
HAL Id: hal-02049424
https://hal.science/hal-02049424v3

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-negative orthogonal greedy algorithms
Thi Thanh Nguyen, Jérôme Idier, Charles Soussen, El-Hadi Djermoune

To cite this version:
Thi Thanh Nguyen, Jérôme Idier, Charles Soussen, El-Hadi Djermoune. Non-negative orthog-
onal greedy algorithms. IEEE Transactions on Signal Processing, 2019, 67 (21), pp.5643-5658.
�10.1109/TSP.2019.2943225�. �hal-02049424v3�

https://hal.science/hal-02049424v3
https://hal.archives-ouvertes.fr


TECHNICAL REPORT, AUGUST 22, 2019 1

Non-Negative Orthogonal Greedy Algorithms
Thanh T. Nguyen, Jérôme Idier, Member, IEEE, Charles Soussen, Member, IEEE,

and El-Hadi Djermoune, Member, IEEE

Abstract—Orthogonal greedy algorithms are popular sparse
signal reconstruction algorithms. Their principle is to select
atoms one by one. A series of unconstrained least-squares
subproblems of gradually increasing size is solved to compute
the approximation coefficients, which is efficiently performed
using a fast recursive update scheme. When dealing with non-
negative sparse signal reconstruction, a series of non-negative
least-squares subproblems have to be solved. Fast implementation
becomes tricky since each subproblem does not have a closed-
form solution anymore. Recently, non-negative extensions of
the classical orthogonal matching pursuit and orthogonal least
squares algorithms were proposed, using slow (i.e., non-recursive)
or recursive but inexact implementations. In this paper, we
revisit these algorithms in a unified way. We define a class of
non-negative orthogonal algorithms and exhibit their structural
properties. We propose a fast and exact implementation based
on the active-set resolution of non-negative least-squares and
exploiting warm start initializations. The algorithms are assessed
in terms of accuracy and computational complexity for a sparse
spike deconvolution problem. We also present an application to
near-infrared spectra decomposition.

Index Terms—Orthogonal greedy algorithms; sparse recon-
struction; non-negativity; non-negative least-squares; active-set
algorithms.

I. INTRODUCTION

In the last decade, sparse approximation has received
considerable attention in the signal and image processing
community, in connection with compressive sensing. Greedy
algorithms for sparse signal reconstruction are very popular
iterative schemes. Their principle is to repeatedly (i) enrich
the sparse support by selecting a new dictionary atom, and
then (ii) update the sparse approximation coefficients. In
orthogonal greedy algorithms, the sparse approximation signal
is computed as the orthogonal projection of the data vector
onto the subspace spanned by the selected atoms. Therefore,
the coefficients can be estimated by solving an Unconstrained
Least Squares (ULS) problem. Popular orthogonal greedy al-
gorithms include Orthogonal Matching Pursuit (OMP) [1] and
Orthogonal Least Squares (OLS) [2], also known as forward
selection [3], Order Recursive Matching Pursuit (ORMP) [4],
Optimized Orthogonal Matching Pursuit (OOMP) [5] and Pure
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Orthogonal Matching Pursuit [6]. OMP and OLS differ in
the way the new atom is selected. In both cases, the atom
inducing the largest decrease of the residual norm is selected.
However, all nonzero atom weights are optimally tuned in
OLS whereas only the new atom weight is considered in
OMP, which amounts to selecting the atom having the largest
inner product with the current residual. The computational
complexity of OLS is obviously higher, since the selection
rule requires to solve as many ULS problems as the number
of candidate atoms. Fortunately, the ULS solutions have a
closed-form expression, which can be recursively (fastly)
updated when the support is enriched by a new element, see
e.g., [3]. Specifically, both OMP and OLS implementations
are recursive and make use of matrix factorization, such as
Gram-Schmidt orthogonalization, the Cholesky factorization
or techniques utilizing the matrix inversion lemma [7].

Many application fields such as geoscience and remote
sensing [8], [9], audio [10], chemometrics [11], bioinformat-
ics [12], astrophysics [13] and computed tomography [14],
give rise to inverse problems where the signal or image of
interest is sparse, but also non-negative. In such contexts,
a common practice is to regularize the inverse problem in
order to favor both sparsity and non-negativity of the sought
signal, see, e.g., [12], [14]–[16]. Some classical sparse algo-
rithms can be straightforwardly adapted to deal with non-
negativity constraints. This is the case of proximal splitting
algorithms and the Alternating Direction Method of Multipli-
ers (ADMM) for convex optimization [17], [18], and of the
DC algorithm (Difference of Convex functions) for nonconvex
optimization [19], [20]. On the contrary, the non-negative
extension of greedy algorithms is a challenging issue since the
unconstrained least-squares subproblems are replaced by non-
negative least-squares (NNLS) subproblems which do not have
closed-form solutions anymore, so a subroutine solving NNLS
is needed. There are different methods for NNLS solving [21]
such as active-set [22], interior-point [23], and gradient-
projection [24]. The latter two families typically require to
tune some stopping criteria in an empirical manner, resulting
in approximate resolution of the NNLS problem. Here, we
are focusing on active-set methods since such methods have
a greedy structure and exactly solve NNLS problems after
a finite number of iterations. Although our focus will be on
extensions of orthogonal greedy schemes to the non-negative
case, let us mention that several other non-negative sparse
methods have been elaborated on the basis of the active-set
NNLS algorithm, e.g., hard-thresholded NNLS [25], [26] and
Sparse NNLS or Reverse Sparse NNLS [27].

