t. F�(e
0) > F�(e).

In the binary case, setting e = (e1, e2) and e0 = (e01, e
0

2). We can write F�(e0) > F�(e) as:

(1 + �2)(P � e01)

(1 + �2)P � e01 + e02
>

(1 + �2)(P � e1)

(1 + �2)P � e1 + e2
,

Now we develop and reduce these expressions.

(P � e01)[(1 + �2)P � e1 + e2] > (P � e1)[(1 + �2)P � e01 + e02]),

(1 + �2)P 2
� (1 + �2)Pe01 + (P � e01)(e2 � e1) > (1 + �2)P 2

� (1 + �2)Pe1 + (P � e1)(e
0

2 � e01),

(1 + �2)P (e1 � e01) + P (e2 � e1 + e01 � e02) > e2e
0

1 � e1e
0

2 + e01e1 � e1e
0

1.

Now, we set: e01 = e1 + ↵1 and e02 = e2 + ↵2. In other words, we study how much we have to change
e0 from e to solve our problem. We can then write:

�(1 + �2)P↵1 + P (↵1 � ↵2) > e2(e1 + ↵1)� e1(e2 + ↵2),

↵1(�(1 + �2)P + P � e2) + ↵2(�P + e1) > 0,

↵1(�
2P + e2) < �↵2(P � e1).

Thus, the optimization problem can be rewritten as:

max
↵

↵2 � ↵1,

s.t. ↵1 <
�↵2(P � e1)

�2P + e2
,

↵1 2 [�e1, P � e1],

↵2 2 [�e2, N � e2].

The optimization problem consists of maximizing a difference under a polygon set of constraints. In
the binary setting, the set of constraints can be represented as shown in Fig. 1 where the line D is
defined by the following equation:

↵1 =
�↵2(P � e1)

�2P + e2
. (3)
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Figure 1: Geometric representation of the optimization problem. The rectangle represents the
constraint (↵2,↵1) 2 [�e2, N � e2]⇥ [e1, P � e1]. The white area represents the set of value (↵2,↵1)
for which the inequality constraint holds. the four figures represent the four possibility for the
position of the line D on the rectangle. See the computation of Mmin to see that cases represented
by the two figures at the bottom never happen.

To maximize the difference, we should maximize the value of ↵2 and minimize the value of ↵1, i.e.
the solution is located in the bottom right region of each figure. A quick study of these figures shows
that the lowest value of ↵1 we can reach is �e1.

We shall now study where the line D intersects the rectangle to have the solution with respect to ↵2.
If D does not intersect the line of equation ↵1 = �e1 in the rectangle (i.e. it intersects with the right
side of the rectangle) then ↵2 = N � e2. Else, it intersects with the bottom face of the rectangle,

then we determine the value of ↵2 using Eq. (3) and ↵2 =
(�2P + e2)e1

P � e1
.

Finally, the solution of the optimization problem is:

(↵1,↵2) =

✓
�e1,min

✓
N � e2,

(�2P + e2)e1
P � e1

◆◆
,
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and the optimal value Mmax is defined by:

Mmax = e2 +min

✓
N � e2,

(�2P + e2)e1
P � e1

◆
.

Computation of Mmin

We now aim to solve the following optimization problem:

min
e02E(H)

e02 � e01 s.t. F�(e
0) > F�(e).

As it has been done and using the same notations as in the previous section, we can rewrite the
optimization problem as follows:

min
↵

↵2 � ↵1,

s.t. ↵1 <
�↵2(P � e1)

�2P + e2
,

↵1 2 [�e1, P � e1],

↵2 2 [�e2, N � e2].

The constraints remain unchanged. However, to minimize this difference, we have to maximize the
value of ↵1 and minimize the value of ↵2, i.e. we are interested in the upper left region of each
rectangles. In each cases represented in Fig 1, we see that the minimum of ↵2 is equal to �e2.

If we have a look at the two figures at the bottom of Fig. 1, we see that the optimal value of ↵1 is
equal to P � e1. However, this value is not in the image of the function of ↵2 defined by Eq (3). In

fact, according to Eq. (3), the image of ↵2 = �e2 is equal to
e2(P � e1)

�2P + e2
which is lower than P � e1.

