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INTEGRAL POINTS IN RATIONAL POLYGONS: A

NUMERICAL SEMIGROUP APPROACH

GUADALUPE MÁRQUEZ–CAMPOS, JORGE L. RAMÍREZ–ALFONSÍN,

AND JOSÉ M. TORNERO

Abstract. In this paper we use an elementary approach by using numerical
semigroups (specifically, those with two generators) to give a formula for the
number of integral points inside a right–angled triangle with rational vertices.

This is the basic case for computing the number of integral points inside a
rational (not necessarily convex) polygon.

1. Introduction: A little bit of history

In recent times, impressive advances in computational combinatorics and the
ever–increasing amount of applications to other branches of mathematics have made
lattice–point counting a fruitful and dynamic research field.

The problem of computing the set of integral points inside plane bodies has a
long history. We will see how to reduce this problem to an interated application of
Theorem 2. A milestone in this story is Pick’s Theorem [16], from the late years of
the 19th century.

Theorem 1. Let S be a polygon such that all of its vertices are integral, and int(S)
and ∂S are, respectively, its interior and its boundary, let A(S) be the area of S,

I(S) = #
(

Z2 ∩ int(S)
)

, B(S) = #
(

Z2 ∩ ∂S
)

.

Then

A(S) = I(S) +
B(S)

2
− 1.

More specifically, the question of counting lattice (in particular integral1) points
inside a right triangle has a long and interesting story. As early as 1922 Hardy and
Littlewood [9] studied the problem of right triangles defined by the coordinate axes
and a hypotenuse with irrational slope.

In the following years, the interest for the subject did not decline. For instance, in
[7] Ehrhart introduced the so–called Ehrhart quasi–polynomials, an almost ubiquous
tool nowadays. In [15] Mordell established a connection between lattice points
problems (for the tetrahedron) and Dedekind sums while in [17] Pommersheim
derived a more genaral formula by using techniques from algebraic geometry, see
also [21].
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1Throughout this paper we will call a point P ∈ R2 integral if its coordinates lie in Z2, and

similarly P will be called rational if P ∈ Q2.
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A very good and comprehensive introduction to the subject, with a good share of
deep results is Beck and Robins book [4] where, in particular, the reader can find a
formula, due the same authors [3], to compute the number of integral points inside
a right triangle. Their approach is quite different from ours, they came out with a
formula that uses either n–th primitive roots of unity or Fourier–Dedekind sums.
The latter allowed them to give an efficient algorithm to calculate the number of
integral points inside a right triangle since Dedekind sums with 2 variables can
be computed in polynomial time. In this regard, we mention a polynomial time
algorithm, due to Barnikov [1, 2] (that has significally influenced the field) that
enumerates the lattice points of rational polytopes in fixed dimension.

Let us finally mention an interesting generalization of our problem. Let us call a
right tetrahedron the convex set of Rn

≥0 limited by the coordinate hyperplanes and

a hyperplane a1x1 + ... + anxn = 1, with ai ∈ R. The question of counting (more
precisely, bounding) the number of points in n–dimensional right tetrahedra has
been a subject of study of S.S.T. Yau and some of his collaborators [11, 12, 13, 22,
23, 24, 25], a research that produced the so–called GLY conjecture (named after its
creators, A. Granville, K.P. Lin and S.S.T. Yau).

This conjecture gives a lower estimate for the number of integral points in an
n–dimensional right tetrahedron in terms of its vertex coordinates (the weak es-
timate) and in terms of these coordinates and the Stirling numbers (the strong
estimate). The weak version was proved by Yau and Zhang [26]. Asfor the strong
version is concerned, the authors claim in the same paper that it has been checked
computationally up to n = 10. The fact is that the conjecture might be checked for
a particular n, but the state–of–the–art has not changed since. According to the
authors, the case n = 10 took weeks to be completed. This result came handy to
the first and third author in [14]. Please note that the GLY conjecture only applies
to n ≥ 3.

The main result of this paper is concerned with the following situation.

Theorem 2. Let a < b be coprime integers, c ∈ Z. Consider the following set:

T =
{

(y1, y2) ∈ Z2
≥0 | ay1 + by2 ≤ c

}

.

Then

#T = −
ab

2
k2 +

a+ b+ 1 + 2c

2
k +

⌊ c−kab

b ⌋
∑

i=0

(⌊

c− kab− ib

a

⌋

+ 1

)

where k = ⌊c/(ab)⌋. Equivalently, by using the Euclidean division c = q ·ab+ r, the
above formula can be expressed in the following alternative way

#T = −
ab

2
q2 +

a+ b+ 1 + 2c

2
q +

⌊r/b⌋
∑

i=0

(⌊

r − ib

a

⌋

+ 1

)

.

