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An electromagnetic reduced gyrofluid model for collisionless plasmas, accounting for
electron inertia, finite ion Larmor radius effects and Landau fluid closures for the electron
fluid is derived by means of an asymptotic expansion from a parent gyrofluid model. In
the absence of terms accounting for Landau damping, the model is shown to possess a
noncanonical Hamiltonian structure. The corresponding Casimir invariants are derived
and use is made thereof, in order to obtain a set of normal field variables, in terms of
which the Poisson bracket and the model equations take a remarkably simple form. The
inclusion of perpendicular temperature fluctuations generalizes previous Hamiltonian
reduced fluid models and, in particular, the presence of ion perpendicular gyrofluid
temperature fluctuations reflects into the presence of two new Lagrangian invariants
governing the ion dynamics. The model is applied, in the cold-ion limit, to investigate
numerically a magnetic reconnection problem. The Landau damping terms are shown
to reduce, by decreasing the electron temperature fluctuations, the linear reconnection
rate and to delay the nonlinear island growth. The saturated island width, on the other
hand, is independent on Landau damping. The fraction of magnetic energy converted
into perpendicular kinetic energy also appears to be unaffected by the Landau damping
terms, which, on the other hand, dissipate parallel kinetic energy as well as free energy
due to density and electron temperature fluctuations.

1. Introduction

Reduced fluid models are a frequently adopted tool for the description of various
phenomena in magnetized plasmas. In our context, reduced fluid models are those
which apply to plasmas in the presence of a magnetic field with an intense component
along one direction (strong guide field assumption) and are characterized by quadratic
nonlinearities and strong scale anisotropy. Over the years, a large number of such models
were derived, for instance for describing drift wave turbulence (Hasegawa & Mima 1978;
Hasegawa & Wakatani 1983; Camargo et al. 1996), magnetic reconnection (Schep et al.
1994; Grasso et al. 2001; Borgogno et al. 2005; Del Sarto et al. 2006; Muraglia et al. 2009;
Grasso & Tassi 2015), fundamental aspects of nonlinear plasma dynamics in a tokamak-
relevant ordering (Strauss 1976; Hazeltine et al. 1985, 1987), turbulence accounting for
magnetic fluctuations parallel to the guide field direction, as of interest for the solar wind
(Boldyrev et al. 2013; Schekochihin et al. 2009; Tassi et al. 2016), and ion temperature
gradient driven modes (Kim et al. 1993), only to mention a very few examples. A
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number of reduced gyrofluid models, obtained from the evolution equations of moments
of gyrokinetic distribution functions, were also derived in order to describe low-frequency
plasma phenomena (see, e.g. Snyder & Hammett (2001), Hammett et al. (1993), Dorland
& Hammett (1993), Brizard (1992), Beer & Hammett (1996), Scott (2010), Waelbroeck &
Tassi (2012), Keramidas Charidakos et al. (2015) and Waelbroeck et al. (2009)). Gyrofluid
models are indeed valid for phenomena with characteristic frequencies much smaller than
the characteristic ion cyclotron frequency. A main feature of gyrofluid models is their
accuracy in describing phenomena occurring on scales comparable with the ion thermal
gyroradius. This distinguishes gyrofluid models from finite Larmor radius fluid models,
which are those valid only on scales much larger than the ion thermal gyroradius (but
which, on the other hand, possess the advantage of being formulated directly in terms of
moments of particle distribution functions).

One of the main advantages of reduced fluid and gyrofluid models is their relatively
little cost, in terms of computational resources, when compared to kinetic or gyrokinetic
models. This becomes particularly evident in the case of numerical simulations where
three spatial coordinates are involved. Also, the recurrent form of the nonlinearities in
such models, characterized by a canonical Poisson bracket with two spatial coordinates
as canonically conjugate variables, makes such models amenable to some analytical treat-
ments which are often more complicated in more general, not reduced, fluid models. In
particular, for many such reduced fluid and gyrofluid models, a noncanonical Hamiltonian
structure was identifed (see, e.g. Tassi (2017) for a recent review), which allows, for
instance, for the identification of conservation laws associated with Casimir invariants
and the application of the Energy-Casimir method for stability analysis (see, e.g. Morrison
(1998) and Marsden & Ratiu (2002)). On the other hand, kinetic and gyrokinetic models
offer a more complete description of the plasma behavior, accounting also for wave-
particle interaction and generic (i.e. non-Maxwellian) equilibrium distribution functions.
In order to reduce the gap suffered in comparison with kinetic or gyrokinetic models, a
number of fluid and gyrofluid models were conceived, which retain kinetic effects, such
as Landau damping, at least at the level of the linear theory. Various ”Landau-fluid”
models (not all of them ”reduced” in the sense described above) were in particular derived
(see, e.g. Hammett & Perkins (1990), Dorland & Hammett (1993), Snyder & Hammett
(2001), Hammett et al. (1992), Mattor & Parker (1997), Mattor (1998), Passot & Sulem
(2004), Goswami et al. (2005) and Sulem & Passot (2015)). The main application for
such models was a more refined description of instabilities and turbulence in situations
relevant for tokamaks and space plasmas. Among the further phenomena, where the
application of Landau-fluid models can be relevant, is the investigation of kinetic effects
on magnetic reconnection in collisionless plasmas. Indeed, in recent years, the impact
on magnetic reconnection of closures taking into account Landau damping on a fluid
model was investigated, focusing mainly on ion dynamics, by means of five and ten-
moment fluid models (Wang et al. 2015; Ng et al. 2017). The importance of electron
Landau damping in collisionless reconnection driven by electron inertia, on the other
hand, was put in evidence by means of numerical simulations of a hybrid model treating
the electron population with a drift-kinetic description (Loureiro et al. 2013). In such
numerical simulations, dependence on only two spatial coordinates was assumed, whereas
the original hybrid model (Zocco & Schekochihin 2011) accounts for the dependence on
the three spatial coordinates. In situations where the two-dimensional approximation
is no longer valid, however, it is likely that reduced Landau-fluid models could offer a
valid complementary tool to kinetic descriptions. The purpose of this article is, in the
first place, to derive, by consistently following a prescribed ordering, a reduced Landau-
fluid model capable of describing magnetic reconnection driven by electron inertia. In
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its more general form, this reduced model accounts for a gyrofluid description of the
ion species and for anisotropies in the temperature fluctuations. Electron Larmor radius
effects, on the other hand, are neglected, which, together with the inclusion of electron
inertia effects, leads to a regime where the parameter βe, which is the ratio between the
electron equilibrium pressure and the magnetic pressure exerted by the guide field, is of
the order of the electron-to-ion mass ratio. Such low-βe regime, where Landau damping
is in general significant, may be valid for laboratory as well as solar corona applications
(Zocco & Schekochihin 2011). Clearly, when compared to more general fluid models
with kinetic effects such as those of Wang et al. (2015) and Ng et al. (2017), our reduced
model sacrifices the range of applicability, in favor of simplicity. A further property of the
model is that, in its non-dissipative limit (i.e. when Landau damping terms are absent),
it possesses a Hamiltonian structure. The starting point for the derivation of the reduced
Landau-gyrofluid model is a simplified version of the gyrofluid system described in Scott
(2010). This model retains electron inertia, which is a necessary ingredient for the type
of magnetic reconnection we intend to investigate. Also, the gyrofluid closures adopted
in this model are such that they guarantee energy conservation in the non-dissipative
limit. This property is desirable if one intends to derive a reduced model which is also
energy-conserving, a necessary condition for having a Hamiltonian structure.

In the second place, we intend to apply the model to numerical simulations of colli-
sionless reconnection triggered by a helically symmetric perturbation. Although this is
not a fully three-dimensional case yet, it provides a simple, although non-trivial, case
where the Landau damping terms present in the model can have an effect. Also, because
we focus on the role of electron Landau damping terms, for simplicity, the cold-ion limit
is considered in the simulations.

The paper is organized as follows. In Sec. 2 the reduced Landau-gyrofluid model
is derived as an asymptotic expansion from a parent gyrofluid model. In Sec. 3 it is
shown that the model, in its non-dissipative limit, possesses a noncanonical Hamiltonian
structure and the corresponding Casimir invariants are given. In Sec. 4 the results of
numerical simulations of magnetic reconnection in both the linear and nonlinear regime
are described. We conclude in Sec. 5.

