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ABSTRACT

In this work, we present new theoretical results on sparse re-
covery guarantees for a greedy algorithm, orthogonal match-
ing pursuit (OMP), in the context of continuous parametric
dictionaries, i.e., made up of an infinite uncountable num-
ber of atoms. We build up a family of dictionaries for which
k-step recovery is possible with OMP for 1-dimensional pa-
rameters. In higher dimension, algebraic conditions become
necessary and will lead us to revisit some well-known k-step
discrete analyses. Finally, a toy-example illustrates the level
of tightness of our sufficient conditions.

Index Terms— Sparse representation, continuous dictio-
naries, orthogonal matching pursuit, exact recovery.

1. INTRODUCTION

Over the last decade, sparse representations have sparked a
surge of interest in both signal processing and statistics com-
munities. It consists in finding a “simple” representation of a
signal y living in a Hilbert spaceH as a linear combination of
a few unit-normed elements from a dictionary A ⊂ H, that is

y =

k∑
`=1

c` a` where c` ∈ R, a` ∈ A . (1)

Here, the notion of sparsity refers to the fact that few elements
are used in the decomposition of y compared to the ambient
dimension. In the sequel, we restrict our attention to paramet-
ric dictionaries defined as

A = {a(θ) | θ ∈ Θ} (2)

where Θ is the parameter set and a a continuous mapping.
Sparse representations have proven to be of great interest

in many application fields, leading to, e.g., the famous com-
pression standards JPEG or MP3 [1]. Although this problem
has been shown to be NP-hard [2], numerous practical pro-
cedures, along with their theoretical analyses, have been pro-
posed in the literature. However, most contributions address
the sparse-representation problem in the “discrete setting”,
i.e., where the dictionary contains a finite number of elements,
see [3]. Among the most popular, one may mention methods

based on convex relaxation, e.g., Basis Pursuit (BP) [4] or
the Lasso [5], nonconvex minimization [6, 7] and greedy al-
gorithms. The latter are procedures that iteratively increment
the support of the estimated signal starting from the empty
support, by selecting one new atom per iteration. In this pa-
per, we focus on Orthogonal Matching Pursuit (OMP) [8]
described in Alg. 1.

A question of broad interest is the k-step recovery of
sparse supports. Given a finite subset S? , {θ?` }

k
`=1 ⊂ Θ,1

is it possible to recover S? in k-steps from any observation y
that is a linear combination of atoms a(θ?` ) for θ? ∈ S?? In
the discrete setting, the first thorough analysis of the so-called
uniform recovery (irrespective of the weights (c`)

k
`=1 of the

atoms) of a support S? by OMP is due to Tropp [9]. Using
our formalism, he showed that OMP recovers S? from any
combination of linearly independent atoms {a(θ?` )}k`=1 if
and only if

∀ θ ∈ Θ\S? ,
∥∥G−1gθ

∥∥
1
< 1, (3− ERC)

where G ∈ Rk×k and gθ ∈ Rk are defined by G[i, j] =
〈a(θ?i ),a(θ?j )〉 and gθ[i] = 〈a(θ),a(θ?i )〉H for any θ. Condi-
tion (3− ERC) is called exact recovery condition (ERC) and
can be computationally tested when Θ is a finite set. Interest-
ingly, (3− ERC) is also connected to the correct identifica-
tion of S? by other greedy procedures [10, 11] and by convex
relaxation [12, 13, 14]. However, condition (3− ERC) is of
limited practical interest since it requires to know the support
beforehand. To circumvent this issue, weaker but easier-to-
evaluate sufficient conditions of success have been developed.
One of the most popular is based on the mutual coherence µ
of the dictionary and imposes

k < 1
2

(
1 + µ−1

)
where µ = sup

θ 6=θ′∈Θ

|〈a(θ),a(θ′)〉H|.