So the two figures at the bottom represent cases that never happen and the intersection of D with
the rectangle of constraint is on left part of the rectangle.

Finally, the solution of the optimization problem is:

(↵1,↵2) =

✓
e2(P � e1)

�2P + e2
,�e2

◆
,

and the optimal value Mmin is defined by:

Mmin = �e1 �
e2(P � e1)

�2P + e2
.

Now that we have provided all the details to compute and plot our bound, it remains to explain how
to compute the bound from Parambath et al. (2014) with respect to any cost parameters t, t0 for a
fair comparison.
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1.3 Rewriting the bound of Parambath et al. (2014)

For the sake of clarity we restate the Proposition 5 of Parambath et al. (2014) for our purpose:

Proposition 2. Let t, t 2 [0, 1] and "1 � 0. Suppose that it exists � > 0 such that for all e, e0 2 E(H)
satisfying F (e0) > F (e), we have:

F (e0)� F (e) � �ha(t0), e� e0i. (4)

Furthermore, suppose that we have the two following conditions

(i) ka(t)� a(t0)k2  2|t� t0| (ii) ha(t), ei  min
e002E(H)

ha(t), e00i+ "1

Let us also set M = max
e002E(H)

ke00k2, then we have:

F (e0)  F (e) + �"1 + 4M�|t0 � t|.

According to the authors, the point (i) is a consequence of a of being Lipschitz continous with
Lipschtiz constant equal to 2. The point (ii) is just the expression of the sub-optimality of the
learned classifier.

Proof. For all e, ẽ 2 E(H) and t, t0 2 [0, 1], we have:

ha(t), ẽi = ha(t)� a(t0), ẽi+ ha(t0), ẽi,

 ha(t0), ẽi+ 2M |t0 � t|.

Where we have successively applied the Cauchy-Schwarz inequality and (i). Then:

min
e002E(H)

ha(t), e00i  min
e002E(H)

ha(t0), e00i+ 2M |t0 � t| = ha(t0), e0i+ 2M |t0 � t|, (5)

where e0 denote the error profile learned by the optimal classifier trained with the cost function a(t0)
and is such that F (e0) > F (e). Then, writing ha(t0), ei = ha(t0)� a(t), ei+ ha(t), ei and applying
the Cauchy-Schwarz inequality, we have:

ha(t0), ei  ha(t), ei+ 2M |t0 � t|,

 min
e002E(H)

ha(t), e00i+ "1 + 2M |t0 � t|,

 ha(t0), e0i+ "1 + 4M |t0 � t|,

where the second inequality comes from (ii) and the last inequality comes from Eq. (5). By plugging
this last inequality in inequality (4), we get the result.
Furthermore, the existence of the constant � has been proved by the authors and is equal to
(�2P )�1

Remark. This bound can be used in both binary and multi-class setting.
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2 The multi-class setting

For a given hypothesis h 2 H learned from X, the errors that h makes can be summarized in an
error profile defined as E(h) 2 R2L:

E(h) = (FN1(h), FP1(h), ..., FNL(h), FPL(h)) ,

where FNi(h) (resp. FPi(h)) is the proportion of False Negative (resp. False Positive) that h yields
for class i.
In a multi-class setting with L classes Pk, k = 1, ..., L denotes the proportion of examples in class k
and e = (e1, e2, ..., e2L�1, e2L) denotes the proportions of misclassified examples composing the error
profile.
The multi-class-micro F-measure, mcF (e) with L classes is defined by:

mcF (e) =
(1 + �2)(1� P1 �

PL
k=2 e2k�1)

(1 + �2)(1� P1)�
PL

k=2 e2k�1 + e1
.

In this section, we aim to derive all the results presented in the binary case in a multi-class setting.

2.1 Pseudo-linearity

Proposition 3. The multi-class-micro F-measure, mcF , is a pseudo-linear function with respect to
e.

Proof. As in the binary cases, we have to prove that both mc The gradient of the multi-class-micro
F-measure,mcF� , is defined by:

rmcF (e) =
�(1 + �2)

(1 + �2)(1� P1)�
PL

k=2 e2k�1 + e1

(
1� P1 �

PL
k=2 e2k�1 w.r.t. e1,

�2(1� P1) + e1 w.r.t. ek 8k = 2, ..., L.