2. Model equations

2.1. Parent gyrofluid model

As starting point for the derivation of the model we consider the following gyrofluid
system (Scott 2010), in normalized units, consisting of the evolution equations

∂Nα
∂t

+ [Γ1αϕ,Nα]− [Γ1αA‖, Uα] + [Γ2αϕ, T⊥α ]− [Γ2αA‖, Q⊥α ] +
∂Uα
∂z

= 0, (2.1)

∂

∂t

(
mα

mi
Uα + sgn(qα)Γ1αA‖

)
+

[
Γ1αϕ,

mα

mi
Uα + sgn(qα)Γ1αA‖

]
+ sgn(qα)[Γ2αϕ, Γ2αA‖]

+
mα

mi
[Γ2αϕ,Q⊥α ]− Tα

Te
[Γ1αA‖, Nα]− Tα

Te
[Γ1αA‖, T‖α ]− Tα

Te
[Γ2αA‖, T⊥α ]

+
∂

∂z

(
sgn(qα)Γ1αϕ+

Tα
Te
Nα +

Tα
Te
T‖α

)
= 0, (2.2)

∂T‖α
∂t

+ [Γ1αϕ, T‖α ]− 2[Γ1αA‖, Uα]− [Γ1αA‖, Q‖α ]− 2[Γ2αA‖, Q⊥α ] +
∂

∂z
(2Uα +Q‖α) = 0,

(2.3)
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∂T⊥α
∂t

+ [Γ1αϕ, T⊥α ] + [Γ2αϕ,Nα] + 2[Γ2αϕ, T⊥α ]− [Γ1αA‖, Q⊥α ]− [Γ2αA‖, Uα]

− 2[Γ2αA‖, Q⊥α ] +
∂Q⊥α
∂z

= 0, (2.4)

completed by the quasi-neutrality relation∑
α

(
sgn(qα)(Γ1αNα + Γ2αT⊥α) +

Te
Tα

(Γ0α − 1)ϕ

)
= 0, (2.5)

and by the parallel Ampère’s law

∇2
⊥A‖ = −βe

2

∑
α

sgn(qα)(Γ1αUα + Γ2αQ⊥α). (2.6)

The above system is formulated on a domain D = {(x, y, z) : −Lx 6 x 6 Lx,−Ly 6 y 6
Ly,−Lz 6 z 6 Lz} with Lx, Ly, Lz corresponding to normalized lengths. We assume
the presence of a strong and uniform component of the magnetic field along ẑ. The
transverse component of the magnetic field is indicated with ∇A‖× ẑ, with A‖ denoting
the fluctuations of the magnetic flux function, which are assumed to be small compared
to the amplitude of the guide field. Fluctuations of the magnetic field along ẑ, moreover,
are neglected. The symbol ∇2

⊥ ≡ ∂xx + ∂yy, also, indicates the perpendicular Laplacian
operator, where derivatives are taken only with respect to coordinates describing the
plane perpendicular to the guide field. Electrostatic potential fluctuations are indicated
with ϕ. The index α denotes the particle species, with α = e and α = i referring
to electrons and ions, respectively. The fields Nα, Uα, T‖α , T⊥α , Q‖α , Q⊥α are all
defined on D and denote the fluctuations of the gyrocenter density, fluid velocity along
the magnetic field, parallel and perpendicular temperature, parallel and perpendicular
heat flux, respectively. Note that, with respect to Scott (2010), we adopted a different
definition for the parallel heat flux fluctuations Q‖α which corresponds to the heat flux
fluctuations of Scott (2010) multiplied by a factor 2. The constants qα, mα and Tα,
on the other hand, indicate the charge, the mass of the particle and the equilibrium
temperature of the species α, respectively. We indicated with Γ0α , Γ1α and Γ2α the
gyroaverage operators, relative to the species α, which commonly appear in gyrofluid
models (Brizard 1992; Dorland & Hammett 1993; Hammett et al. 1993; Beer & Hammett
1996; Scott 2010). In Fourier space, assuming periodic boundary conditions along the y
and z directions, these are defined, in terms of dimensional quantities, as

Γ0α = I0 (bα) exp (−bα) , (2.7)

Γ1α =
1

n0

∫
dWα FeqαJ0

(
k̂⊥
√

2µαmαc2/(|qα|2B0)
)
, (2.8)

Γ2α =
1

n0

∫
dWα

(
µαB0

Tα
− 1

)
FeqαJ0

(
k̂⊥
√

2µαmαc2/(|qα|2B0)
)
, (2.9)

where bα = k̂2⊥ρ
2
α, with k̂⊥ = (k̂2x+ k̂2y)1/2 corresponding to the dimensional wavenumber

in the direction perpendicular to the guide field. The wavenumbers k̂x and k̂y are defined

as k̂x = 2πm/(2L̂x) and k̂y = 2πn/(2L̂y), respectively, with m ∈ Z, n ∈ Z and with

L̂x = ρsLx, L̂y = ρsLy corresponding to the lengths Lx and Ly without normalization.
The sonic Larmor radius ρs is defined in Eq. (2.13). The symbol ρα is defined by ρα =
(Tα/mα)1/2/(|qα|B0/(mαc)) and corresponds to the thermal gyroradius characteristic of
the species α, with c equal to the speed of light. In Eqs. (2.7)-(2.9), I0 and J0 indicate the
zeroth order modified Bessel function and Bessel function of the first kind, respectively.
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We also denoted by n0 a uniform equilibrium gyrocenter density, with B0 the amplitude
of the magnetic guide field, with µα the magnetic moment for particles of species α and
with dWα = (2πB0/mα)dµαdv the volume element in velocity space, with v indicating
the velocity coordinate along the magnetic guide field. The physical meaning of the
constant parameter βe was already anticipated in Sec. 1 and its explicit expression is
given by βe = 8πn0Te/B

2
0 . As is common in the so-called δf approach, the gyrocenter

distribution functions are assumed to be close to equilibrium Maxwellian functions Feqα
defined as

Feqα(v, µα) = n0

(
mα

2πTα

)3/2

exp

(
−mαv

2

2Tα
− µαB0

Tα

)
. (2.10)

As indicated in Dorland & Hammett (1993), Beer & Hammett (1996) and Scott (2010),
approximated expressions for the gyroaverage operators Γ1α and Γ2α are given by

Γ1α = Γ
1/2
0α

, Γ2α = bα
∂Γ1α

∂bα
. (2.11)

The system (2.1)-(2.4) is formulated making use of normalized variables, which are
defined by

t = Ωit̂, x =
x̂

ρs
, y =

ŷ

ρs
, z =

ẑ

ρs
,

Nα =
N̂α
n0

, Uα =
Ûα
cs
, T‖α =

T̂‖α
n0Tα

, T⊥α =
T̂⊥α
n0Tα

,

Q‖α =
Q̂‖α

n0Tαcs
, Q⊥α =

Q̂⊥α
n0Tαcs

,

ϕ =
eϕ̂

Te
, A‖ =

Â‖

B0ρs
.

(2.12)

In Eq. (2.12) we introduced the proton charge e = |qe|, we denoted with a caret the
dimensional quantities and we introduced the following constants:

Ωi =
eB0

mic
, cs =

√
Te
mi

, ρs =
cs
Ωi
, (2.13)

which correspond to the ion cyclotron frequency (referred to the guide field), the sound
speed and the sonic Larmor radius, respectively.

In order to make contact also with the underlying δf gyrokinetic theory, we specify
that the dimensional moment fluctuations are defined as

N̂α =

∫
dWα f̂α, Ûα =

1

n0

∫
dWα vf̂α, (2.14)

T̂‖α =
1

n0

∫
dWα (mαv

2 − Tα)f̂α, T̂⊥α =
1

n0

∫
dWα (µαB0 − Tα)f̂α, (2.15)

Q̂‖α =

∫
dWα (mαv

2 − 3Tα)vf̂α, Q̂⊥α =

∫
dWα (µαB0 − Tα)vf̂α, (2.16)

where f̂α = f̂α(x, y, z, v, µα, t) is the perturbation of the gyrocenter distribution function
related to the species α.

The parent model (2.1)-(2.6) can be seen as a simplified version of the gyrofluid
model (although written with a different normalization) of Scott (2010), taken in the
non-dissipative limit and neglecting background inhomogeneities as well as evolution
equations for the heat fluxes. The system (2.1)-(2.6), in particular, is evidently not closed,
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for closure relations for the heat flux fluctuations were not provided at this stage. Whereas
the model of Scott (2010) includes evolution equations for the heat flux fluctuations, the
system (2.1)-(2.6) does not. In order to obtain a simple model although retaining the
effects of Landau damping, we decided to truncate the gyrofluid hierarchy at the lowest
level where it is of interest to introduce Landau closures, that is at the level of temperature
evolution equations.