The classical CoSaMP [28], Subspace Pursuit (SP) [29] and
Hard Thresholding Pursuit [6] algorithms were extended to
the non-negative setting in [30]. Similar to orthogonal greedy
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algorithms, the non-negative versions NN-CoSaMP, NN-SP
and NN-HTP are based on straightforward replacements of
ULS resolutions by NNLS resolutions. The principle of these
algorithms is to update a support of fixed size at consecutive
iterations using operations such as support expansion and
support shrinkage. Since two consecutive supports are possibly
substantially different, one can hardly exploit the knowledge
of the current NNLS solution to compute the solution related
to the new support in a very efficient manner. On the contrary,
the supports found at consecutive iterations of orthogonal
greedy algorithms are nested, allowing one to use warm start
initialization. The nested property is therefore crucial to design
fast implementations.

Several existing contributions deal with orthogonal greedy
algorithms in the non-negative case. Non-Negative OMP
(NNOMP) was first proposed by Bruckstein et al. [31] as
a direct generalization of OMP. At each iteration, the atom
having the maximum positive inner product with the current
residual is selected. Contrary to OMP, negative inner products
are discarded. Then, the sparse approximation coefficients
are updated by solving the NNLS problem related to the
augmented subset. The canonical (i.e., non-recursive) NNOMP
implementation of Bruckstein et al. [31] solves NNLS sub-
problems independently. Later, Yaghoobi et al. proposed an
accelerated version named Fast Non-Negative OMP (FN-
NOMP), which avoids solving NNLS subproblems but rather
recursively approximates the sought solution using QR matrix
factorization [32]. Although FNNOMP is much faster than
canonical NNOMP, it is an approximate version likely to
deliver a different output. In [33], Yaghoobi et al. introduced
a canonical version of Non-Negative OLS (NNOLS), defined
as a direct non-negative extension of OLS. The principle
of NNOLS is to select the atom for which the positive
residual (the residual corresponding to the NNLS solution) is
minimum. This selection rule appears to be time-consuming
since one needs to compute as many positive residuals as the
number of candidate atoms, i.e., n− k NNLS problems have
to be solved at iteration k, with n the size of the dictionary.

Yaghoobi et al. [33] further proposed two accelerated ver-
sions of NNOLS named Suboptimal NNOLS (SNNOLS) and
Fast NNOLS (FNNOLS). These proposals can be understood
from a dual interpretation of OLS in the unconstrained setting.
It is well-known than the OLS selection rule can be formulated
in two equivalent ways [5], [34]: OLS selects the atom (i)
inducing the minimum value of the data residual in `2-norm;
(ii) whose orthogonal projection onto the subspace orthogonal
to the active atoms has a maximum angle with the current data
residual. When dealing with non-negativity, SNNOLS [33]
selects the atom that is positively correlated with the current
residual whose projection forms a maximum angle with the
residual. However, the equivalence that holds for OLS is not
true anymore since maximizing the angle for positive inner
products is not equivalent to minimizing the `2-norm of the
positive residual. Therefore, SNNOLS iterates do not generally
identify with NNOLS iterates, hence the suboptimal algorithm
denomination. In SNNOLS, the projected atoms have to be
recomputed whenever the support is updated. Moreover, an
NNLS problem must be solved at each iteration to update

the sparse approximation coefficients. FNNOLS is a recursive
implementation in the same spirit as FNNOMP, where no
NNLS problem needs to be solved anymore. It shall be noticed
that FNNOLS and SNNOLS do not necessarily deliver the
same iterates, and that both can be viewed as approximate
versions of NNOLS.

Generally speaking, the “orthogonal” denomination of
NNOMP and NNOLS is somewhat abusive since when the
support set S is updated, the related NNLS solution may not
identify with the orthogonal projection of the data vector onto
the span of atoms indexed by S, but rather with its projection
onto their positive span. Both projected vectors differ as soon
as the NNLS solution has zero entries, i.e., when some non-
negativity constraints become active. Therefore, in NNOMP,
NNOLS and their derived versions [31]–[33], the support of
the sparse vector at the current iteration is a subset of the
current support set S (which is expanded at each iteration)
and may not identify with it. In turn, more than K iterations
may be necessary to reach a truly K-sparse representation.

Our contributions are twofold. First, non-negative orthog-
onal greedy algorithms are revisited in a unified way. The
algorithms under study share four desirable properties:

1) The norm of the data residual is always decreasing when
a new atom enters the solution support.

2) The algorithm does not stop while additional atom
selections would make it decrease, unless an explicit
stopping condition is reached.

3) A so-called compression step is included to shrink
the support set by removing the atoms having zero
coefficients, so the support set identifies to the support
of the current NNLS solution.

4) The residual vector is orthogonal to the selected atoms.
In other words, the sparse approximation vector iden-
tifies with the orthogonal projection of the data vector
onto the span of the selected atoms.

These structural properties are exhibited and compared to
those of existing non-negative greedy algorithms. The sec-
ond contribution is a fast and exact implementation of non-
negative orthogonal greedy algorithms exploiting the active-set
algorithm [22] for NNLS solving, based on warm start initial-
ization. Moreover, we elaborate on recursive implementations
and design further types of accelerations.