(4)
In the last few years, several works have tackled the prob-

lem of sparse representation in continuous dictionaries, i.e.,
where A is made up of an uncountable number of atoms [15,
16, 17]. It was shown that a continuous version of the Lasso
can be expressed as a convex optimization problem over the
space of Radon measures, called the Beurling Lasso [18, 19]

1Note that S? usually refers to a set of indices in the discrete setting.



Algorithm 1:Orthogonal Matching Pursuit (OMP)
Input: Observation y, atoms a(·) and sparsity k.

1 for t← 1 to k do
2 r = y −

∑t−1
`=1 ĉ` a(θ̂`) ;

3 θ̂t ∈ arg maxθ∈Θ

∣∣〈a(θ), r〉H
∣∣ ;

4 ĉ1, . . . , ĉt = arg min
(c1,...,ct)∈Rt

∥∥∥y −∑t
`=1 c` a(θ̂`)

∥∥∥
H

;

5 end
Output: θ̂1, . . . , θ̂k and ĉ1, . . . , ĉk

while a continuous version of BP was proposed in [16]. How-
ever, most conditions resulting from classical recovery anal-
yses are non-realistic for thin grids on Θ since: i) condi-
tion (3− ERC) becomes difficult to assess; ii) the coherence
µ tends to 1 so (4) becomes k = 1. For now, most contri-
butions related to support recovery were done on the side of
convex-based approaches. More particularly, for some fami-
lies of continuous dictionaries, support recovery holds for BP
and Beurling Lasso whenever y is a positive linear combi-
nation of atoms or the parameters θ?` are sufficiently sepa-
rated [16, 17, 19].

In this work, we study the recovery properties of OMP in
the context of continuous dictionaries. OMP is seen here as
a generic algorithm that holds both in the discrete and con-
tinuous settings. In particular, we leverage the expression
of (3− ERC) to rephrase k-step recovery as a property of
the kernel induced by the inner product between atoms. We
then build up a class of dictionaries for which k-step support
recovery is possible under some assumptions.

The remaining of the paper is organized as follows. Sec-
tion 2 elaborates on the “continuous” dictionary setup and the
notion of support recovery. Section 3 presents our results. Fi-
nally, a numerical evaluation of the method is presented in
Section 4 and concluding remarks are given.

2. CONTINUOUS DICTIONARIES AND SUPPORT
RECOVERY

2.1. Continuous dictionaries

The parameter set Θ is assumed to contain an infinite un-
countable number of elements (e.g., a hyper-rectangle of RD).
However, we restrict our attention to the case where Θ = RD.
A second ingredient grounding the paradigm of continuous
dictionaries is the continuity of the function a : Θ→ H, that
is: ∀ θ ∈ Θ , limθ′→θ ‖a(θ′)− a(θ)‖H = 0. In this paper,
we moreover assume that the atoms of the dictionary have a
unit norm, i.e., ‖a(θ)‖H = 1.

In the sequel, our recovery conditions will be expressed
as a function of the symmetric kernel κ(θ, θ′) induced by the
inner product between atoms, that is:

κ(θ, θ′) , 〈a(θ),a(θ′)〉H ∀θ, θ′ ∈ Θ. (5)

The continuity and unit-norm properties imply

“unit norm” : κ(θ, θ) = 1 ∀θ ∈ Θ,
“continuity” : lim

θ′→θ
κ(θ, θ′) = 1 ∀θ ∈ Θ. (6)

Note that combined with the Cauchy-Schwartz inequality, the
unit norm assumption (6) gives |κ(θ, θ′)| ≤ 1. Lastly, we
restrict our attention to evanescent kernels, i.e., such that for
all ε > 0 and θ ∈ Θ,

∃Kε ⊂ Θ compact : sup
θ′∈Θ\Kε

|κ(θ, θ′)| < ε. (7)

Condition (7) guarantees that the maximizer in line 3 of OMP
exists at each iteration, i.e., the supremum is attained.