As above anticipated, the choice of a simplified version of the model of Scott (2010)
as parent model is motivated by the fact that its gyrofluid closures are determined in
such a way that the model also conserves energy in the absence of heat flux fluctuations.
Also, the parent model retains electron inertia, which we require for driving magnetic
reconnection. In order to facilitate the comparison with Scott (2010) we specify that
the parent model consisting of Eqs. (2.1)-(2.4), (2.5) and (2.6) can be obtained from
Eqs. (163)-(166), (132) and (133) of Scott (2010) (where dissipation and background
inhomogeneities are already omitted and when also the two-dimensional approximation
for the fluctuations is assumed) by making the following formal replacements

nz → Nα, uz‖ → Uα, Tz‖ → T‖α , (2.17)

Tz⊥ → T⊥α , qz‖ → (1/2)Q‖α , qz⊥ → Q⊥α , (2.18)

A‖ → A‖/βe, φ→ ϕ, βeAG → Γ1αA‖, (2.19)

φG → Γ1αϕ, βeχG → Γ2αA‖, ΩG → Γ2αϕ, (2.20)

pz‖ → Nα + T‖α , βe → βe/2, µz → sgn(qα)mα/mi, (2.21)

τz → sgn(qα)Tα/Te, az → sgn(qα), Γi → Γiα for i = 0, 1, 2. (2.22)

Also, because Eqs. (163)-(166), (132) and (133) of Scott (2010) refer to a two-dimensional
limit, in order to retrieve Eqs. (2.1)-(2.4) of the present paper one needs to add terms
accounting for the dependence on the z coordinate. This is accomplished by replacing
the operator βe[AG, .] with the operator [Γ1αA‖, .]− ∂z.

2.2. Derivation of the model

We consider a plasma consisting of electrons and of one single ionized ion species. The
derivation of the reduced Landau-gyrofluid model proceeds essentially by an asymptotic
expansion based on a prescribed scaling, and on imposing Landau-fluid closures on the
heat fluxes. The asymptotic expansion is based on two small, independent parameters δ
and ε defined by

δ2 =
me

mi
, ε =

1

ΩiT
, (2.23)

with T indicating the characteristic time scale of variation of the fluctuating fields Ne,i,
Ue,i, T‖e,i and T⊥e,i (which is assumed to be the same for all such fields). We also
introduce the parameter

τ =
Ti
Te
, (2.24)

expressing the equilibrium temperature ratio.
The following ordering is assumed:

δ2 � 1, τ ∼ k⊥ = O(1), (2.25)

Ue ∼ Q‖e ∼ Q⊥e = O
( ε
δ

)
, (2.26)

∂

∂t
∼ Ne ∼ T‖e ∼ T⊥e ∼ Ni ∼ T‖i ∼ T⊥i ∼ ϕ = O(ε)� 1, (2.27)
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kz ∼ Ui ∼ Q‖i ∼ Q⊥i ∼ A‖ = O(δε), (2.28)

βe = O(δ2). (2.29)

Assuming δ2 � 1 implies be � 1, and consequently Γ0e ' 1, Γ1e ' 1, Γ2e ' 0, which
allows us to neglect finite electron Larmor radius effects due to the gyroaverage operators.
On the other hand, the ordering on A‖, βe, k⊥ and Ue retains finite electron inertia in
the electron momentum equation, thus allowing for reconnection, and balances parallel
current density with the parallel electron velocity in Ampère’s law. In particular, as
anticipated in Sec. 1, together with the requirement of neglecting electron Larmor radius
effects, this leads to βe = O(δ2) � 1 (Zocco & Schekochihin 2011). The ordering on
Ne,i, k⊥, ϕ, and ω reflects the ordering of the original parent model. In particular, it
is consistent with the requirement that the E × B drift be the dominant drift on the
characteristic time scale (∂t ∼ [ϕ, .]) and that small amplitude electron and ion gyrocen-
ter density fluctuations be of the same order as polarization terms at the characteristic
perpendicular scale (Ni ∼ Ne ∼ (Γ0i − 1)(ϕ/τ)) in the quasi-neutrality relation. We
also remark that, as a consequence of the ordering, the dimensional electromagnetic
potentials satisfy ϕ̂ ∼ (vthe/c)Â‖, with vthe indicating the electron thermal speed. The
ordering on kz comes from the strong anisotropy assumption (kz � k⊥) and also from the
requirement that the two contributions to the gradient operator along the magnetic field,
be of the same order ([A‖, .] ∼ kz). Investigations of magnetic reconnection (Comisso
et al. 2012) performed adopting a model (Waelbroeck & Tassi 2012) compatible with
such ordering, on the other hand, indicated that, if Ui = 0 at t = 0, then the role of the
parallel ion gyrocenter velocity is marginal on the reconnection dynamics. Based on this
result, we ordered Ui � Ue. In the present model we allow for parallel and perpendicular
temperature fluctuations. Because we are primarily interested in the effect of Landau
closures on the electron fluid, we order the heat fluxes in such a way that they enter the
evolution equations for the electron temperatures associated with leading order terms.
We allow for finite ion temperature effects in the model, thus we set τ ∼ 1, although the
cold-ion limit will be considered in the simulations.

Applying the above ordering to Eqs. (2.1)-(2.6) and retaining only the lowest order
terms in each equation yields the following reduced system

∂Ne
∂t

+ [ϕ,Ne] +∇‖Ue = 0, (2.30)

∂(A‖ − δ2Ue)
∂t

+ [ϕ,A‖ − δ2Ue]−∇‖(Ne + T‖e) +
∂ϕ

∂z
= 0, (2.31)

∂T‖e
∂t

+ [ϕ, T‖e ] +∇‖(2Ue +Q‖e) = 0, (2.32)

∂T⊥e
∂t

+ [ϕ, T⊥e ] +∇‖Q⊥e = 0, (2.33)

∂Ni
∂t

+ [Γ1iϕ,Ni] + [Γ2iϕ, T⊥i ] = 0, (2.34)

∂T⊥i
∂t

+ [Γ1iϕ, T⊥i ] + 2[Γ2iϕ, T⊥i ] + [Γ2iϕ,Ni] = 0, (2.35)

Ne − Γ1iNi −
Γ0i − 1

τ
ϕ− Γ2iT⊥i = 0, (2.36)

∇2
⊥A‖ =

βe
2
Ue, (2.37)
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where we introduced the parallel gradient operator

∇‖f = −[A‖, f ] +
∂f

∂z
, (2.38)

for a function f . Equations (2.30)-(2.33) correspond to the evolution equations for the
electron density, parallel momentum, parallel and perpendicular temperature, respec-
tively. Equations (2.34) and (2.35) account for the evolution of ion gyrocenter density
and perpendicular temperature, whereas Eqs. (2.36) and (2.37) are the quasi-neutrality
relation and parallel Ampère’s law.

It can be noticed that the system does not contain the evolution equations for the
parallel ion gyrocenter velocity and for the parallel temperature. As a consequence of the
ordering, such equations turn out to be decoupled from the system and thus we disregard
them. Should one be interested in determing Ui and T‖i , the required equations read

∂

∂t
(Ui + Γ1iA‖) + [Γ1iϕ,Ui + Γ1iA‖] + [Γ2iϕ, Γ2iA‖] + [Γ2iϕ,Q⊥i ]− τ [Γ1iA‖, Ni]

− τ [Γ1iA‖, T‖i ]− τ [Γ2iA‖, T⊥i ] +
∂

∂z
(Γ1iϕ+ τNi + τT‖i) = 0, (2.39)

∂T‖i
∂t

+ [Γ1iϕ, T‖i ] = 0, (2.40)

where a closure on Q⊥i has to be determined.
We restrict, however, to the system (2.30)-(2.37) which we close by imposing the

Landau fluid closures (Hammett & Perkins 1990; Hammett et al. 1992; Snyder et al.
1997; Passot & Sulem 2004; Sulem & Passot 2015)

Q‖e = −2αLT‖e , Q⊥e = −αLT⊥e (2.41)

where L holds for the Landau damping operator. Its modeling is discussed below. In Eq.
(2.41), we furthermore introduced the constant α = (1/δ)(2/π)1/2, originating from the
linear kinetic theory. We point out that, as will be argued in Sec. 4.1, for the electron fluid
with our ordering, temperature fluctuations and heat fluxes of the particles and of the
gyrocenters coincide. Consequently, closures (2.41) keep the same form when expressed
in terms of particle moments.