The paper is organized as follows. Section II introduces the
family of so-called Non-negative Orthogonal Greedy (NNOG)
algorithms. The different members of the family differ by
the selection rule to pick a new atom at each iteration. It
includes NNOLS, SNNOLS and NNOLS up to a modification
of their structure, namely the compression step mentioned
above. In Section III, a fast implementation is proposed based
on recursivity and on the use of warm starts for solving
the NNLS subproblems. Section IV is devoted to NNOG
acceleration. Sections V and VI propose numerical validations
on a simulated example of sparse deconvolution and on the de-
composition of real-world near-infrared (NIR) spectra. Finally,
discussion and perspectives will be found in Section VII.
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II. NON-NEGATIVE GREEDY ALGORITHMS

A. Basic definitions and notations

Given a data vector y ∈ Rm and a dictionary H ∈ Rm×n,
we are interested in finding a K-sparse non-negative weight
vector x ∈ Rn

+ yielding an accurate approximation y ≈ Hx.
This can be formulated as the constrained minimization pro-
gram:

min
x≥0
‖y −Hx‖22 s.t. ‖x‖0 ≤ K. (`0+)

where x ≥ 0 means that each entry of x is nonnegative, ‖x‖0
is the `0-“norm” counting the number of nonzero entries in x,
and the quadratic fidelity-to-data term ‖y −Hx‖22 measures
the quality of approximation. The `2-norm ‖·‖2 will be also
denoted ‖·‖. Without loss of generality, we assume that H is
column-normalized. Each dictionary column hi, i = 1, . . . , n
is called an atom. We have the following useful identity for
any two vectors r, h of same length, h being normalized:

min
v≥0
‖r − hv‖2 = ‖r‖2 −

(
max{htr, 0}

)2
(1)

where .t stands for the transpose operator.
We denote by S = supp(x) = {i : x(i) 6= 0} the support

of x (x(i) being the i-th entry of x), S̄ the complement of
S, |S| the cardinality of S, HS and x(S) the subdictionary
and subvector indexed by S, respectively. Finally, H† and
span(H) are the pseudo-inverse and the column space of
H , respectively. Let h̃i,S = hi − HSH

†
Shi stand for the

orthogonal projection of hi onto the orthogonal complement
(span(HS))⊥, which will be simply denoted h̃i whenever
unambiguous, and g̃i = h̃i/‖h̃i‖ denote the normalized
projected atom if hi 6∈ span(HS), i.e., h̃i 6= 0. If hi ∈
span(HS), it will be convenient to set g̃i = 0.

For any support S, let us call an unconstrained least-squares
(ULS) and a nonnegative least-squares (NNLS) solution cor-
responding to S, any vector x in Rn or Rn

+, respectively, that
minimizes ‖y −Hx‖2 subject to supp(x) ⊂ S. Such vectors
will be denoted x̂S and x̂+

S , respectively. The following
notations will be also useful:

rS = y −Hx̂S ,

r+
S = y −Hx̂+

S .

When HS is full column rank, ‖y −HSz‖2 is a strictly convex
function of z ∈ R|S|, so x̂+

S and x̂S are then uniquely defined.
Throughout the paper, we will denote by C ⊂ S the so-called
compressed support, defined as the support of x̂+

S . The NNLS
optimal solutions can be characterized using the Karush-Kuhn-
Tucker (KKT) conditions [22, Chap. 3], which are recalled
next for completeness.

Lemma 1 Consider the NNLS problem related to support S:

min
x≥0
‖y −Hx‖2 s.t. supp(x) ⊂ S. (2)

x̂+
S is a solution to (2) if and only if the KKT conditions are

satisfied: {
Ht

C(y −Hx̂+
S ) = 0

Ht
S\C(y −Hx̂+

S ) ≤ 0
(3)

where C := supp(x̂+
S ) ⊂ S.

Proof: From the definition of C, it is clear that x̂+
S (C) >

0, so the active constraints in (2) are indexed by C̄. Let λ ∈
R

n gather the Lagrange multipliers related to both equality
and inequality constraints. The Lagrangian function induced
by (2) is defined as L(x;λ) = ‖y −Hx‖2 − λtx and the
KKT conditions for optimal variables (x̂+

S , λ̂) read:
∇xL(x̂+

S ; λ̂) = 2Ht(Hx̂+
S − y)− λ̂ = 0,

∀i ∈ S, λ̂(i)x̂+
S (i) = 0 with x̂+

S (i) ≥ 0, λ̂(i) ≥ 0,
∀i /∈ S, x̂+

S (i) = 0.

(4)

For quadratic programming problems involving positive
semidefinite matrices, the KKT conditions are necessary and
sufficient conditions of optimality [35, Chap. 16], so x̂+

S is a
solution to (2) if and only if

λ̂ = −2Ht(y −Hx̂+
S )

λ̂(C) = 0

λ̂(S\C) ≥ 0

that is, when (3) is satisfied.

Definition 1 Let us call a positive support related to the full-
size NNLS problem

min
x≥0
‖y −Hx‖2 , (5)

any index set S such that HS is full column rank and
x̂+
S (S) > 0. By extension, the empty support S = ∅ will

also be considered as a positive support.

Lemma 2 S is a positive support if and only if HS is full
rank and x̂S(S) > 0. Moreover, when S is a positive support,
x̂+
S = x̂S , r+

S = rS and Ht
SrS = 0.