The proof is similar to the proof of Proposition 1. The scheme is the same, we simply have to do the
following changes of notation in the proof:

e1  

LX

k=2

e2k�1,

e2  e1,

P  1� P1.

2.2 Derivation of the bound

As it was done in the binary case, we will use the property of pseudo-linearity of mcF (e) to bound
the difference of micro F-measure in terms of the parameters of our weighted function. First, we
introduce the definition of our weighted function a : R! R2L and express the difference of micro
F-measure of two error profiles in function of the two error profiles.
In this section, for the sake of clarity, we will set ê =

PL
k=2 e2k�1.
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First step: impact of a change in the error profile

Using the property of pseudo-linearity, we can show that it exists two functions a : R! R2L and
b : R! R defined by:

0 = ha(mcF (e)), ei+ b(mcF (e)),

where:

a(t) =

8
><

>:

1 + �2
� t for e2k�1, k = 2, ..., L

t for e1,
0 otherwise,

and b(t) = (t� 1)(1 + �2)(1� P1).

From these definitions we can write:

ha(mcF (e0)), e� e0i = ha(mcF (e0)), ei+ b(mcF (e0)),

= ha(mcF (e0))� a(mcF (e)), ei � b(mcF (e)) + b(mcF (e0)),

= (mcF (e0)�mcF (e))(1 + �2)(1� P1)

+ (mcF (e0)�mcF (e))e1 + (mcF (e)�mcF (e0))ê,

= (mcF (e0)�mcF (e))
�
(1 + �2)(1� P1)� ê+ e1

�
.

We can now write the difference of micro-F-measure as:

mcF (e0)�mcF (e) = �e · ha(t), e� e0i,

where:
�e =

1

(1 + �2)(1� P1)� ê+ e1
,

Second step: a bound on the micro F-measure mcF (e)

We suppose that we have a value of t for which a weighted-classifier with weights a(t) has been learned.
This classifier has an error profile e and a F-measure mcF (e). We now imagine a hypothetical
classifier that is learned with weights a(t0), and we denote by e0 the error profile of this classifier. For
any value of t0, we derive an upper bound on the on the F-measure mcF (e0) that this hypothetical
classifier can achieve.

mcF (e0)�mcF (e) = �e · ha(t
0), e� e0i,

= �e ·
�
ha(t0), ei � ha(t0), ei

�
,

= �e ·
�
ha(t0)� a(t), ei+ ha(t), ei � ha(t0), e0i

�
,

= �e ·
�
h(t0 � t, t� t0), ei+ ha(t), ei � ha(t0), e0i

�
,

= �e ·
�
(t0 � t)(e1 � ê) + ha(t), ei � ha(t0), e0i

�
,

 �e ·
�
ha(t), e0i+ "1 � ha(t

0), e0i+ (t0 � t)(e1 � ê)
�
,

 �e ·
�
(t0 � t)(e1 � ê) + "1 � (t0 � t)(e01 � ê0)

�
,

 �e"1 + �e · (e1 � ê� (e01 � ê0))(t0 � t).

In the previous development, we have used the linearity of the inner product and the definition of a.
The first inequality uses the sub-optimality of the learned classifier. We then use the definition of
the function a.
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As in the binary cases, the quantity (e01� ê0) remains unknown. However, we are looking for a vector
e0 such that mcF (e0) > mcF (e). So the last inequality becomes, if t0 < t:

mcF (e0)�mcF (e)  �e"1 + �e(e2 � e1 �Mmax)(t
0
� t),

and, if t0 > t:
mcF (e0)�mcF (e)  �e "1 + �e(e2 � e1 �Mmin)(t

0
� t).