As mentioned in Snyder et al. (1997), a proper calculation of Landau damping would
involve at each point of the computational domain and every time step, the evaluation of
a convolution integral along the magnetic field line attached to this point, a task which
exceeds the capability of the present day computers. A drastic simplification consists in
linearizing the operator near a uniform ambient magnetic field, and thus replacing the
local magnetic field lines by straight magnetic lines. The Landau damping operator then
reduces to the negative of the Hilbert transform in the direction of the ambient magnetic
field (defined by the unit vector b0) and, in this case, corresponds in Fourier space to
the multiplicator ib0 · k/|b0 · k|. In one space dimension, this description is exact in
the weakly nonlinear asymptotics (Ott & Sudan 1969), and remains satisfactory in the
fully nonlinear regime (Laveder et al. 2011). It however turns out to be inappropriate
in several dimensions, as it may lead to spurious instabilities (Passot et al. 2014). In
this case, indeed, the distortion of the magnetic field lines should be taken into account.
Various modeling have been suggested for this purpose. Sharma et al. (2006) expressed
the Landau damping operator in physical space in the form (1/kL)b · ∇ = (1/kL)∇‖
where b = B/|B| is the unit vector in the direction of the local magnetic field and kL
a positive characteristic wavenumber associated with the scale of collisionless damping.
This representation however does not preserve the zeroth order of the Landau operator
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and its nonlocality in physical space, which are replaced by a normalized first order
derivative along the corresponding magnetic field line. This choice greatly alters the linear
behavior (except at the chosen wavenumber kL), effectively replacing Landau damping
by a usual collisional dissipation. Differently, in Scott (1997), the degree of the Landau
operator is preserved by reducing the operator to a multiplicative constant chosen to fit
the large-scale dynamics. A Laplacian-type damping term was added in Scott (2002) and
in subsequent publications by this author in order to provide a better matching at smaller
scales. In this description, the nonlocality of the Landau operator is lost. With the aim
of preserving the degree of the damping operator, while retaining its space nonlocality, a
different modeling, first introduced in Passot et al. (2014), was used in Sulem et al. (2016)
or Kobayashi et al. (2017). This is the modelling we will implement here. Indicating with
f̌k the k-Fourier coefficient of f , where k = (kx, ky, kz), the Landau damping operator is
phenomenologically modeled in Fourier space as

Ľfk = [(k · τ̄ · k)−1/2]∇̌‖fk, (2.42)

where τ̄ = 〈b ⊗ b〉 with 〈 〉 the spatial average over the domain D. In particular,
this form reduces to the correct formula in the linear case (i.e. when magnetic field
lines are straight). We point out that, in particular for the application to the mag-
netic reconnection problem treated in Sec. 4, the field A‖ is further decomposed as

A‖(x, y, z, t) = A‖eq(x) + εÃ‖(x, y, z, t), which has to be taken into account when
expanding the operator L in terms of the small parameter ε. Considering the ordering
(2.25)-(2.29), one can then see that, according to the closures (2.41), the expansion
performed on the operator L has to be of order O(1), so that ∇‖Q‖e ∼ ∇‖Q⊥e ∼ ε2,
consistently with the order of the other terms present in Eqs. (2.32)-(2.33).

As a consequence of the ordering, the evolution of the ion gyrocenter moments Ni
and T⊥i is essentialy electrostatic and neglects variations along the guide field direction.
Moreover, choosing Ni = T⊥i = 0 as initial conditions, one has Ni = T⊥i = 0 as solutions.
In this limit, the model yields a fluid reduction, with electron temperature anisotropy, of
the hybrid kinetic-fluid model of Zocco & Schekochihin (2011). Neglecting temperature
fluctuations, one retrieves (up to the normalization) the two-field model derived in Schep
et al. (1994) and investigated in Borgogno et al. (2005).

3. Hamiltonian formulation of the model in the non-dissipative limit

The Landau fluid closure (2.41) introduces dissipation in the system. We show that, in
the non-dissipative limit Q‖e = Q⊥e = 0, the model possesses a Hamiltonian structure,
like previous reduced fluid models for inertial reconnection (Schep et al. 1994; Tassi
et al. 2008; Waelbroeck et al. 2009; Waelbroeck & Tassi 2012; Keramidas Charidakos
et al. 2015; Grasso & Tassi 2015).

As described for instance in Morrison (1998) and Marsden & Ratiu (2002), showing
that the dynamical system (2.30)-(2.35), complemented by the relations (2.36)-(2.37) and
closed by Q‖e = Q⊥e = 0, possesses a Hamiltonian structure, amounts to find a set of N
dynamical variables χ = (χ1, · · · , χN ) , a Hamiltonian functional H = H(χ1, · · · , χN )
and a Poisson bracket { , } such that the evolution equations (2.30)-(2.35) can be cast in
the form

∂χi
∂t

= {χi, H}, i = 1, · · · , N. (3.1)

We recall that the Poisson bracket is a bilinear antisymmetric operator which must satisfy
the Leibniz and the Jacobi identity. Antisymmetry of the Poisson bracket, in particular,
implies ∂tH = 0, reflecting the conservation of the Hamiltonian, i.e. of total energy of
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the system. We recall that the Leibniz identity reads {FG,K} = F{G,K} + G{F,K},
whereas the Jacobi identity corresponds to {{F,G},K}+{{G,K}, F}+{{K,F}, G} = 0,
with F , G and K arbitrary functionals of the dynamical variables. For the model under
consideration, N = 6 and a suitable set of dynamical variables is given by the set of fields
χ1 = ne, χ2 = Ae ≡ A‖ − δ2Ue, χ3 = T‖e , χ4 = T⊥e , χ5 = Ni, χ6 = T⊥i . An effective
procedure for constructing the Hamiltonian structure of the model is the one followed
in the above mentioned Hamiltonian models for magnetic reconnection and consists
in identifying first a conserved functional H to consider as candidate Hamiltonian.
Subsequently, a Poisson bracket is sought of the form

{F,G} =

6∑
i,j,k=1

W ij
k

∫
d3xχk

[
δF

δχi
,
δG

δχj

]
+

6∑
i,j=1

Aij
δF

δχi

∂

∂z

δG

δχj
, (3.2)

for two functionals F and G. In Eq. (3.2) W ij
k and Aij are constant coefficients to

be determined by imposing that { , } satisfies antisymmetry and the Jacobi identity
(bilinearity and the Leibniz identity are automatically satisfied by the form (3.2)) and
also that, when combined with the candidate Hamiltonian H by means of the expression
(3.1), it yields the model equations.

For the model under consideration, it is not difficult to see that, assuming that
boundary terms vanish when integrating by parts, the functional

H =
1

2

∫
d3x

(
N2
e +N2

i − UeAe +
T 2
‖e
2

+ T 2
⊥e + T 2

⊥i − ϕ
Γ0i − 1

τ
ϕ

)

=
1

2

∫
d3x

(
N2
e +N2

i + δ2U2
e +

2

βe
|∇⊥A‖|2 +

T 2
‖e
2

+ T 2
⊥e + T 2

⊥i

−Neϕ+NiΓ1iϕ+ T⊥iΓ2iϕ) (3.3)

is conserved by Eqs. (2.30)-(2.35). The formulation (3.3) makes it easy to see that the
Hamiltonian functional H is given by the sum of internal energy given by electron and ion
density fluctuations (first two terms of Eq. (3.3)), parallel kinetic energy and magnetic
energy (third and fourth term of Eq. (3.3)), internal energy due to electron and ion
temperature fluctuations (fifth, sixth and seventh term of Eq. (3.3)) and electrostatic
energy due to polarization effects (last three terms of Eq. (3.3)). Note that, in spite of
the small parameters δ2 and βe present in the expression (3.3), all terms contributing to
the Hamiltonian are of the same order, according to the ordering (2.25)-(2.29).