Proof: When S is a positive support, ULS and NNLS
solutions x̂S and x̂+

S are uniquely defined and coincide. The
orthogonality property Ht

SrS = 0 follows from (3).
Positive supports will play an important role in our specifi-

cation of fast non-negative orthogonal greedy algorithms.

B. Non-negative orthogonal greedy algorithms

Let us define the class of non-negative orthogonal greedy
(NNOG) algorithms, sharing the following general structure.
We start from the empty support S = ∅. At each iteration, an
atom is moved from S̄ to S. A new NNLS solution x̂+

S is then
computed to optimally adapt the weights to the newly extended
support. The algorithm stops when the desired cardinality K
is reached or when the norm of the residual cannot decrease
anymore. The general structure of NNOG algorithms is given
by Algorithm 1. Some aspects will be made clear later, such
as the role of the test ht

irS > 0 with respect to the decrease
of the norm of the residual.

The NNOG class is a direct adaptation of the family of
orthogonal greedy algorithms from the unconstrained case to
the nonnegative one. At first glance, the two families only
differ by the fact that an NNLS solution is computed rather
than a ULS one to update the weights at each iteration.
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Algorithm 1: General structure of a non-negative orthog-
onal greedy algorithm to solve (`0+).

input : y, H,K
output: x

1 x← 0 ; S ← ∅ ; rS ← y ;
2 while |S| < K and maxi∈S̄ h

t
irS > 0 do

3 Select an index ` ∈ S̄ by a selection rule S(y, H, S) ;
4 S ← S ∪ {`} ;
5 x← x̂+

S ;
6 S ← supp(x) ;
7 rS = y −Hx ;
8 end

However, some important features differ between the two
cases, which require non trivial adaptations.

In both cases, the greedy character corresponds to the fact
that a unique atom is added to the current support per iteration.
However, a distinct feature of NNOG algorithms is that the
support size may be smaller than the current iteration index,
because some components of x̂+

S (S) may vanish due to the
activation of the corresponding nonnegativity constraints. In
the unconstrained case, some components of x̂S(S) may also
vanish, but such events are fortuitous and do not need any
specific consideration.

In the unconstrained case, rS is orthogonal to span(HS).
This geometrical property does not necessarily hold for r+

S

because NNLS is an inequality constrained problem. Fortu-
nately, provided that the indices of zero components of x̂+

S

are moved to S̄, it remains true that y −Hx̂+
S is orthogonal

to span(HS). This is a direct consequence of the following
lemma, which states that x̂+

S reads as a ULS solution related
to the compressed version of support S.

Lemma 3 For any S, let C = supp(x̂+
S ) (where neither x̂+

S

nor C are necessarily unique if HS is not full column rank).
Then we have

x̂+
S = x̂C = x̂+

C . (6)

Proof: Using Lemma 1, we have Ht
Cr

+
S = 0. Since r+

S =
y − Hx̂+

S , we get Ht
Cy = Ht

CHx̂
+
S . Thus, x̂+

S is a ULS
solution (denoted by x̂C) associated to support C. We have
also x̂C = x̂+

C since x̂C ≥ 0.
According to the above definition of NNOG algorithms,

distinct algorithms can only differ by the selection rule used
to select an atom at each iteration. The design of a selection
rule corresponds to the definition of a function S(y, H, S),
taking values in S̄. It is clear that some indices ` ∈ S̄
correspond to inappropriate choices, because their selection
would produce x̂+

S∪{`}(`) = 0, and hence a useless iteration,
and possibly an early stopping of the algorithm. In contrast, in
the unconstrained case, any selection ` ∈ S̄ yields a decrease
of ‖y −Hx‖2 unless h` ∈ span(HS). The capacity of some
selection rules to avoid inappropriate selections is examined
in the next two subsections.

Finally, a practically important aspect is the computing cost
of NNOG algorithms. It is computationally more demanding to

solve an NNLS problem than the corresponding ULS problem,
so one must expect a larger computing cost. However, NNOG
algorithms lend themselves to recursive implementations akin
to usual orthogonal greedy schemes, as detailed in Section III.

C. Descending atoms and descent selection rules

Greedy algorithms can be interpreted as descent algorithms
dedicated to the minimization of the residual norm using
supports of growing size. Contrary to the unconstrained case,
only the selection of some atoms in S̄ may produce a decrease
of the residual at a given iteration of an NNOG algorithm.
For the rest of the atoms in S̄, the residual norm decrease is
possible only if the nonnegativity constraint is violated. Such a
specificity has both formal and practical consequences on the
design of NNOG algorithms, as examined in this subsection.

Definition 2 For a given support S, let us define the set of
indices corresponding to descending atoms as follows:

DS =
{
i ∈ {1, . . . , n}, ‖r+

S∪{i}‖ < ‖r
+
S ‖
}
.

Obviously, we have DS ⊂ S̄. In what follows, we focus on
selection rules ensuring the selection of a descending atom
at any iteration. The latter rules are referred to as descent
selection rules.

Definition 3 A descent selection rule is a function S(y, H, S)
that takes its values in DS .

Clearly, NNOG algorithms relying on a descent selection rule
are descent algorithms and we have the following property.

Lemma 4 NNOG algorithms relying on a descent selection
rule terminate after a finite number of iterations.

Proof: The error norm decreases at each iteration, and
there is a finite number of supports with a cardinality not
exceeding K, and thus a finite number of solutions to visit.