2.3 Computation of Mmax and Mmin in a multiclass setting

To compute the value of both Mmax and Mmin, we use the same development as done in the binary
setting. We have to search how to modify the vector e in order to improve the F-Measure and to
maximize (or minimize) the difference: e01 �

PL
k=2 e

0

2k�1, where e0 = e + ↵ . As in the previous
section, ↵ is the solution of the following optimization problem:

max
↵

↵1 �

LX

k=2

↵2k�1,

s.t. ↵1 < �
LX

k=2

↵2k�1
�2(1� P1) + e1

1� P1 �
PL

k=2 e2k�1

↵1 2 [�e1, P1 � e1] ,

↵2k�1 2 [�e2k�1, P2k�1 � e2k�1] , 8k = 2, ..., L.

Then we add the quantity e1 �
PL

k=2 e2k�1 to this result to have the value Mmax.
Similarly, we solve the following optimization problem:

min
↵

↵1 �

LX

k=2

↵2k�1,

s.t. ↵1 < �
LX

k=2

↵2k�1
�2(1� P1) + e1

1� P1 �
PL

k=2 e2k�1

↵1 2 [�e1, P1 � e1] ,

↵2k�1 2 [�e2k�1, P2k�1 � e2k�1] , 8k = 2, ..., L.

Then we add the quantity e1 �
PL

k=2 e2k�1 to this result to have the value Mmin.

3 Extended Experiments

This section is dedicated to the experiments. We provide all graphs and tables we were not able to
give in the main paper and for all datasets.

3.1 Illustrations of unreachable regions

In this section we provide the unreachable regions (see Fig. 2) of both presented bounds, our vs. the
one obtained from Parambath et al. (2014). As it was noticed in the main paper, our result gives
a tighter bound on the optimal reachable F-measure. Moreover, we see that the more the data is
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imbalanced, the tightest is our bound.
The fact that some points lie in the unreachable regions is explained by our setting. Indeed, we
recall that we made the assumption that "1 = 0, i.e. we suppose that learned classifier is the optimal
one, in terms of 0� 1 loss, but it is not the case in practice.
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(a) Adult (b) Abalone10

(c) Satimage (d) IJCNN

(e) Abalone12 (f) Pageblocks

(g) Yeast (h) Wine

(i) Letter (j) News20

Figure 2: Unreachable regions obtained from the same 19 (t1, Fi) points corresponding to learning
weighted SVM on a grid of t values. Cones are shown for all datasets. The bound from Parambath
et al. (2014) is represented on the left and our bound on the right.
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3.2 Theoretical bound versus "1

In this section we compare our bound with the one from Parambath et al. (2014) with respect to "1.
The graphics presented in Fig. 3 show that the bound from Parambath et al. (2014) is uninformative
since the value of the best reachable F-measure is always equal to 1 except on Abalone10 dataset.
We see that our bound increase mostly linearly with "1. the evolution is not exactly linear because
the value of �e depends on the error profile, so it depends on the value of the parameter t in our cost
function a. Note that the best classifier reaches a best F-measure in some cases (on Letter dataset
for instance) which emphasize the need to look for an estimation of "1.

Figure 3: Bounds on the F-measure as a function of "1, the unknown sub-optimality of the SVM
learning algorithm. Results are given on all datasets.
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3.3 Evolution of Bounds vs. iterations/grid size

(a) Adult (b) Abalone10 (c) Satimage

(d) IJCNN (e) Abalone12 (f) Pageblocks

(g) Yeast (h) Wine

(i) Letter (j) News20

Figure 4: Comparison of our bound and the one from Parambath et al. (2014) with respect to
the number of iteration/ the size of the grid. We also represent the evolution of both associated
algorithms.
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3.4 Test-time results and result tables of results

For the sake of clarity, only a small number of algorithms have been chosen to be represented
graphically in Fig. 5.

Figure 5: F-measure value with respect to the number of iterations or the size of the grid of four
different algorithms, all of them are based on SVM.
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To complete the results given in the main article, we provide two tables below. Table 1 gives the
value of the F-measure for all experiments with SVM or Logisitic Regression based algorithms.
Because we compare our method to some which uses a threshold to predict the class of an example
(Narasimhan et al., 2015; Koyejo et al., 2014), we also provide a thresholded version of all algorithms
in Table 2.