With regard to the Poisson bracket, it can be shown that it is given by

{F,G} = {F,G}e − {F,G}i, (3.4)

where

{F,G}e =

∫
d3x

(
Ne([FNe , GNe ] + δ2[FAe , GAe ] + 2[FT‖e , GT‖e ] + [FT⊥e , GT⊥e ])

+Ae([FAe , GNe ] + [FNe , GAe ] + 2([FAe , GT‖e ] + [FT‖e , GAe ])) (3.5)

+T‖e(δ
2[FAe , GAe ] + [FNe , GT‖e ] + [FT‖e , GNe ] + [FT‖e , GT‖e ]− 1

2
[FT⊥e , GT⊥e ])

+T⊥e([FNe , GT⊥e ] + [FT⊥e , GNe ]− [FT⊥e , GT‖e ]− [FT‖e , GT⊥e ] + h[FT⊥e , GT⊥e ])

+FNe
∂

∂z
GAe + FAe

∂

∂z
GNe + 2FT‖e

∂

∂z
GAe + 2FAe

∂

∂z
GT‖e

)
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and

{F,G}i =

∫
d3x

(
Ni([FNi , GNi ] + [FT⊥i , GT⊥i ])

+T⊥i([FNi , GT⊥i ] + [FT⊥i , GNi ] + 2[FT⊥i , GT⊥i ])
)
. (3.6)

In Eqs. (3.5)-(3.6), the subscripts on functionals indicate functional derivatives, so that,
for instance, FAe = δF/δAe, whereas h is an arbitrary constant, so that, actually,
expression (3.4) can be viewed as a one-parameter family of Poisson brackets. This
Poisson bracket is of the prescribed form (3.2) but the formulation (3.4) makes it easy
to see that it can be written as the direct sum of two Poisson brackets { , }e and
{ , }i which depend only on functionals pertaining to the electrons and ion gyrocenters,
respectively. As in previous Hamiltonian models (Waelbroeck et al. 2009; Waelbroeck &
Tassi 2012; Grasso & Tassi 2015; Keramidas Charidakos et al. 2015; Tassi 2015, 2016), in
this formulation, the coupling between electron and gyrocenter ion dynamics is provided
by the Hamiltonian. Notice also that, in spite of the small parameter δ2 multiplying two
terms in the Poisson bracket (3.5), all the resulting terms in the equations of motion end
up to be of the same order. In the specific case of the two terms with coefficient δ2, this
comes as a consequence of the fact that the functional derivative HAe = −(2/βe)∇2

⊥A‖
is of order ε/δ, and all the terms in Eq. (2.31) are of order δε2.

It can be checked by direct calculations that the Hamiltonian (3.3) and the Poisson
bracket (3.4) yield Eqs. (2.30)-(2.35), independently on the value of h. However, as is
the typical case for Hamiltonian fluid models expressed in terms of Eulerian variables,
the Poisson bracket is of noncanonical type (see, e.g., Morrison (1998)). Thus, in our
procedure, in particular, the above mentioned four properties defining a Poisson bracket
are not automatically satisfied and must be verified. It is in particular not obvious to show
that the Poisson bracket (3.4) satisfies the Jacobi identity (antisymmetry, on the other
hand, is rather straightforward to show, whereas bilinearity and the Leibniz identity, as
above mentioned, are already implied by the form (3.2). One way to verify the Jacobi
identity is based on the results of Thiffeault & Morrison (2000) and Tassi et al. (2010).
According to such procedure, one proceeds by first showing that the part of the Poisson
bracket (3.2) accounting for the perpendicular dynamics (i.e. setting Aij = 0 for i, j =
1, · · · , N) is itself a Poisson bracket. This amounts to show that the N matrices W (j),
defined by

[W (j)]ik = W ij
k , j = 1, · · · , N, (3.7)

pairwise commute. Subsequently, the Jacobi identity for the entire bracket (3.2) is proved
by showing that the coefficients W ij

k and the coefficients Aij satisfy the relations

ArsW ij
r = ArjW si

r = AriW js
r , (3.8)

where the sum over the repeated index r is understood.



12

In the case of bracket (3.4) the six matrices W (1), · · · ,W (6) are given by

W (1) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , W (2) =


0 δ2 0 0 0 0
1 0 2 0 0 0
0 δ2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

W (3) =


0 0 2 0 0 0
0 2 0 0 0 0
1 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , W (4) =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 −1/2 0 0
1 0 −1 h 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

W (5) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 , W (6) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 −2

 ,

(3.9)

whereas the coefficients Aij are Aij = 0 for all i, j = 1, · · · , 6 except for A12 = A21 = 1
and A23 = A32 = 2.

It can then easily be verified that all matrices W (1), · · · ,W (6) pairwise commute (in
particular, for any value of h) and that the relations (3.8) are satisfied, which proves the
Jacobi identity for the Poisson bracket (3.4).

One important feature of noncanonical Poisson brackets is that they possess Casimir
invariants, i.e. functionals C such that {C,F} = 0 for any functional F of the dynamical
variables. Because ∂tC = {C,H} = 0 Casimir invariants are indeed conserved by the
dynamics. Their existence then implies constraints on the dynamics, in addition to that
of energy conservation.

For the Poisson bracket (3.4), it can be found, by solving {C,F} = 0 for arbitrary F ,
that Casimir invariants correspond to

C1 =

∫
d3x ν+, (3.10)

C2 =

∫
d3x ν−, (3.11)

C3 =

∫
d3xS+(s+ λ+T⊥e), (3.12)

C4 =

∫
d3xS−(s+ λ−T⊥e), (3.13)

C5 =

∫
d3xM+(µ+), (3.14)

C6 =

∫
d3xM−(µ−), (3.15)

where

ν± = ± δ√
3

(Ne + T‖e) +Ae, (3.16)
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s = Ne −
T‖e
2
, (3.17)

µ± = Ni + (1±
√

2)T⊥i , (3.18)

λ± =
1

2
(h±

√
h2 + 6), (3.19)

and where S± and M± indicate arbitrary functions. Note that, in spite of the small
parameter δ appearing in the definition of the field variables ν±, all terms on the right-
hand side of Eq. (3.16) are of the same order. In the 2D limit with translational invariance
along z, the two Casimir invariants C1 and C2 extend to two infinite families of Casimir
invariants C1,2 =

∫
d3xN±(ν±) with N± arbitrary functions. This feature is common in

Hamiltonian reduced fluid models for plasmas and is also visible from the form of the
Casimir invariants C5 and C6, pertaining to ion dynamics, for which derivatives along z
play no role in the dynamics and in the Poisson bracket. Indeed, also C5 and C6 consist
of infinite families of invariants. More interesting, on the other hand, are the Casimir
invariants C3 and C4. They consist of infinite families also in the pure 3D case. Also,
given the arbitrariness of h, the coefficients λ± appearing in the expressions for C3 and
C4 can also take infinite values. Defining s± = s+λ±T⊥e , one can perform the change of
variables (Ne, Ae, T‖e , T⊥e , Ni, T⊥i) → (ν+, ν−, s+, s−, µ+, µ−) and, in terms of the new
set of variables, the Poisson bracket (3.4) takes its simplest, normal form

{F,G} = {F,G}e − {F,G}i, (3.20)

with

{F,G}e =

∫
d3x

(
2
√

3δν+[Fν+ , Gν+ ]− 2
√

3δν−[Fν− , Gν− ] (3.21)

+
6 + h2 + h

√
h2 + 6

2
s+[Fs+ , Gs+ ] +

6 + h2 − h
√
h2 + 6

2
s−[Fs− , Gs− ] (3.22)

+Fν+
∂

∂z
Gν+ − Fν−

∂

∂z
Gν−

)
(3.23)

and

{F,G} =

∫
d3x

(
2(2 +

√
2)µ+[Fµ+

, Gµ+
] + (4− 2

√
2)µ−[Fµ− , Gµ− ]

)
. (3.24)

The set of variables (ν+, ν−, s+, s−, µ+, µ−) suggested by the form of the Casimir invari-
ants can indeed be referred to as normal fields (Waelbroeck et al. 2009). The normal
fields are also useful variables for unveiling some structures of the evolution equations
of the system. Indeed, the evolution equations (2.30)-(2.35), formulated in terms of the
normal fields, read

∂ν+
∂t

+ [φ+e , ν+] +
∂

∂z

(
φ+e −

√
3

δ
ν+

)
= 0, (3.25)

∂ν−
∂t

+ [φ−e , ν−] +
∂

∂z

(
φ−e +

√
3

δ
ν−

)
= 0, (3.26)

∂s+
∂t

+ [ϕ, s+] = 0, (3.27)

∂s−
∂t

+ [ϕ, s−] = 0, (3.28)

∂µ+

∂t
+ [φ+i , µ+] = 0, (3.29)
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∂µ−
∂t

+ [φ−i , µ−] = 0, (3.30)

where

φ±e = ϕ±
√

3

δ
A, φ±i = Γ1iϕ+ (1±

√
2)Γ2iϕ (3.31)

act as generalized stream functions.
The reformulation in terms of normal fields makes it then possible to see that, in the

2D limit, the system actually consists of advection equations for the normal fields, which
can be seen as Lagrangian invariants advected by generalized stream functions. This
feature is shared with other Hamiltonian models for reconnection (Waelbroeck et al. 2009;
Waelbroeck & Tassi 2012; Schep et al. 1994; Grasso & Tassi 2015; Keramidas Charidakos
et al. 2015). In particular, we remark that the variables ν± are analogous to two normal
fields found for the ion dynamics in the gyrofluid model of Keramidas Charidakos et al.
(2015) and correspond to the diagonalizing variables introduced in Tassi (2015) in the
context of Hamiltonian closures for drift-fluid models. A linear combination of Eqs. (3.27)
and (3.28) yields