The following proposition allows one to characterize
whether an atom is descending.

Proposition 1 The descending atom condition i ∈ DS is
equivalent to

0 < ht
ir

+
S . (7)

When S is a positive support, it is also equivalent to each
condition

0 < ht
irS , (8)

0 < g̃t
ir

+
S , (9)

0 < g̃t
irS . (10)

When HS∪{i} is full column rank, it is also equivalent to

x̂+
S∪{i}(i) > 0. (11)

Proof: See Appendix A-A.
Let us remark that from the first item of Proposition 1,

the selection rule is invoked at Line 3 of Algorithm 1 only
if DS 6= ∅, otherwise the stopping condition of Line 2 is
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activated. Hence, we do not need to define S(y, H, S) when
DS = ∅.

The following lemmas have an interesting impact on the
practical specification of NNOG algorithms.

Lemma 5 If S is a positive support and i ∈ DS , then matrix
HS∪{i} is full column rank.

Proof: Assume that S is positive, so HS is full column
rank, and x̂+

S = x̂S . Let us also assume that HS∪{i} is not
full column rank. Then hi ∈ span(HS), so x̂S is a ULS
solution related to S ∪ {i}, and also an NNLS solution related
to S ∪ {i} since x̂S ≥ 0. This implies that i 6∈ DS .

Lemma 6 After each iteration of an NNOG algorithm relying
on a descent selection rule, it holds that the support of the
current solution is positive.

Proof: The proof is immediate by recursive application
of Lemmas 3 and 5, starting with the empty support.

Let us stress that Lemma 6 refers to NNOG algorithms
strictly conforming to the scheme of Algorithm 1 (with an
additional restriction to descent selection rules at Line 3). In
particular, the support compression step performed at Line 6
is necessary to make Lemma 5 applicable. To our best
knowledge, such a compression step has not been proposed in
any previous contribution about nonnegative greedy schemes
targeting `0 minimization1.

According to Lemma 6, the restriction to a descent selection
rule implies r+

S = rS at any iteration, which justifies that we
have dropped the ‘+’ sign in Algorithm 1. This simplification is
adopted in the rest of the paper. Moreover, the termination rule
maxi h

t
irS ≤ 0 is used at Line 2 since in this case, there are

no descending atoms anymore, so the residual cannot decrease
by selection of a new atom.

D. Examples of descent selection rules

In what follows, selection rules are denoted S(S), the
dependence on y and H being implicit. Let us introduce three
important selection rules by their distinct ways of picking an
index in DS when DS 6= ∅.

• NNOMP rule [30]–[32], [38]:

S1(S) ∈ arg max
i/∈S

ht
irS (12)

• Suboptimal NNOLS (SNNOLS, [33]) rule:

S2(S) ∈ arg max
i/∈S

g̃t
irS (13)

• NNOLS rule [33]:

S3(S) ∈ arg min
i/∈S

‖r+
S∪{i}‖

2 (14)

(14) is a descent selection rule by definition. The fact that (12)
and (13) are descent selection rules is deduced from recursive
application of Proposition 1 and Lemma 6. As regards the
latter rules, rS is the current residual vector, i.e., a readily

1However, this kind of operation was introduced in [36], [37].

available quantity. On the other hand, projected atoms g̃i enter
rule (13), so we can expect the computing cost of (13) to be
larger than that of (12). Rule (14) needs the solution of NNLS
problems on supports S ∪ {i}, which is even more demanding.

Note that [39] introduced another version of non-negative
OMP named NN-OMP in which the selection rule is that
of OMP. Clearly, this version does not rely on a descent
selection rule. On the other hand, it is unclear whether the
FNNOMP and FNNOLS algorithms proposed in [32], [33]
rely on a descent selection rule. They will therefore not be
further analyzed.

The following proposition makes it possible to compare the
three rules (12)-(14) by relating them to the minimization of
a residual norm.

Proposition 2 Rules (12)-(14) are equivalent to

Sj(S) ∈ arg min
i∈DS

µj(S, i), (15)

where µj are specific to each rule:

µ1(S, i) = min
v
‖y −HSxS − hiv‖2 , (16)

µ2(S, i) = min
u,v
‖y −HSu− hiv‖2 , (17)

µ3(S, i) = min
u≥0,v≥0

‖y −HSu− hiv‖2 . (18)

Proof: Let us first emphasize that because (12)-(14) are
descent selection rules, i /∈ S in (12)-(14) can be replaced by
i ∈ DS . Clearly, (15) with (18) simply duplicate (14). Using
identity (1) with r = rS and h = hi, (12) can be rewritten
as the argmin over i ∈ DS of

min
v≥0
‖y −HSxS − hiv‖2 . (19)

Likewise, applying (1) with r = rS and h = g̃i and using
the fact that g̃i is the normalized version of h̃i, (13) can be
rewritten as the argmin over i ∈ DS of

min
v≥0
‖rS − h̃iv‖2 = min

u,v≥0
‖y −HSu− hiv‖2 . (20)

(20) follows from explicit minimization with respect to u
and from the fact that rS and h̃i read as the orthogonal
projections of y and hi onto (span(HS))⊥. Finally, the
positivity constraint on v in (19)-(20) turns out to be inactive.
Indeed, according to Proposition 1, we have that ht

irS > 0
and h̃t

irS > 0 for i ∈ DS . It is easy to see from (1) that the
minimum error norm in (19)-(20) is then strictly lower than
‖rS‖. Hence, the optimal variable v in (19)-(20) is nonzero.