Table 1: Classification F-Measure for � = 1 with SVM algorithm. SVMG are reproduced from
(Parambath et al., 2014) and the subscript I.R. is used for the classifiers trained with a cost depending
on the Imbalance Ratio. The subscript B corresponds to the bisection algorithm presented in
(Narasimhan et al., 2015). Finally the C stand for our wrapper CONE. The presented values are
obtained by taking the mean F-Measure over 5 experiments (standard deviation between brackets).

Dataset SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.7 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.2 (0.2) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 18.4 (2.3)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.8 (8.2) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.5 (2.9) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.2) 48.8 (3.2)

Table 2: Classification F-Measure for � = 1 with thresholded SVM algorithm. SVMG are
reproduced from (Parambath et al., 2014) and the subscript I.R. is used for the classifiers trained with
a cost depending on the Imbalance Ratio. The subscript B corresponds to the bisection algorithm
presented in (Narasimhan et al., 2015). Finally the C stand for our wrapper CONE. The presented
values are obtained by taking the mean F-Measure over 5 experiments (standard deviation between
brackets).

Dataset SVM SVMI.R. SVMG SVMC LR LRI.R. LRG LRC

Adult 65.6 (0.3) 66.1 (0.2) 66.4 (0.2) 66.4 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 27.8 (1.2) 30.7 (2.0) 31.9 (0.6) 31.8 (1.9) 30.8 (2.2) 30.7 (1.9) 30.7 (1.9) 30.8 (2.1)

Satimage 26.7 (4.9) 29.2 (2.6) 31.6 (1.7) 30.9 (2.0) 21.2 (11.1) 28.6 (1.9) 25.3 (12.7) 25.6 (12.8)

IJCNN 63.2 (0.6) 57.4 (0.3) 62.4 (0.5) 62.6 (0.4) 59.4 (0.5) 56.5 (0.3) 59.3 (0.4) 59.3 (0.2)

Abalone12 10.2 (3.6) 16.6 (2.7) 14.5 (3.2) 16.3 (3.0) 15.5 (3.1) 17.0 (3.3) 15.5 (3.2) 16.2 (3.5)

Pageblocks 66.6 (4.3) 57.5 (6.6) 66.7 (5.2) 67.6 (4.0) 59.2 (8.1) 55.9 (6.4) 62.6 (7.6) 59.0 (7.8)

Yeast 36.2 (12.9) 27.2 (8.5) 38.6 (12.1) 37.4 (10.1) 39.9 (6.5) 27.6 (6.8) 39.3 (4.3) 37.9 (4.8)

Wine 11.0 (6.1) 24.7 (2.0) 14.2 (9.3) 19.3 (7.9) 21.5 (3.7) 25.2 (4.5) 18.6 (5.8) 22.4 (6.4)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 82.9 (0.2) 82.9 (0.2)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 90.6 (0.2) 90.6 (0.2)

Average 47.4 (3.5) 47.5 (2.6) 49.8 (3.7) 50.4 (3.0) 48.8 (3.6) 48.2 (2.6) 49.1 (3.6) 49.1 (3.8)

Finally, we give here exhaustive tabular results, giving test-time F-measure results obtained by
different methods when varying the budget (when meaningful) from 1 to 18 call to the weight
classifier learning algorithm to complete the previous graphs.
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Table 3: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 1 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 65.0 (0.4) 65.0 (0.4) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.1 (0.1) 66.1 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 24.4 (1.2) 24.4 (1.3)

Satimage 0.0 (0.0) 23.4 (4.3) 0.9 (1.9) 0.0 (0.0) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 3.5 (6.9) 3.5 (6.9)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.5) 61.6 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.3 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 0.0 (0.0) 0.0 (0.0)

Pageblocks 48.1 (5.8) 39.6 (4.7) 64.4 (2.9) 59.1 (3.8) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 55.3 (4.7) 54.5 (4.4)

Yeast 0.0 (0.0) 29.4 (2.9) 12.1 (10.6) 22.9 (15.7) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 24.9 (16.0) 24.4 (16.1)

Wine 0.0 (0.0) 15.6 (5.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 5.5 (10.9) 11.6 (10.8)