Our technique to prove this result is based essentially in numerical semigroup
invariants (the relationship between semigroups and lattice points problems has
already been remarked in [20]). Although the above formula is not polynomial
in the input size (since the sum has a terms in the worse case), we think that
this elementary approach (avoiding Fourier analysis) might suggest a number of
follow–up questions, which would be fruitful to investigate.

Two such questions are shown as applications of the main result in the last
section. The first one will be computing the number of integral points inside a



INTEGRAL POINTS IN RATIONAL POLYGONS 3

polygon with rational vertices. The second will explore a possible application to a
well–known problem in numerical semigroups: the computation of the denumerant.

2. An interlude on numerical semigroups

This paper relies on numerical semigroups as a fundamental tool. A numerical
semigroup is a very special kind of semigroup that can be thought of as a set

〈 a1, ..., ak 〉 = {λ1a1 + ...+ λkak | λi ∈ Z≥0} , with gcd(a1, ..., ak) = 1.

This object has been thoroughly studied in the last years, when a significant
number of problems concerning the description of these semigroups and some of its
more interesting invariants have been tackled. Unless otherwise stated, all proofs
which are not included can be found in [8, 19].

Given a numerical semigroup S, there are some invariants which will be of interest
for us. The most relevant will be the set of gaps, noted G(S), and defined by

G(S) = Z≥0 \ S,

which is a finite set. Its cardinality will be noted g(S) and its maximum f(S), the
so–called Frobenius number.

The Apéry set of S with respect to an element s ∈ S can be defined as

Ap(S, s) = {0, w0, ..., ws−1}

where wi is the smallest element in S congruent with i modulo s.

In particular, for semigroups with two generators, the invariants g(S) and f(S)
and the relevant Apéry sets are fully determined.

Lemma 3. Let S = 〈 a1, a2 〉. Then

g(S) =
1

2
(a1 − 1)(a2 − 1)

f(S) = (a1 − 1)(a2 − 1)− 1

Ap(S, ai) = {0, aj , 2aj , ..., (ai − 1)aj}

3. The number of integral points inside a right triangle

Let us consider then a right triangle determined by the positive coordinate axes
and the line

ax+ by = c, a, b, c ∈ Z and gcd(a, b) = 1,

where we will assume a < b, with no loss of generality.
Take the set:

T =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c

}

and let us define the numerical semigroup associated to our triangle as S = 〈a, b〉.
S therefore verifies that its Frobenius number is f(S) = ab− (a+ b).

Let us perform the following partition on our set T :

B0 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, 0 ≤ x < b

}

B1 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, b ≤ x < 2b

}

...
...

Bi =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, ib ≤ x < (i+ 1)b

}

...
...

Bk =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c, kb ≤ x

}
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where k = ⌊c/(ab)⌋.

As our aim is to find #T , and it is plain that:

#T = #B0 +#B1 + ...+#Bk−1 +#Bk,

we can reduce our problem to that of finding #Bi, for i = 0, ..., k.

Lemma 4. Under the previous assumptions, if k > 0,

#B0 =
a+ b− ab+ 1

2
+ c =

1− f(S)

2
+ c

Proof. We will actually show that

S ∩ [0, c]
1:1
←→ B0.

Given a pair (x, y) ∈ B0 we define its corresponding element in S ∩ [0, c] to be
n = ax+ by.

In the same way, given n ∈ S∩ [0, c] it is clear that we must have a representation
n = ax+ by and we can in fact assume 0 ≤ x < b (if otherwise, we can move part
of ax into the by summand until x < b).

Let us assume that we have such a representation (that is, with 0 ≤ x < b) and
we will prove that then the pair (x, y) must be unique, which will establish the
bijection. Should we have

n = ax0 + by0 = ax1 + by1, with 0 < x0, x1 < b,

we must have
a(x0 − x1) = b(y1 − y0)

and, as gcd(a, b) = 1, this means b|(x1 − x0), which in turn implies x0 = x1. Note
that the case x0 = x1 = 0 leads directly to y0 = y1 as desired.

Note that k > 0 is equivalent to c ≥ ab, which also yields c > f(S). Therefore,
after Lemma 3,

#B0 = #
(

S ∩ [0, c]
)

= #
(

S ∩ [0, f(S)]
)

+ c− f(S)

=
ab− (a+ b) + 1

2
+ c−

(

ab− (a+ b)
)

=
a+ b− ab+ 1

2
+ c.