Finally, (15) with (19) and (15) with (20) rewrite as (15)
with (16) and (15) with (17), respectively.

For j ∈ {1, 2, 3}, an alternate way of viewing the de-
scending character of each rule consists in noticing that
‖rS∪{i}‖2 ≤ µj(S, i) < ‖rS‖2 for all i ∈ DS . It is interesting
to see that, by restricting the selection to the set of descending
atoms, the selection rules of NNOMP and SNNOLS rely
on the same criteria (16)-(17) as those of OMP and OLS,
respectively.



TECHNICAL REPORT, AUGUST 22, 2019 6

E. On the usefulness of support compression

As already mentioned, rules (12)-(14) were introduced in
existing works devoted to problem (`0+) without support
compression. Let us analyze the impact of removing the
support compression step at Line 6 in Algorithm 1.
• The subset S then becomes an extended support, with
x = x̂+

S and supp(x) ⊂ S. As a consequence, when
supp(x) 6= S, the current residual r+

S = y − Hx does
not identify to rS anymore since x does not read as a
ULS solution related to S.

• In the case of NNOMP and NNOLS (selection rules (12)
and (14), with rS replaced by the current residual r+

S ),
Proposition 1 can still be applied, since condition ht

ir
+
S >

0 still characterizes descending atoms without support
compression. As for SNNOLS, we cannot guarantee that
S(y, H, S) defined in (13) is a descent selection rule
when S is not positive, since the equivalence (9) in
Proposition 1 does not hold anymore.

• Finally, for any NNOG algorithm, Lemma 5 is no more
valid when S is not a positive support, so HS might
become rank deficient at any subsequent iteration, x̂+

S

not being well defined anymore.
We consider the last point as the main justification to apply
support compression. An open question would be to determine
whether the assumptions of Lemma 5 can be weakened, the
positivity of S being replaced by the full rankness of HS .
However, we lack concrete elements in this sense. Therefore,
at this stage, NNOG with compression present formal guaran-
tees that NNOG without compression do not.

III. ACTIVE-SET NNLS ALGORITHMS AND RECURSIVITY

Let us consider the NNLS problem related to support S
in (2). When matrix HS is full column rank, it is a special case
of a strictly convex quadratic program. The successive resolu-
tion of possibly many NNLS problems for nested supports S
is a basic ingredient of NNOG algorithms. NNLS problems do
not admit closed-form solutions in general. However, active-
set NNLS (AS-NNLS) algorithms are well-known schemes
that solve NNLS problems in a finite number of iterations [22],
[40]. Moreover, the computation of NNLS solutions can be
efficiently accelerated by exploiting that warm start solutions
are available and using classical recursive updates of matrix
factorizations.

This section first contains a short reminder on active-set
NNLS algorithms and on their efficient implementation. Then,
we show how to preserve computational efficiency when
NNLS subproblems are solved within an NNOG scheme. We
also analyze the similarity between the structures of AS-NNLS
algorithm and NNOMP, already pointed out in [27], [41].

A. Fast active-set algorithms

Among many numerical methods for solving (2), AS-NNLS
algorithms correspond to greedy schemes, since the solution
is found by incremental modifications of its support V ⊂ S,
the active set being defined as the complementary set S\V
(by reference to the active constraints). Such an incremental

Algorithm 2: Active-set algorithm to solve the NNLS
problem related to T , starting from a positive support S.
input : y, H , target set T , initial support S ⊂ T , x̂S

output: V := supp(x̂+
T ), x̂+

T := x̂V

1 x← x̂S ; V ← S ;
2 while max{ht

irV , i ∈ T\V } > 0 do
3 `+ ← arg max{ht

irV , i ∈ T\V } ;
4 V ← V ∪ {`+};
5 Update x̂V (call Algorithm 4);
6 while min(x̂V ) < 0 do
7 `− ∈ arg min

{i∈V :x̂V (i)<0}
x(i)/(x(i)− x̂V (i)) ;

8 α← x(`−)/(x(`−)− x̂V (`−)) ;
9 x← x+ α(x̂V − x) ;

10 V ← V \ {`−} ;
11 Update x̂V (call Algorithm 4);
12 end
13 x← x̂V ;
14 rV ← y −Hx ;
15 end

structure is an essential element to obtain practically fast
implementations [21], [22], [35]. Whenever V is modified,
the corresponding ULS solution x̂V is updated. Each iteration
requires at least one ULS solution of the selection type, i.e.,
H†V ∪{`}y. Some iterations also need to compute deselection
type ULS solutions H†V \{`}y. For the sake of computational
efficiency, it is crucial to compute both types of solutions re-
cursively, given that x̂V is already available. In this respect, the
situation is identical to that of bi-directional greedy algorithms
in the unconstrained case (e.g., Bayesian OMP [42], SBR [43]
or FoBa [44]), also called stepwise algorithms [3, Chap-
ter 3], for which selections and deselections are implemented
recursively. Fast recursive implementations require specific
computations and storage of quantities related to the Gram
matrix GV = Ht

VHV . Efficient selection steps can be obtained
using QR or Cholesky matrix factorizations applied to GV , or
the Matrix Inversion Lemma (MIL), with roughly the same
cost [7]. MIL consists in storing and updating the inverse of
GV . It appears to be the cheapest concerning deselections, so
our default choice here is based on the MIL.