Letter 75.4 (0.7) 74.9 (0.8) 80.2 (0.3) 80.3 (0.3) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.6 (0.3) 82.6 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 90.9 (0.2) 90.9 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 37.5 (1.7) 38.0 (2.1) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 41.1 (4.1) 41.6 (4.0)

Table 4: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 2 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.2) 66.2 (0.3) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.6 (0.1) 66.2 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.6 (1.4) 30.7 (1.1) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.9 (1.7) 32.4 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 6.1 (12.2) 5.9 (11.8) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 6.2 (12.3) 6.1 (12.2)

IJCNN 44.5 (0.4) 53.3 (0.4) 60.7 (0.4) 61.6 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 56.8 (0.3) 58.3 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 2.8 (3.4) 13.3 (3.5)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.0 (7.6) 63.3 (4.1) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.7 (7.1) 58.3 (6.8)

Yeast 0.0 (0.0) 29.4 (2.9) 30.9 (17.2) 25.4 (17.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 27.8 (20.0) 33.0 (18.3)

Wine 0.0 (0.0) 15.6 (5.2) 0.0 (0.0) 11.7 (11.1) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 8.7 (11.2) 15.6 (6.7)

Letter 75.4 (0.7) 74.9 (0.8) 80.7 (0.5) 80.4 (0.5) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.8 (0.2)

News20 90.9 (0.1) 91.0 (0.2) 90.9 (0.2) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 43.3 (4.0) 43.6 (4.7) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 43.7 (5.6) 45.7 (5.0)

Table 5: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 3 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.1 (0.2) 66.2 (0.3) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.2 (0.1) 66.2 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 30.7 (1.1) 31.0 (1.4) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 32.5 (1.5) 31.3 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 5.9 (11.8) 20.2 (4.7) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 6.1 (12.1) 20.3 (5.1)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.5) 61.6 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.3 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 0.0 (0.0) 16.7 (2.7) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 14.2 (3.0) 16.6 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.5 (2.0) 63.3 (4.1) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 60.4 (6.4) 58.3 (6.8)

Yeast 0.0 (0.0) 29.4 (2.9) 32.6 (18.3) 37.8 (7.8) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 32.1 (11.9) 32.6 (12.0)

Wine 0.0 (0.0) 15.6 (5.2) 11.8 (11.1) 19.5 (5.1) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 17.5 (5.8) 20.0 (3.8)

Letter 75.4 (0.7) 74.9 (0.8) 80.5 (0.2) 80.4 (0.5) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.2)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.2) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 44.6 (4.5) 48.8 (2.7) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 46.1 (4.2) 47.7 (3.4)
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Table 6: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 4 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.0 (0.2) 66.2 (0.3) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.1) 66.2 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 31.0 (1.0) 31.0 (1.4) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 30.9 (1.7) 31.3 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 16.4 (9.5) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 17.0 (9.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.5 (0.4) 61.1 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 57.8 (0.4) 58.3 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.5 (4.0) 16.9 (4.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.6 (3.0) 17.6 (3.1)

Pageblocks 48.1 (5.8) 39.6 (4.7) 61.0 (6.0) 63.3 (4.1) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.1 (7.8) 58.4 (6.7)

Yeast 0.0 (0.0) 29.4 (2.9) 35.4 (8.7) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 31.1 (18.0) 32.5 (12.0)

Wine 0.0 (0.0) 15.6 (5.2) 11.5 (7.8) 19.5 (5.1) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 17.9 (2.8) 20.0 (3.8)

Letter 75.4 (0.7) 74.9 (0.8) 80.5 (0.3) 80.4 (0.5) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.7 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 47.1 (3.8) 48.9 (2.9) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 47.4 (4.4) 47.8 (3.4)

Table 7: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 5 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.3) 66.2 (0.2) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.6 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.6 (1.4) 31.7 (1.0) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.3 (0.7) 31.2 (2.3)

Satimage 0.0 (0.0) 23.4 (4.3) 16.4 (9.5) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 17.0 (9.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.4 (0.6) 61.1 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.3 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.5 (4.0) 16.5 (4.0) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.6 (3.0) 18.1 (2.6)

Pageblocks 48.1 (5.8) 39.6 (4.7) 67.7 (4.0) 62.1 (5.0) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 61.8 (7.3) 59.6 (7.3)