2.2. Support recovery

We now define the notion of uniform k-step recovery. Let
S? , {θ?` }

k
`=1 be a subset of Θ. We say that y is supported

in S? if y obeys (1) with ∀` ∈ {1, . . . , k}, a` = a(θ?` ) and
c` ∈ R∗. When y is supported in S? and card(S?) = k,
we also say that y is “k-sparse”. Given y, we say that OMP
achieves “k-step” recovery if and only if

arg max
θ∈Θ

|〈a(θ), r〉H| ⊆ S
?, (8)

during the first k iterations, where r ∈ H refers to the residual
computed by OMP (see Alg. 1, line 5). The right-hand side
entails that any maximizer belongs to the support S?, i.e.,

max
θ∈S?

|〈a(θ), r〉H| > |〈a(θ′), r〉H| ∀θ′ ∈ Θ\S?. (9)

In particular, we consider that the situation where equality
occurs in (9) for some θ′ /∈ S? leads to a failure.

We say that OMP achieves “uniform k-step recovery”
if condition (8) is fulfilled for any observation y supported
in S?. “Uniform” refers to the fact that exact recovery is
achieved for any choice of the nonzero coefficients c1 . . . ck.

3. UNIFORM RECOVERY FOR CONTINUOUS
DICTIONARIES

In this section, we present a class of dictionaries for which
uniform recovery is achieved, see Secs. 3.1 and 3.2. Sketches
of proof are available in App. A.

Let H = L2(RD), λ > 0 and consider the following
dictionary A made of functional atoms a(θ) given by

a(θ) : t ∈ RD 7−→ (2λ)
D
2 e−λ1D

T(t−θ)I{t≥θ} , (10)

∀θ ∈ RD where 1D = (1 . . . 1)
T ∈ RD and I equals 1 if all

component-wise inequalities hold and 0 otherwise. Straight-
forward calculations show that the inner product in L2(RD)
between two atoms writes 〈a(θ),a(θ′)〉H = e−λ‖θ−θ

′‖1 and
corresponds to the so-called “Laplace kernel”.



3.1. Uniform recovery of k-sparse supports

The next result shows that in the 1-dimensional case, k-step
recovery is possible for all k with the continuous dictionary
defined in (10):

Theorem 1. Let Θ = R and define A as in (10). Then OMP
uniformly recovers any support S? = {θ?` }

k
`=1 made of k dis-

tinct parameters in k iterations.

The novelty of Th. 1 is the following: although the param-
eter space is a continuum, k-step recovery is always achieved
whatever the support. Surprisingly, such a dictionary does
not require separation between parameters, as it is usually the
case for signed combination of atoms [16, 17].

When Θ ⊂ RD with D ≥ 2, such a result does not
hold, see for instance Sec. 4. However, inspired by the results
proved in [16, 17], one ensures k-step recovery by imposing
a separation condition between parameters. Define

∆ , min
d=1...D
i6=j

∣∣θ?j [d]− θ?i [d]
∣∣ s.t. θ?i [d] 6= θ?j [d], (11)

as the smallest distance between non equal coordinates.
When ∆ is too small, one may find a configuration of pa-
rameters such that OMP fails at the first iteration, see Sec. 4
for an illustration. Our next result circumvents this issue by
imposing a minimum separation conditions that ensures the
recovery of any k-sparse support:

Theorem 2. Let Θ = RD withD ≥ 2 and defineA as in (10).
OMP uniformly recovers any k-sparse support in k steps if

∆ > λ−1 log(2k − 1), (12)
or, equivalently,

k < 1
2

(
1 + eλ∆

)
. (13)

Th. 2 states that OMP uniformly recovers any combination
of sufficiently separated atoms. One recognizes in (13) the
flavor of mutual coherence conditions (e.g., (4)). The main
difference with the discrete setting is that the coherence con-
dition now concerns only a small part of the dictionary via ∆,
namely the atoms related to the support of the signal.