�
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Simple as it is, this case is the basic argument for the whole process. Now, if
we want to compute #B1, we just move our triangle, so that (b, 0) is now at the
origin. Similarly, the line ax+ by = c is moved, as in the picture:

So, with a little abuse of notation, let us redefine:

B1 =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ c1, 0 ≤ x < b

}

where c1 = c− ab (obviously this only makes sense if c > ab). Assuming k > 1 we
have, following the same way:

#B1 = #(S ∩ [0, c1]) = #
(

S ∩ [0, c− ab]
)

=
ab− (a+ b) + 1

2
+ c− ab− (ab− (a+ b) + 1)

=
a+ b− 3ab+ 1

2
+ c.

We can of course go along the same lines for computing #Bi for i = 1, ..., k − 1,
where k = ⌊c/(ab)⌋, rewriting ci = c− iab, whenever c > iab and we will find:

#Bi = #(S ∩ [0, ci]) = #
(

S ∩ [0, c− iab]
)

=
ab− (a+ b) + 1

2
+ c− iab− (ab− (a+ b))

=
(a+ b)− (1 + 2i)ab+ 1

2
+ c

We have then arrived at the nutshell of the problem: the set Bk. After we have
moved it to the origin, we have our renamed Bk:

Bk =
{

(x, y) ∈ Z2
≥0 | ax+ by ≤ ck

}

.

Now we might have ck < ab− (a+ b). So we cannot proceed in the same way as
before. We do know ck = c − kab, that is, ck = c mod ab, and from Lemma 3 we
also know:

Ap(S, a) = {0, b, 2b, ..., (a− 1)b}

and therefore

{w ∈ Ap(S, a) | w ≤ ck} =
{

ib
∣

∣

∣
i = 0, 1, ...,

⌊ck
b

⌋}

On the other hand, if i ∈ {0, ..., ⌊ck/b⌋}, we have

ib+ ja ≤ ck ⇐⇒ j ≤

⌊

ck − ib

a

⌋

,
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and then

S ∩ [0, ck] = {ib+ ja ≤ ck | i, j ∈ Z≥0}

=

{

ib+ ja
∣

∣

∣
i ∈
{

0, ...,
⌊ck
b

⌋}

, j ≤

⌊

ck − ib

a

⌋}

=

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

Adding up all of these computations, we arrive to our result. In the previous
conditions:

#T = #B0 +#B1 + ...+#Bi + ...+#Bk−1 +#Bk

=

(

a+ b− ab+ 1

2
+ c

)

+ ...+

(

(a+ b)− (1 + 2i)ab+ 1

2
+ c

)

+

+...+

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

=

k−1
∑

i=0

(

(a+ b)− (1 + 2i)ab+ 1

2
+ c

)

+

⌊ck/b⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

= −
ab

2
k2 +

a+ b+ 1 + 2c

2
k +

⌊ c−kab

b ⌋
∑

i=0

(⌊

c− kab− ib

a

⌋

+ 1

)

where k = ⌊c/(ab)⌋. Or equivalently, by using the Euclidean division: c = q · ab+ r
we obtain

#T = −
ab

2
q2 +

a+ b+ 1 + 2c

2
q +

⌊r/b⌋
∑

i=0

(⌊

r − ib

a

⌋

+ 1

)

.

This proves Theorem 2.

Example. Let us do a simple example to illustrate the process, considering the
triangle defined by the line 3x+ 7y = 46.

Following Theorem 2 we have k =
⌊

46
3·7

⌋

= 2, that is,

# T = −
3 · 7

2
22+

3 + 7 + 1 + 2 · 46

2
·2+

⌊ 46−2·3·7

7 ⌋
∑

i=0

(⌊

46− 2 · 3 · 7− i · 7

3

⌋

+ 1

)

= 63.

Let us see the actual counting:
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In the picture we have put different symbols for the different sets Bj , following
the process. Round points correpond to B0. There are 41 of them, as predicted by
the formula:

#B0 =
a+ b− ab+ 1

2
+ c =

3 + 7− 3 · 7 + 1

2
+ 46 = 41.

Crossed points correspond to points in B1:

#B1 =
a+ b− 3ab+ 1

2
+ c =

3 + 7− 3 · 3 · 7 + 1

2
+ 46 = 20.