Yeast 0.0 (0.0) 29.4 (2.9) 31.8 (10.5) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 30.1 (17.2) 38.8 (8.5)

Wine 0.0 (0.0) 15.6 (5.2) 11.5 (7.8) 20.4 (5.6) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 17.9 (2.8) 21.2 (5.1)

Letter 75.4 (0.7) 74.9 (0.8) 80.5 (0.4) 80.4 (0.5) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.7 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 47.6 (3.9) 48.9 (3.0) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 47.4 (4.2) 48.8 (3.2)

Table 8: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 6 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.5 (0.1) 66.4 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.2) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 30.7 (1.1) 31.7 (1.0) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.6 (1.0) 31.4 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.1 (4.6) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 62.1 (0.5) 61.3 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.1 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.9 (2.9) 18.2 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 15.5 (6.2) 17.7 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 64.8 (3.1) 64.2 (4.6) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 60.6 (9.1) 59.5 (7.4)

Yeast 0.0 (0.0) 29.4 (2.9) 32.0 (10.4) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 33.0 (18.8) 38.8 (8.5)

Wine 0.0 (0.0) 15.6 (5.2) 19.4 (5.3) 19.0 (7.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 19.6 (5.1) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.5 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.2) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.1) 90.7 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 48.5 (2.9) 49.2 (3.0) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 47.8 (4.6) 48.7 (3.2)
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Table 9: Mean F-Measure over 5 experiments and limiting the number of iterations/grid steps
to 7 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.2 (0.1) 66.4 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 31.0 (1.0) 32.5 (1.0) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 32.2 (0.6) 31.4 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 20.2 (4.7) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.3 (5.0) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.5 (0.4) 61.5 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.1 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.9 (2.9) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.5 (3.4) 17.7 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.7 (2.6) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 61.3 (9.9) 59.9 (7.0)

Yeast 0.0 (0.0) 29.4 (2.9) 38.8 (7.0) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 32.7 (11.8) 38.9 (8.6)

Wine 0.0 (0.0) 15.6 (5.2) 19.5 (6.2) 19.0 (7.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.6 (0.1) 80.5 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.1) 90.7 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 49.2 (2.5) 49.2 (3.0) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.1 (3.6) 48.8 (3.2)

Table 10: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 8 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.6 (1.4) 32.6 (1.0) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 32.1 (0.8) 31.4 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 20.2 (4.7) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.3 (5.0) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.9 (0.7) 61.5 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.1 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.9 (2.9) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.5 (3.4) 18.1 (3.7)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.8 (4.3) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 60.0 (8.8) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 33.3 (12.2) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.4 (8.5) 38.9 (8.6)

Wine 0.0 (0.0) 15.6 (5.2) 19.5 (6.2) 22.4 (6.1) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.6 (0.4) 80.5 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.1) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 48.8 (3.3) 49.5 (2.9) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.6 (3.2) 48.8 (3.3)

Table 11: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 9 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 31.0 (1.0) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.5 (0.4) 31.4 (2.2)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.8 (4.9) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.5 (0.4) 61.5 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.1 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.7 (4.1) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 15.1 (5.9) 18.0 (3.6)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.4 (2.3) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.7 (8.3) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.3 (3.8) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 38.9 (10.9) 38.9 (8.6)

Wine 0.0 (0.0) 15.6 (5.2) 15.5 (6.0) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 20.7 (6.0) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.5 (0.5) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 48.7 (2.4) 49.5 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.7) 48.7 (3.3)
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Table 12: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 10 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.5 (0.1) 66.4 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.6 (1.4) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.8 (1.0) 31.1 (2.0)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.8 (4.9) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.9 (0.7) 61.5 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.1 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.7 (4.1) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 15.1 (5.9) 17.8 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.6 (4.1) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 61.3 (7.3) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 32.5 (10.4) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 38.9 (10.9) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 15.5 (6.0) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 20.7 (6.0) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.7 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 48.4 (3.3) 49.5 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.7 (3.7) 48.8 (3.3)