3.2. Uniform recovery of a given support

Although almost tight for some configurations of parameters,
the separation condition given in Th. 2 is only sufficient.
We now show that, given a k-sparse support, uniform re-
covery can be characterized under some “ERC-like” finite-
dimensional condition (see Th. 3 below). We introduce first
some additional notations. For d = 1 . . . D, let

Hd(θ) ,
{
θ′ ∈ RD | θ′[d] = θ[d]

}
, (14)

be the (D−1)-dimensional parametric affine hyperplane pass-
ing through the dth component of θ ∈ Θ. If y is supported

∆∆
∆

θ?1

θ?2

θ?3

γ2

γ1

γ3

H1(θ?3)

Fig. 1. Illustration of the definitions of Hd(θ?` ) and the su-
perset Γ see (15)) with D = 2 and k = 3. Γ

(
(θ?` )

3
`=1

)
is

composed of the θ?` ’s and 3 additional points denoted γ`.

by S?, the hyperplanes Hd(θ?) for θ? ∈ S? are related to
the non-differentiability of the function θ 7→ 〈a(θ), r〉H (see
line 3 in Alg. 1). We also define the set operator

Γ: P(Θ) −→ P(Θ)

S 7−→
D⋂
d=1

(⋃
θ∈S

Hd(θ)

)
(15)

where P(Θ) is the set of all subsets of Θ. One immediately
sees that S ⊆ Γ(S) for any S ∈ P(Θ). Fig. 1 illustrates
these definitions for S? = {θ?1 , θ?2 , θ?3}. The set Γ(S?) will
be used to described the set of potential maximizers in line 3
of Alg. 1. We provide the following lemma (see [20] for a
proof) and then state our main result.

Lemma 1. If card(S?) < +∞ then card(Γ(S?)) < +∞.

Theorem 3. Let Θ = RD, A be defined as in (10) and let
S? = {θ?` }

k
`=1 be a set of k distinct parameters. Then OMP

uniformly recovers S? in k steps if and only if

max
θ∈Γ(S?)\S?

∥∥G−1gθ
∥∥

1
< 1. (16− ERC)

In particular, if (16− ERC) does not hold, there exists (at
least) one linear combination y =

∑k
`=1 c`a(θ?` ) such that

OMP with y as input, fails at the first iteration.

Combined with Lem. 1, Th. 3 states that k-step recovery is
achieved provided that a condition on a finite number of atoms
is fulfilled. Indeed, Eq. (16− ERC) only depends on Γ(S?)
which is a finite subset of Θ. Consequently, similarly to the
discrete case, its numerical evaluation is possible.

4. NUMERICAL ILLUSTRATION

Tightness of (13). Although not stated in Th. 3, the ratio-
nale behind our result is that the local maximizers of the inner
product at each iteration (see line 3 in Alg. 1) are contained
in Γ(S?). We now leverage this remark to deduce a necessary
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Fig. 2. Ratio of inner products (see (17)) as a function of ∆,
the distance between parameters.

condition for k-step recovery by evaluating inner products in
well chosen points. Let ∆ > 0. We consider the follow-
ing configuration of points in Θ = R2: θ?1 = (−∆, 0)

T,
θ?2 = (0,∆)

T and θ?3 = (∆, 0)
T and let γ1 = (0, 0)

T.
By construction, k = 3, one has ‖θ?i − θ?j ‖1 = 2∆ and
‖θ?i − γ1‖1 = ∆ for all i 6= j. This configuration of points
corresponds to Fig. 1 and ∆ has been defined in (11). Let
r = a(θ?1) + a(θ?2) + a(θ?3), be composed of three equally
weighted atoms. We now study the ratio

〈a(θ?i ), r〉H
〈a(γ1), r〉H

i = 1, 2, 3. (17)

According to (9), OMP fails at the first iteration when (17) is
lower than 1 and uniform recovery will not be achieved.