And finally the square points are those of B2:

#B2 =

⌊ ck

b ⌋
∑

i=0

(⌊

ck − ib

a

⌋

+ 1

)

=

⌊

46− 42

3

⌋

+ 1 = 2.

4. Applications (I): Integral points in general triangles

Our aim in this section is to give a result (in some sense in the spirit of Pick’s
theorem) to compute the number of integral points inside a generic triangle. This,
of course, is enough to compute the number of integral points inside polygons (not
necessarily convex) defined by rational vertices. But we will not address here the
problem of dividing a polygon into triangles [5, 10].

The important point here is that, in order to compute the number of integral
points of such a polygon, it suffices with rectangles and right triangles of a particular
type. Of course rectangles can be divided in two right triangles, but this brings no
substantial computational simplification to our problem.

From now on, a rectangle whose sides are parallel to the coordinate axes will be
called a stable rectangle. Computing the number of integral points inside a stable
rectangle is very easy.

Lemma 5. Let α1 < β1 and α2 < β2 be real numbers. Let R ⊂ R2 be the stable

rectangle with vertices (α1, α2) and (β1, β2). Then

#(R ∩ Z2) = (⌊β1⌋ − ⌈α1⌉+ 1) · (⌊β2⌋ − ⌈α2⌉+ 1)

Similarly, a right triangle whose orthogonal sides are parallel to the coordinate
axes will be called a stable right triangle. The computation of the number of integral
points inside a stable right triangle can be easily achieved from Theorem 2, as we
shall show now.

Assume we have such a triangle T defined by rational vertices (A is the vertex
at which T has its right angle):

A = (α, β), B = (α, γ), C = (δ, β),

and we can assume, up to symmetry, α < γ, β < δ. Furthermore, it is clear that,
as for counting integral points is concerned, we can substitute

α 7−→ ⌈α⌉, β 7−→ ⌈β⌉,

and the number of integral points does not change by traslations of integral vectors,
hence we can in fact assume A = (0, 0).
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After translating the triangle T , we can write the hypothenuse of the new triangle
as

ax+ by = c,

where we can assume a, b, c ∈ Z, gcd(a, b, c) = 1. That is, B = (0, c/b), C = (c/a, 0).
Mind that a and b need not to be coprime in this set–up. But, in order to apply
Theorem 2, we should have gcd(a, b) = 1.

Let d = gcd(a, b). There are two possibilities:

(1) d = 1. We can apply Theorem 2.
(2) d > 1. As gcd(d, c) = 1 clearly there are no integral points in the hy-

pothenuse, as any such point (x, y) must verify ax + by ∈ Zd. So we are
going to change the triangle T , moving the hypothenuse in a parallel way
towards A, until the new triangle has at least some chance to have one
integral point in the hypothenuse. This is the triangle T ′ defined by

ax+ by = c′,

where c′ = ⌊c/d⌋d. It is clear that with such construction #(T ∩ Z2) =
#(T ′ ∩ Z2) and so #(T ∩ Z2) can be computed counting the number of
integral points in the stable triangle defined by

a

d
x+

b

d
y =

c′

d
=
⌊ c

d

⌋

,

that is, using Theorem 2.

As we shall see later, in related problems (as, for instance, the problem of com-
puting the number of integral points inside a polygon), we might have to compute
the number of points in the sides of a right stable triangle. To do this, note that:

• The number of integral points in the orthogonal sides can be easily com-
puted: in the segment limited by (a, b) and (a, c), say with b < c (any other
case is obviously symmetric), the number of integral points is

(⌊c⌋ − ⌈b⌉+ 1) · 1Z(a),

where 1Z(a) is the indicator function of Z.
• The number of integral points in the line ax + by = c is the number of
representations of c inside the semigroup S = 〈a, b〉. This number is
known as the denumerant of c in S [19].
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It is easy to see that this denumerant has to be either ⌊c/(ab)⌋ or
⌊c/(ab)⌋ + 1, that is, k or k + 1 with the notation of the previous sec-
tion, assuming c ∈ S (obviously it is 0 otherwise). This is because c (or
ci) must be representable and from Lemma 4 there must exist exactly one
representation whose coefficients are in B0 (respectively Bi). This holds
true for B0,...,Bk−1 but not necessarily for Bk (because ck might not be
in S), hence the two possible cases. More precisely, we have the following
result (see [18] for the original proof in Romanian, [6] for a shorter and
easier one):

Theorem 6. Under the previous asumptions, let a′ and b′ be the only integers

veryfing

0 < a′ < b, a · a′ = −c mod b

0 < b′ < a, b · b′ = −c mod a

Then the denumerant of c in S is given by

d(c; a, b) =
c+ a · a′ + b · b′

ab
− 1

In the sequel, when we are interested in the points inside a right triangle T we
will write #T int and if we want the points excluding only the hypothenuse we will
denote this cardinal by #Thyp.