Table 13: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 11 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.9 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.2 (4.7) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.4 (0.5) 61.8 (0.5) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.3 (0.3) 58.1 (0.4)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.7 (4.1) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 17.8 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.5) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.6 (8.0) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.4 (7.1) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 38.7 (8.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 16.4 (5.9) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 20.5 (6.0) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.7 (0.3) 80.9 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.2) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.1)

Average 32.1 (0.7) 44.0 (2.3) 49.0 (2.8) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 49.0 (3.1) 48.7 (3.3)

Table 14: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 12 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 31.0 (1.0) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 32.0 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.3 (5.0) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.8 (0.4) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.9 (2.9) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.5 (3.4) 17.8 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 64.7 (3.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 61.5 (10.0) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.1 (7.6) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.9 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.3) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.1) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.1 (2.7) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.7 (3.5) 48.7 (3.3)
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Table 15: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 13 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.6 (1.4) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 32.3 (1.1) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.3 (5.0) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.9 (0.7) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.2 (0.2) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.9 (2.9) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.5 (3.4) 17.8 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.6 (3.1) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 60.2 (9.0) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 33.3 (12.2) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.9 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.3) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.0 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.1) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.0 (3.3) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.6 (3.4) 48.7 (3.3)

Table 16: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 14 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.5 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.4 (0.5) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.8 (4.9) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 15.1 (5.9) 17.8 (3.4)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.5 (4.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.8 (8.2) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.0 (4.4) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 38.2 (11.2) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 19.1 (6.9) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.9 (4.6) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.9 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.2) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.2 (2.8) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.5 (3.6) 48.7 (3.3)

Table 17: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 15 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.4 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 31.0 (1.0) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.9 (0.5) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.8 (0.4) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.2 (0.2) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 18.4 (2.3)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.7 (2.1) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.7 (8.3) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 39.0 (6.8) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 80.9 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.3 (2.7) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.2) 48.8 (3.2)
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Table 18: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 16 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.7 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.0 (0.4) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 18.4 (2.3)

Pageblocks 48.1 (5.8) 39.6 (4.7) 65.5 (4.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.8 (8.2) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.4 (3.0) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.2) 48.8 (3.2)

Table 19: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 17 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.7 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.2 (0.2) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 18.4 (2.3)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.8 (8.2) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.5 (2.9) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.2) 48.8 (3.2)

Table 20: Mean F-Measure over 5 experiments and limiting the number of iterations/grid
steps to 18 (standard deviation between brackets).

Datasets SVM SVMI.R. SVMG SVMC LR LRI.R. LRB LRG LRC

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 63.1 (0.1) 66.0 (0.1) 66.6 (0.1) 66.5 (0.1) 66.5 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 0.0 (0.0) 31.9 (1.4) 31.6 (0.6) 31.7 (0.7) 30.9 (1.9)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 0.5 (0.9) 24.2 (5.3) 21.4 (4.6) 20.7 (4.8) 20.5 (5.0)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 46.2 (0.3) 51.6 (0.3) 59.2 (0.3) 58.2 (0.2) 58.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 0.0 (0.0) 18.0 (3.5) 17.7 (3.7) 17.2 (3.1) 18.4 (2.3)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 48.6 (3.3) 42.4 (5.2) 55.7 (5.7) 62.8 (8.2) 59.4 (7.5)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 35.4 (15.6) 39.1 (10.1) 39.5 (9.3)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 0.0 (0.0) 14.6 (3.2) 18.3 (7.2) 18.7 (4.5) 21.1 (5.2)

Letter 75.4 (0.7) 74.9 (0.8) 80.8 (0.5) 81.0 (0.4) 82.9 (0.3) 82.9 (0.3) 74.9 (0.5) 82.9 (0.2) 82.9 (0.3)

News20 90.9 (0.1) 91.0 (0.2) 91.1 (0.1) 91.0 (0.1) 90.6 (0.1) 90.6 (0.1) 89.4 (0.2) 90.6 (0.2) 90.6 (0.2)

Average 32.1 (0.7) 44.0 (2.3) 49.5 (2.9) 49.6 (2.8) 33.4 (1.0) 45.1 (2.3) 47.0 (3.9) 48.8 (3.2) 48.8 (3.2)
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