∂s

∂t
+ [ϕ, s] = 0, (3.32)

∂T⊥e
∂t

+ [ϕ, T⊥e ] = 0. (3.33)

Equation (3.33) corresponds, evidently, to the original Eq. (2.33) with Q⊥e = 0, express-
ing the advection of the perpendicular electron temperature fluctuations in the absence
of heat flux. Equation (3.32), on the other hand, expresses the advection (already present
in the model of Keramidas Charidakos et al. (2015), although referred to ion gyrofluid
moments) of the field s which, from its definition (3.17), measures the departure from
a condition of adiabaticity with respect to the parallel temperature and can, in this
sense, be seen as an expression of entropy conservation. Similarly, perpendicular electron
temperature fluctuations, are purely advected by the E × B flow associated with the
stream function ϕ. Due to finite ion gyroradius effects associated with the operator
Γ2i , on the other hand, the ion gyrocenter perpendicular temperature fluctuations T⊥i ,
are not purely advected. Likewise, ion gyrocenter density fluctuations Ni, although
obeying an electrostatic dynamics in our ordering, are not advected due to the finite
ion gyroradius contribution associated with the last term in Eq. (2.34). The formulation
(3.29)-(3.30) shows, however, that linear combinations of Ni and T⊥i , corresponding to
µ±, get advected by the generalized velocity fields associated with the stream functions
φ±i .

4. Collisionless magnetic reconnection in the cold-ion regime

As an application of the previously derived reduced Landau-gyrofluid model, we
consider an analysis of the phenomenon of magnetic reconnection driven by electron
inertia. The analysis is based on numerical simulations, and the relative simplicity
of the reduced Landau-gyrofluid model makes it convenient to simulate reconnection
also on a three-dimensional domain. Because we are interested mainly in the effect of
Landau damping, we consider a further simplified version of the model which neglects ion
temperature effects. In the following, we first present the cold-ion version of the model
and subsequently describe results from the numerical simulations, concerning the linear
growth rates and the nonlinear evolution.
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4.1. Cold-ion limit

We consider a simplified version of the model (2.30)-(2.37), where the ion response is
determined only by the quasi-neutrality relation in the cold-ion limit. More specifically,
we take the solutions Ni = T⊥i = 0 for the ion gyrocenter density and perpendicular
temperature fluctuations, and consider the limit τ � 1. With these assumptions, the
model reduces to

∂Ne
∂t

+ [ϕ,Ne] +∇‖Ue = 0, (4.1)

∂

∂t
(A‖ − δ2Ue)− [ϕ, δ2Ue]−∇‖

(
Ne + T‖e − ϕ

)
= 0, (4.2)

∂T‖e
∂t

+ [ϕ, T‖e ] +∇‖
(
Q‖e + 2Ue

)
= 0, (4.3)

∂T⊥e
∂t

+ [ϕ, T⊥e ] +∇‖Q⊥e = 0, (4.4)

∇2
⊥ϕ = Ne, (4.5)

∇2
⊥A‖ =

βe
2
Ue. (4.6)

In such cold-ion limit, it is also immediate to rewrite the model in terms of particle
moments instead of gyrocenter moments. Actually, due to the assumptions βe ∼ δ2 �
1, the electron gyrofluid moments are identical to the corresponding particle moments
(Brizard 1992), i.e. Ne = ne, Ue = ue, T‖e = t‖e , T⊥e = t⊥e , Q‖e = q‖e and Q⊥e = q⊥e
where ne, ue, t‖e , t⊥e , q‖e and q⊥e indicate the particle density, parallel velocity, parallel
and perpendicular temperature and heat flux fluctuations, respectively, for the electron
fluid. Ion dynamics enters only through the quasi-neutrality relation, which, in terms of
particle moments, yields ni = ∇2

⊥ϕ = ne, where ni denotes the ion density fluctuations
(which differ from the ion gyrocenter fluctuations Ni).

In terms of particle moments, the model (4.1)-(4.6) can then be reformulated as

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ] +
2

βe
∇‖∇2

⊥A‖ = 0, (4.7)

∂

∂t
(A‖ −

2

βe
δ2∇2

⊥A‖)−
2

βe
δ2[ϕ,∇2

⊥A‖]−∇‖
(
∇2
⊥ϕ+ t‖e − ϕ

)
= 0, (4.8)

∂t‖e
∂t

+ [ϕ, t‖e ] +∇‖
(
q‖e +

4

βe
∇2
⊥A‖

)
= 0, (4.9)

∂t⊥e
∂t

+ [ϕ, t⊥e ] +∇‖q⊥e = 0, (4.10)

(4.11)

with

q‖e = −2αLt‖e , q⊥e = −αLt⊥e . (4.12)

In the absence of temperature fluctuations (i.e. t‖e = t⊥e = 0), the model corresponds,
up to the normalization, to the two-field model investigated in Borgogno et al. (2005)
and Grasso et al. (2007).

We remark that, when neglecting dissipation (i.e. q‖e = q⊥e = 0), the above model still
possesses a Hamiltonian structure. Indeed, the set of functionals of Ne, Ae, T‖e and T⊥e is
a sub-algebra with respect to the Poisson bracket (3.4), and in particular with respect to
the Poisson bracket { , }e of Eq. (3.5). The model (4.1)-(4.6), for Q‖e = Q⊥e = 0 is then
a Hamiltonian system with Poisson bracket given by { , }e and Hamiltonian functional
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given by

H =
1

2

∫
d3x

(
N2
e + δ2U2

e +
2

β
|∇⊥A‖|2 +

T 2
‖e
2

+ T 2
⊥e + |∇⊥ϕ|2

)
. (4.13)

The formulation of the Hamiltonian structure in terms of particle moments follows
trivially because, as seen above, in this limit, electron gyrofluid moments identify with
electron particle moments.

4.2. Linear regime

Equations (4.7)-(4.10) are integrated over the domain {−Lx 6 x 6 Lx,−Ly 6 y 6
Ly,−Lz 6 z 6 Lz}. For the investigation of the linear growth rates, we chose Lx =
46, Ly = 24π, Lz = 96π. The initial condition is given by

A‖(x, y, z, 0) = −λ ln cosh
(x
λ

)
+A0

(
x− xs
λ

)
exp [i (kyy + kzz)] + c.c., (4.14)

t‖e(x, y, z, 0) = 0, t⊥e(x, y, z, 0) = 0, ϕ(x, y, z, 0) = 0, (4.15)

where λ is a positive constant whose value, for these numerical simulations, has been
set equal to 3. The values of the parameters δ and βe, on the other hand, have been set
as δ = 0.1 and βe = 0.05, respectively. The initial condition (4.14)-(4.15) corresponds
to perturbing a magnetic equilibrium Beq(x) = ∇A‖eq(x) × ẑ + ẑ = − tanh(x/λ)ŷ + ẑ
with a single-helicity disturbance, associated with two wave numbers ky = mπ/Ly and
kz = nπ/Lz, for non-negative integers m and n, and where the helicity is determined by
the ratio kz/ky. The amplitude of the perturbation is given by a function A0 centered at
the resonant surface x = xs, the latter identified by the relation − tanh(xs/λ) = kz/ky.
Because of the choice of the initial conditions, one can infer, from Eq. (4.10), that t⊥e = 0
at all times, so that perpendicular temperature plays no role in these simulations.

For the numerical solution of Eqs. (4.7)-(4.10) we adopt further developments of the
code described in Grasso et al. (2007). In particular the code has been parallelized
along both the periodic directions y and z and the operator L of Eq. (2.41) has been
introduced, exploiting its Fourier representation given in Eq. (2.42). The new code has
been benchmarked in the non-dissipative isothermal limit against previous codes solving
the equations described in Grasso et al. (2007) and Borgogno et al. (2005).