Finally, then, let us show how to compute the integral points in a generic triangle
using stable rectangles and right triangles (and hence, Theorem 2). Assume we are
given a triangle T , given by

A1 = (α1, β1), A2 = (α2, β2), A3 = (α3, β3),

and let us call

x0 = min
i=1,2,3

αi, x1 = max
i=1,2,3

αi;

y0 = min
i=1,2,3

βi, y1 = max
i=1,2,3

βi;

We consider the (stable right) rectangle RT determined by
{

V1 = (x0, y0), V2 = (x1, y0), V3 = (x0, y1), V4 = (x1, y1)
}

.

It is clear that it must hold Vi = Aj for some i = 1, 2, 3, 4 and j = 1, 2, 3.
Depending on the relative position of the maximal vertices, the situation must be
one of these four (up to rotation and flip, if necessary):

• Only one of the vertices of RT is a vertex of T . Then it is clear that:

#T = #RT −#Thyp
1 −#Thyp

2 −#Thyp
3 .
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• Two adjacent vertices of RT are vertices of T . Then:

#T = #RT −#Thyp
1 −#Thyp

2 .

• Two non–adjacent vertices of RT are vertices of T . Then (one of many
possibilities):

#T = #RT −#Thyp
1 −#Thyp

2 −#Thyp
3 −#T4 −#T int

5 + 1Z2(P ) + 1Z2(Q).

• The three vertices of T are vertices of RT . This is the trivial case, as T is
a right stable triangle.

5. Applications (II): On the denumerant of a numerical semigroup
with 3 generators

The result on rational polygons and its reduction to rectangles and right triangles
could be generalized to an n–dimensional set–up. However, the actual formulas are
not easy enough so as to give a tight result. We give a first idea on how this
could be done by computing the number of points in a stable right tetrahedron
(the definition is the obvious one).

Theorem 7. Let T (a1, a2, a3, b) ⊂ R3 be the tetrahedron defined by

T (a1, a2, a3, b) = {(x1, x2, x3) | xi ≥ 0, a1x1 + a2x2 + a3x3 ≤ b}

where we are assuming a1 < a2 < a3, gcd(a1, a2) = 1.
For i = 0, ..., ⌊b/a3⌋ define qi and ri by the Euclidean division:

b− a3i = qi(a1a2) + ri.



INTEGRAL POINTS IN RATIONAL POLYGONS 11

Then

#
(

T (a1, a2, a3, b) ∩ Z3
)

=

⌊b/a3⌋
∑

i=0

(

−
ab

2
q2i +

a+ b+ 1 + 2(b− a3i)

2
qi +

+

⌊ri/b⌋
∑

j=0

(⌊

ri − ja2
a1

⌋

+ 1

)

)

.

Proof. The formula is just the result of adding the number of points in every right
triangle T (a1, a2, a3, b) ∩ {x3 = i} for i = 0, ..., ⌊b/a3⌋. �

The condition gcd(a1, a2) = 1 can obviously be substituted by gcd(a1, a3) = 1 or
gcd(a2, a3) = 1 if necessary. If none of this conditions is met, like in the tetrahedron
defined by

6x1 + 10x2 + 15x3 = 21,

for instance, then some of the right triangles have to be adjusted as we did in
the previous section. This is not a difficulty when programming, so to say, but
the general formula gets a lot more complicated. We have tried to get a compact
version of this, but this effort has been unsuccesful so far.

This result can be handy when trying to compute the denumerant function we
introduced above.

Easy as it is to define, the denumerant is a very elusive function which has proved
elusive to compute even in cases with 3 generators (see [19, Chapter 4]). With the
previous result one can give a formula, not very sophisticated though. Simply note
that

d (a; a1, a2, a3) = #
{

(x1, x2, x3) ∈ Z≥0 | a1x1 + a2x2 + a3x3 = a
}

= #
(

T (a1, a2, a3, a) ∩ Z3
)

−#
(

T (a1, a2, a3, a− 1) ∩ Z3
)

.

And then, from the previous result, one can obtain the desired formula.
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[19] Ramı́rez Alfonśın, J.L.: The Diophantine Frobenius problem. Oxford University Press, 2005.
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