B. Warm start and full recursivity

Since NNOG algorithms are based on iterated calls to an
active-set scheme, we must carefully consider the way we
initialize the latter. The starting point of AS-NNLS is usually
defined as the zero solution, associated with the empty support.
This is the case in the Lawson-Hanson algorithm, which is the
reference AS-NNLS scheme [22]. In [35, Chap. 16], Nocedal
and Wright proposed an AS-NNLS algorithm with any feasible
vector as a possible starting point. Algorithm 2 is a generalized
version of the Lawson-Hanson algorithm to address the NNLS
problem related to an augmented target set T ⊃ S, where the
initial point is not restricted to be the zero vector (the rest of
the scheme being unaltered). Specifically, the initial point is



TECHNICAL REPORT, AUGUST 22, 2019 7

|S|

Number of support changes

S1

S2

S3 S4 S5

S6

S7

0 2 4 6 8 10

1

2

3

4

5

Fig. 1. Step-by-step illustration of NNOG after each change of support.
Bullets represent supports corresponding to the first seven NNOG iterates
whereas other intermediate supports found during the calls to AS-NNLS are
represented without bullets.

set as the ULS solution x̂S ≥ 0, S being a positive support.
For this specific initial point, it can easily be checked that
Algorithm 2 identifies with Nocedal and Wright’s scheme.

At any iteration of an NNOG algorithm, the current solution
x̂+
S can be used as the initial point to compute x̂+

S∪{`} using
Algorithm 2 with T = S ∪ {`}. In this way, the initial
support is V = S, so T\V = {`} and the first iteration
of AS-NNLS begins by selecting `. In practice, the NNLS
algorithm is expected to terminate after a single iteration (if no
deselection is performed in the second part of it), or otherwise
after very few iterations. Algorithm 3 is a global view of the
active-set implementation of NNOG obtained by integrating
the calls to the AS-NNLS solver (Algorithm 2) in the NNOG
framework (Algorithm 1). Whenever a new atom ` is selected,
AS-NNLS starts by computing x̂S∪{`}. If x̂S∪{`} ≥ 0, then
x̂+
S∪{`} = x̂S∪{`} and AS-NNLS stops after one support

change. Otherwise, AS-NNLS deselects at least one atom from
S ∪ {`} (Algorithm 2, Line 7) and then alternates between
atom selections and series of deselections. This mechanism is
illustrated by a simple example in the next subsection.

A reduced number of iterations is obtained because we use
Algorithm 2 with a warm start. To further improve the overall
numerical efficiency, we also need to reduce the computing
cost of the ULS solution at Lines 5 and 11. These are selection
and deselection-type ULS problems, respectively, that can be
solved recursively provided that the inverse of the Gram matrix
GV be both an input and an output quantity of the NNLS
algorithm. In Appendix B, Algorithm 4 is a pseudo-code
to implement ULS updates in the forward (V ← V ∪ {`})
and backward scenarios (V ← V \{`}). This implementation
enables us to obtain a fully recursive implementation of AS-
NNLS as well by updating the Gram matrix inverse at each
call to ULS in Algorithm 2 (Lines 4-5 and 10-11).

C. Step-by-step illustrative example of NNOG

Fig. 1 displays a schematic step-by-step illustration of
NNOG. NNOG iterates Sk are represented with bullets.
NNOG starts with the empty support. In this example, it
turns out that during the first three iterations, NNOG yields
a positive support Sk−1 ∪ {`} (x̂Sk−1∪{`} ≥ 0), hence Sk ←

Algorithm 3: NNOG with active-set implementation.
input : y, H,K
output: x := x̂+

S (with S a positive support)

1 x← 0 ; S ← ∅ ; rS ← y ;
2 while |S| < K and maxi∈S̄ h

t
irS > 0 do

3 Select an index ` ∈ S̄ by a selection rule S(y, H, S) ;
4 Call [C,x] = AS NNLS(y, H, S ∪ {`}, S,x);
5 S ← C ;
6 rS = y −Hx ;
7 end

Sk−1 ∪{`}. Therefore, S1 ⊂ S2 ⊂ S3 are of cardinalities 1, 2
and 3, respectively. At iteration 4, S3 ∪ {`} is not positive
so AS-NNLS performs two support changes, namely the
selection of ` and a deselection. The next NNOG iterate reads
S4 ← S3∪{`}\{`1}. Iteration 5 is more tricky (and unlikely).
Here again, S4 ∪ {`} is not a positive support. The first
deselection does not yield a positive support either, so another
deselection is carried out, yielding V ← S4 ∪{`}\{`1, `2}, V
being a positive support. However, the stopping condition of
AS-NNLS (Line 2 of Algorithm 2, with T ← S4∪{`}) is not
met since h`1 is a descending atom. Therefore, `1 is reselected:
V ← V ∪ {`1}. Since V is now a positive support and there
are no descending atoms anymore in T\V , the convergence
of AS-NNLS is reached. In the last two NNOG iterations,
Sk−1 ∪ {`} are positive supports, so single selection moves
are done within AS-NNLS.