In the absence of parallel Landau damping (q‖e = 0), given the initial conditions, the

parallel temperature follows an adiabatic behavior dictated by t‖e = 2ne = 2∇2
⊥ϕ. In

this limit the model can be rewritten as

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ] +
2

βe
∇‖∇2

⊥A‖ = 0, (4.16)

∂

∂t
(A‖ −

2

βe
δ2∇2

⊥A‖)−
2

βe
δ2[ϕ,∇2

⊥A‖]−∇‖
(
3∇2
⊥ϕ− ϕ

)
= 0. (4.17)

For purely two-dimensional disturbances (n = 0), an analytical prediction of the linear
growth rate of the perturbation for the system (4.16)-(4.17), with initial conditions for
A‖ and ϕ as given in Eqs. (4.14)-(4.15), can be obtained by properly adapting the result
of Porcelli (1991) valid for isothermal electrons. Note, in fact, that the model equations
in the adiabatic limit differ from those in the isothermal limit just by the factor 3 in
the last but one term of Eq. (4.17), which becomes a factor 1 in the isothermal limit.
This amounts to replace, in the expression for the growth rate of Porcelli (1991), the
parameter ρ̂τ by

√
3ρ̂τ . Assuming that in the linear regime the perturbations for ϕ and
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A‖ are of the form f̄(x/λ) exp[i(kyy + kzz) − γt] + c.c., where f̄ is a two-dimensional
vector (ϕ̄, Ā‖), the expression for the growth rate γ in the adiabatic limit then becomes

γadiab =
2
√

3

π

δ

λβe
ky∆

′, (4.18)

where ∆′ = (2/λ)((kyλ)−1−kyλ) is the stability parameter for collisionless tearing modes
for the equilibrium under consideration. Expression (4.18) is valid in the limit of small
values of ∆′. In the absence of parallel temperature fluctuations ( isothermal limit ), the
expression for the growth rate, according to Porcelli (1991), reads

γisoth = γadiab/
√

3. (4.19)

Therefore, temperature fluctuations tend to increase the growth rate. Although the
expressions for the growth rates considered here are valid for the purely 2D case, we
expect them to provide sufficiently good approximations, for the sake of the argument
that follows, also in the case of oblique modes with |kz| � |ky|. This assumption is
supported by numerical evidence (Borgogno et al. 2017).

If the Landau damping term q‖e is included, for the magnetic equilibrium under
consideration, the action of the operator L in Fourier space corresponds to

ˇLfky,kz =
1√

(1− (λ/Lx) tanh(Lx/λ))k2y + k2z

(
−
∂A‖eq

∂x
iky + ikz

)
f̌ky,kz , (4.20)

where A‖eq(x) = −λ ln cosh(x/λ) is the equilibrium magnetic flux function. Note that, if
compared with the expression for L in Fourier space obtained from Eq. (2.42), no Fourier
transform has been carried out along the x coordinate due to the choice of a non periodic
equilibrium magnetic field.

The linearized electron parallel temperature (4.9) can then be written, in Fourier space,
as

∂t‖eky,kz
∂t

= − 2α√
(1− (λ/Lx) tanh(Lx/λ))k2y + k2z

(
ky
∂A‖eq

∂x
− kz

)2

t‖eky,kz

− 4

βe
i

(
ky
∂A‖eq

∂x

(
− ∂2

∂x2
+ k2y

)
+ ky

∂3A‖eq

∂x3
− kz

(
− ∂2

∂x2
+ k2y

))
A‖ky,kz ,

(4.21)

and t‖eky,kz
, A‖ky,kz are the Fourier coefficents of the perturbations of the magnetic flux

function Ã and of the parallel electron temperature t̃‖e , so that

Ã‖(x, y, z, t) =

+∞∑
ky,kz=−∞

A‖ky,kz (x, t) exp[i(kyy + kzz)]

and

t̃‖e(x, y, z, t) =

+∞∑
ky,kz=−∞

t‖eky,kz
(x, t) exp[i(kyy + kzz)]. (4.22)

From Eq. (4.21) it follows that the first term on the right-hand side, which corresponds
to the Landau damping term, vanishes at the resonant surface, which identifies the
reconnection region. On the other hand, such term possesses a negative definite coefficient
and tends to decrease the amplitude of the squared modulus of the Fourier coefficients
|t‖eky,kz |

2, thus leading to damping of electron temperature fluctuations. On the basis
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Figure 1. Linear growth rates of reconnecting modes for simulations in the presence (dashed
lines) and in the absence (solid lines) of the Landau damping term. For all modes under
consideration, the Landau damping term acts to reduce the growth rate.

of the above reasoning and of relation (4.19), we expect the Landau damping term
to decrease the reconnecting growth rate. This statement is confirmed by numerical
simulations and illustrated in Fig. 1, where linear growth rates as function of kz, for
different values of the poloidal mode number m, are shown for cases including and
excluding the Landau damping term. The comparison between simulations with or
without the Landau damping term clearly shows that the latter reduces the linear growth
rate for all modes considered. By reducing the temperature fluctuations, the Landau
damping term inhibits reconnecting modes leading, for m > 4, to complete stabilization
at sufficiently large values of kz, where the corresponding modes in the absence of Landau
damping are unstable.

We remark that the relations (4.18) and (4.19), obtained from a fluid description, can
also be obtained from the formula (B71) of Zocco & Schekochihin (2011), which accounts
for the full electron kinetic response, considering the specific limits of adiabatic and
isothermal electrons, respectively. Such more general formula also pertains to the small
∆′ regime and to modes with kz = 0. Denoting with γkin the growth rate calculated with
the formula (B71) of Zocco & Schekochihin (2011), we obtain γisoth < γkin < γadiab, and
in particular γkin = 0.93γadiab.

In Fig. 2 we show a comparison between numerical growth rates obtained from our
Landau-gyrofluid model and analytical growth rates calculated using the formula (B70)
of Zocco & Schekochihin (2011), valid for arbitrary values of ∆′. Indeed, the comparison
refers to growth rates of modes with kz = 0 and values of ky ranging in an interval that
covers both the small and the large ∆′ regimes (note that ∆′ → +∞ as ky → 0+). The
growth rates obtained from the Landau-gyrofluid model agree well, over the whole range
of ky considered, with the analytical growth rates derived from a formula which takes
into account the full kinetic response of the electrons. We remark that, on the basis of
the analysis of Fig. 1, for kz = 0, the impact of Landau damping is less pronounced
with respect to modes with higher kz, so that for purely two-dimensional disturbances,
the adiabatic model could approximate the kinetic results with errors of comparable
amplitude, with respect to the Landau-gyrofluid model. The advantages of including
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Figure 2. Comparison between growth rates obtained numerically from the Landau-gyrofluid
model (circles) and analytical growth rates (solid line) obtained from the formula (B70) of Zocco
& Schekochihin (2011). The growth rates refer to perturbations with kz = 0.

Landau damping are then expected to become more evident for modes with larger values
of kz.

4.3. Nonlinear regime

In order to investigate the influence of Landau damping on the nonlinear phase
of magnetic reconnection, we analyzed the plasma dynamics induced by a magnetic
perturbation of wave numbers ky = 1/12, kz = 1/48 in a slab with Lx = 46, Ly = 12π,
Lz = 48π. Many works in literature showed that the numerical integration of Eqs. (4.7)-
(4.10) in the absence of Landau damping effects is non-trivial, due to the co-existence
of a broad range of time and length scales (Grasso et al. 2007; Del Sarto et al. 2003;
Chacon & Stanier 2016). In the present work, we verified that the numerical solution is
even stiffer when the heat fluxes are retained. Within our third order Adam-Bashforth
explicit algorithm, the time step in the nonlinear phase is indeed to be decreased, when
the q‖e field contribution is dominant, by up to two orders of magnitude with respect to
the time step used in the linear phase. This makes numerical simulations very expensive
in three-dimensional geometry, even when using an efficiently scalable parallel algorithm.
In order to reduce the computational time, while preserving the accuracy in the spatial
discretization, we adopted an alternative approach valid for single helicity problems. As
described in Borgogno et al. (2005), it consists in the solution of an equivalent two-
dimensional problem in the new coordinates (x, y∗), where y∗ = y + (kz/ky)z, with a
shifted equilibrium magnetic flux function A∗‖eq(x) = A‖eq(x)− (kz/ky)x.