Fig. 2 plots the ratio (17) seen as a function of ∆, the
distance between parameters. When ∆ ≤ λ−1 log(2), one
sees that OMP fails at the first iteration so ∆ > λ−1 log(2)
is a necessary condition here. Consequently, the sufficient
condition ∆ > λ−1 log(5) given in Th. 2 is not far from being
tight. This observation is also confirmed by the numerical
verification of (16− ERC) which shows here that the latter
condition is fulfilled as soon as ∆ > λ−1 log(2).

Discussion. An enhanced implementation of a continuous
version of OMP has already been carried out in the context
of sketching [21]. The main difference with the discrete set-
ting is that the selection of θ̂t at each iteration is now done up
to the precision of the numerical method used to maximize
the inner product (see line 3 in Alg. 1). Therefore, k-step re-
covery is achieved up to this precision. Although this small
error had no impact during our numerical investigations, fu-
ture works include a theoretical study of the behavior of OMP
in this scenario.

5. CONCLUSION

In this paper, we have studied the recovery properties of OMP
in the context of parametric continuous dictionaries. We have
built up a family of dictionaries, for which OMP achieves
k-step recovery for a well designed continuous dictionary.

Our recovery results vary with the dimension of the param-
eter set. In particular, OMP recovers any k-sparse support in
k-step in dimension 1 while an algebraic condition is neces-
sary in higher dimensions. We leveraged this result to build
a sufficient condition based on minimum separation between
parameters. Numerical experiments on toy examples have
shown that this condition is almost tight. Fortunately, all the
results and the analyses presented in this paper are not lim-
ited to dictionaries given by (10). Although not detailed here,
these results apply for a broader class of dictionaries that re-
lies on completely monotone functions. In [20], we propose a
broader class of kernels for which k-step recovery is achieved.
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A. PROOF SKETCHES

Proof of Th. 3. Let S? be k-sparse and y =
∑k
`=1 c`a(θ?` )

with for all `, c` ∈ R∗. The proof relies on the study of

f : RD −→ R
θ 7−→

∑k
`=1 c`e

−λ‖θ?`−θ‖1 , (18)

such that f(θ) = 〈a(θ),y〉H for all θ ∈ RD. The proof relies
on the following observation: for all θ ∈ RD\ ∪`,d Hd(θ?` ), f
is twice differentiable and its Hessian matrix Hf verifies

trace(Hf (θ)) = Dλ2f(θ). (19)

The complete proof is done by induction on D where one
shows that whatever c1 . . . ck, the maximizers of f belong to
Γ(S?). We describe below the rationale of the induction.
a) Recall first that the trace of a symmetric matrix is the sum
of its eigenvalues. Then, if f is twice differentiable in θ0

and f(θ0) > 0 then θ0 cannot be a maximizer of f since
trace(Hf (θ0)) > 0. In a symmetric fashion, f(θ0) cannot be
a minimizer of f if f(θ0) < 0. Therefore, if θ0 is a maximizer
of |f | then f is not differentiable in θ0, i.e., θ0 ∈ ∪`,dHd(θ?` ).
b) Given d ≤ D and ` ≤ k, we now study the maximiz-
ers of f restricted to the (D − 1)-dimensional hyperplane
Hd(θ?` ). The latter function can be interpreted as a function
of the form (18) defined on RD−1 which is differentiable on
Hd(θ?` )\

(
∪d′ 6=d ∪k`′=1 Hd′(θ?`′)

)
. The recursion hypothesis

applies so its maximizers belong to ∩d′ 6=d
(
∪k`′=1Hd′(θ?`′)

)
.

By repeating this reasoning for all `, d, we conclude that the
maximizers of f belong to ∪Dd=1 ∩d′ 6=d

(
∪k`′=1Hd′(θ?`′)

)
=

Γ(S?) by set operations.

Other proofs. Th. 1 is a corollary of Th. 3 by seeing that
Γ(S?) = S? when Θ = R since all hyperplanes reduce
to singletons. Similarly, Th. 2 is obtained using classical
mutual coherence analysis applied to the finite dictionary
{a(θ) | θ ∈ Γ(S?)} that appears in Th. 3, see e.g., [9].
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