Figure 3 shows the evolution of characteristic properties of the magnetic island with and
without the Landau term versus the time normalized with respect to the corresponding
growth rate. In particular, we plotted in black the logarithm of the magnetic island area,
reproducing the reconnected flux at the island X−point, and in cyan the X− point
position along the x direction. Note that for the nonsymmetric tearing modes the radial
position of the magnetic null point varies in time because it does not coincide with a
stagnation point, in contrast with the symmetric configurations. Note also that in Fig. 3
the horizontal axis indicates the time normalized by the growth rate corresponding to each
simulation. Since we know from the linear analysis shown in Sec. 4.2 that Landau damping
reduces the reconnection growth rate, the observation that the plots for the cases with
and without Landau damping essentially overlap, in fact indicates that Landau damping
slows down, with respect to the time t, also the nonlinear phase of the reconnection
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process. On the other hand, Fig. 3 shows that the Landau term does not affect the
saturation level of the magnetic island area. We remark that two-dimensional simulations
based on a hybrid model showed agreement, in terms of saturated island width, with the
results of a reduced fluid model, as long as the value of the normalized ∆′ parameter did
not become too small (Loureiro et al. 2013). Moreover, we can state that the saturated
amplitudes measured in our simulations are comparable to the ones reported in Loureiro
et al. (2013).
In Fig. 4 we consider the variation of the different terms contributing to the Hamiltonian
(4.13) with respect to their initial value and normalized to the total energy at time
t = 0, for the two cases under considerations. In particular, the variations are defined as
(1/2)

∫
d3x(ξ(x, y, z, t)− ξ(x, y, z, 0))/H(0), where the function ξ can be replaced by the

different contributions to the Hamiltonian H. So one has Epe for ξ = n2e (internal energy
due to density fluctuations), ET‖ for ξ = t2‖e/2 (parallel thermal energy), Eke for ξ = δ2u2e
(parallel kinetic energy), Ekp for ξ = |∇⊥ϕ|2 (perpendicular plasma kinetic energy), Emag
for ξ = (2/βe)|∇⊥A‖|2 (magnetic energy). We also defined Elandau = 1 −H(t)/H(0) =

(1/(2H(0)))
∫ t
0
dw
∫
d3x t‖e∇‖q‖e , which corresponds to the energy dissipated via Landau

damping. Note that the perpendicular thermal energy ET⊥, corresponding to ξ = t2⊥e , is
neglected because of the choice of the initial conditions ϕ(x, y, z, 0) = 0, t⊥e(x, y, z, 0) =
0, that does not allow any time variation of t⊥e , according to Eq. (4.10). We remark
that, in the non-dissipative case, the percentage of total energy dissipated numerically
when saturation is reached (at about t = 10.5/γ) is |1 −H(t = 10.5/γ)/H(0)| ≈ 0.002,
thus just about one fifth of the variation of magnetic energy at the same time, given
by |Emag(t = 10.5/γ)|. By extrapolating this result to the case with Landau damping,
one finds that the energy dissipated numerically is thus a small (although non-negligible)
fraction of that dissipated by the Landau damping term.

Before the peak of the reconnection rate, which occurs for γt ∼ 10 as shown in Fig. 5
by the parallel electric field at the island X-point, the energy balance is similar in the two
cases. In this time interval, the decrease of the magnetic energy is the same, as well as the
growth of the perpendicular plasma kinetic energy that represents the dominant term of
the energy balance. The main differences appear in the advanced nonlinear phase, when
the process moves towards the saturation. In the Hamiltonian case, due to the formation
of small scales in the fields ne, t‖e and ue, the contributions of the terms Epe, Eke and
ET‖ become comparable or even higher than Ekp. In particular, the internal energy due
to electron temperature fluctuations represents the main sink where the magnetic energy
is transferred in this phase. On the other hand, when Landau damping is retained, the
contribution of all these terms is significantly lower than before and the initial energy
is almost exclusively dissipated into electron heating, as observed also in Loureiro et al.
(2013). We remark that no time lag is observed in our dissipative simulation between the
maximum of the reconnection and dissipation rates, according to the fact that this lag
is a typical feature of the weakly dissipative systems (Loureiro et al. 2013).

The spatial distributions of the fields ϕ, ne, J and T‖e in the dissipationless and
in the dissipative regime we considered are shown in Fig. 6 and Fig. 7, respectively.
No significant differences appear in the electrostatic potential, that exhibits in both
cases large-scale structures along the separatrices of the magnetic islands. The major
discrepancies concern the other fields. The thin layers where ne, J and T‖e are located,
characteristic of collisionless reconnection (Grasso et al. 2001), are smoothed out by
Landau damping. The major differences clearly involve the parallel electron temperature,
whose peaks are almost twice smaller in the dissipative regime than in the dissipationless
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Figure 3. Time evolution of the magnetic island area (black) and the x coordinate of the
X-point position (cyan) for the cases with (circle) and without (solid line) the Landau damping
contribution. Each set of data is plotted versus the normalized time γt, where γ is the
corresponding linear growth rate. Because γ is smaller when Landau damping is taken into
account, the growth of the magnetic island with respect to the time t is slower in the case with
Landau damping than without.

Figure 4. Time variations of the different components of the energy with respect to its initial
value, divided by the total energy, for the dissipationless (left frame) and the dissipative case
(right frame). The curves are plotted versus the normalized time γt in order to simplify the
comparison between the two regimes and refer to the nonlinear phase of the reconnection process.
The range of the vertical axis is the same for both the left and the right frame.

case.

5. Conclusions

A reduced Landau gyrofluid model for low-β collisionless plasmas was derived and
applied to a magnetic reconnection problem. The model was derived from a parent
gyrofluid model by an asymptotic expansion based on a prescribed ordering and by
imposing a Landau fluid closure on the electron heat fluxes. Gyro-effects were neglected
for electrons but retained for the ion gyrocenters, leading to a closed six-field model.
Such model generalizes the model of Schep et al. (1994) by including Landau damping
closures, parallel and perpendicular electron temperature fluctuations, as well as ion
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Figure 5. Time evolution in the nonlinear regime of the parallel electric field in the dissipative
(circle) and dissipationless case (solid line) versus the corresponding normalized time.

Figure 6. Contour plot of the fields ϕ, ne, ue, T‖e at the peak of the reconnection rate in the
dissipationless regime. The superimposed black lines map the separatrices of the corresponding
magnetic island. The range of the vertical axis is the same for both left and right frames.



A reduced Landau fluid model 23

Figure 7. Contour plot of the fields ϕ, ne, ue, T‖e at the peak of the reconnection rate in
the dissipative regime. The superimposed black lines map the separatrices of the corresponding
magnetic island. The range of the vertical axis is the same for both left and right frames.

gyrofluid perpendicular temperature fluctuations. We showed that, in the absence of
Landau damping terms, the model possesses a noncanonical Hamiltonian structure. The
Poisson structure is characterized by a one-parameter family of Poisson brackets. The
change from the original field variables to six normal field variables suggested by the
Casimir invariants, allowed to cast the Poisson bracket and the model equations in their
simplest form. Four out of the six resulting evolution equations are advection equations
for Lagrangian invariants. Two of such advection equations express electron entropy
conservation and advection of electron perpendicular temperature fluctuations. The
remaining two advection equations, on the other hand, concern two Lagrangian invariants
which are linear combinations of ion gyrocenter density and perpendicular temperature
fluctuations, advected by an electrostatic potential with ion gyro-radius corrections.
Such advection equations appear frequently in Hamiltonian reduced fluid models, in the
two-dimensional limit (see, e.g. Tassi (2017), Tassi (2015), Keramidas Charidakos et al.
(2015), Hazeltine et al. (1987) and Grasso & Tassi (2015)), although previous reduced
Hamiltonian models involved only parallel temperature fluctuations.

The derived model was subsequently considered in a simplified version which neglects
ion equilibrium temperature as well as ion gyrocenter density and perpendicular temper-
ature fluctuations. In this limit, the system was trivially re-expressed in terms of particle
fluid moments, yielding a generalized reduced magnetohydrodynamics model accounting
for electron inertia, electron parallel and perpendicular temperature fluctuations and
Landau closures for the heat fluxes. Magnetic reconnection in a 3D domain, triggered
by single-helicity perturbation was then simulated numerically on the basis of such
simplified version of the model. It was found that, by reducing the energy associated with
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parallel temperature fluctuations, parallel Landau damping acts to decrease the linear
growth rate of reconnection. In particular, for higher m-modes, Landau damping can
actually completely stabilize perturbations, at large enough kz. In the nonlinear regime,
Landau damping does not seem to influence the amplitude of the saturated magnetic
island, which agrees with results obtained in Loureiro et al. (2013) with a hybrid model.
Landau damping also tends to smoothen field gradients, in particular for the electron
temperature fluctuations, that are directly affected by the Landau term. We also pointed
out the absence of time lag between the maximum reconnection rate and dissipation rate
observed with the Landau gyrofluid model, in contrast with what is observed with the
hybrid model of Loureiro et al. (2013). This might be ascribed to a stronger dissipation
induced by the terms that account for Landau damping in the Landau gyrofluid model,
with respect to the actual Landau damping described by a drift-kinetic equation. The
natural question arises then about whether the Landau fluid model indeed overestimates
the amount of dissipated energy and what would be the consequences of considering a
higher order closure.
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