D. Connection between AS-NNLS and NNOMP

In Algorithm 3, the structure of the NNOG main iteration
consists of one atom selection followed by a variable number
of updates (selections or deselections) of the support S when
the ULS solution x̂S has some negative entries. The first of
these updates is necessarily an atom deselection. Interestingly,
[27] and [41] pointed out that the AS-NNLS algorithm initial-
ized with the zero vector, has a structure similar to NNOMP:
each main NNLS iteration consists of an atom selection
followed by a series of atom deselections (respectively, Line 3
and Lines 6-12 of Algorithm 2). This connection led Peharz
and Pernkopf to propose AS-NNLS with an early stopping
rule |S| = K as a stand-alone NNOG algorithm (called
Sparse NNLS in [27]). Given the strong similarity of Sparse
NNLS and NNOMP, an interesting question is to determine
whether their iterates always coincide. It turns out that this is
not always true. However, as long as Sparse NNLS performs
only simple support changes, both algorithms yield the same
iterates, according to the following proposition.

Proposition 3 Let us consider Sparse NNLS, i.e., Algorithm 2
initialized with the empty support together with the early
stopping rule |S| = K. When each iteration produces at
most one removal in Lines 6–12, the output of Sparse NNLS
identifies with that of NNOMP (i.e., Algorithm 1 with rule S1

in (12)).

Proof: See Appendix A-B.
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IV. ACCELERATION OF NNOG ALGORITHMS

The NNOMP, SNNOLS and NNOLS selection rules (12)-
(14) all read as the optimization of a criterion with respect to
the candidate index i /∈ S. Since all three ensure the selection
of an atom in DS , an obvious acceleration of SNNOLS
and NNOLS consists of pre-selecting the descending atoms
according to ht

irS > 0 (see Proposition 1) to carry out the
optimization tasks (13) and (14) over i ∈ DS only. This
operation is referred to as type-I pruning of the dictionary2.
Testing the sign of ht

irS requires O(m) operations. This is
much less than the (recursive) computation of the criteria g̃t

irS
and ‖r+

S∪{i}‖
2, which costs at least O(|S|2 +km) operations.

A. Atom selection

The atom selection step of both NNOMP and SNNOLS
can be efficiently implemented using vectorized computations,
which allow one to benefit from the inherent parallelism of
SIMD processors. The NNOMP case is the simplest, since
Ht

S̄
rS directly yields the expected set of inner products

ht
irS . Indeed, the selection steps of OMP and NNOMP are

both based on the minimization of (16), so they share the
same possibilities of parallel computations. Likewise, OLS
and SNNOLS being both based on the minimization of (17),
they share the same possibilities of parallel implementation.
In coherence with our choice of recursive implementation of
ULS solutions (see Appendix B), we have adopted a MIL
based solution to solve (17) in a vectorized way (see Matlab
code in supplementary material).

In contrast, the NNOLS selection rule (14) does not lend
itself to fully vectorized computations, since we have as
many NNLS subproblems to solve as candidate atoms, with
a variable number of subiterations of AS-NNLS for each
of them. Fortunately, the structure of the NNOLS rule can
be made closer to that of SNNOLS, with the benefit of
vectorized computations for the largest part. The key point
is that for each candidate atom, the initial step of AS-NNLS
corresponding to Lines 1-5 of Algorithm 2 yields the same
unconstrained minimizer x̂S∪{i} as the one involved in the
SNNOLS rule (17). Hence, these vectors can be obtained using
vectorized computations that exactly identify to the main step
of SNNOLS atom selection. The extra computations induced
by NNOLS reside in the additional AS-NNLS iterations re-
quired for each non-positive support S ∪ {i}. According to
our empirical tests, only a small minority of atoms needs
more than one iteration. Moreover, a lot of them can be
pruned without actually performing any additional AS-NNLS
iterations. Let us denote by eopt the smallest residual error
produced by atoms i for which S ∪ {i} is a positive support.
Since ‖r+

S∪{i}‖ ≥ ‖rS∪{i}‖ for all i, one can immediately
ignore the atoms i for which ‖rS∪{i}‖ ≥ eopt. Moreover,
since we sequentially visit the remaining ones, the threshold
eopt can be gradually lowered whenever a new atom is found
to improve the smallest current residual error. This operation
called type-II pruning is specific to NNOLS implementation.

2Contrary to screening techniques, see e.g., [45], note that the atoms indexed
by i /∈ DS are pruned from the dictionary for the current NNOG iteration
only, but they are considered again in further iterations.

B. Coefficient update

Once an atom i is selected, NNOG algorithms need to
update the coefficients by solving an NNLS subproblem (Al-
gorithm 1, Line 5). However, in the case of NNOLS, the update
is already being performed in the selection step. In the case
of NNOMP, one needs to call AS-NNLS (Algorithm 2) from
the initial set S to the target set S ∪ {`}. For SNNOLS, a call
to Algorithm 2 is needed only when S ∪ {`} is not positive.

C. Software

An open source Matlab implementation of the acceleration
strategies detailed above is provided on CodeOcean [46]
(https://doi.org/10.24433/CO.2445681.v1). This software con-
tains a fully recursive, vectorized version of NNOMP, NNOLS
and SNNOLS together with test programs.

V. SIMULATED SPARSE DECONVOLUTION

A. Data generation

In order to assess the behavior of NNOG algorithms, we
consider a convolution problem with a Gaussian kernel h of
standard deviation σ. h is approximated by a finite impulse
response of length 6σ by thresholding the smallest values. The
corresponding normalized dictionary H is a Toeplitz matrix.
Simulated data are generated according to y = Hx∗ + n
where x∗ and n stand for the ground truth and white Gaussian
noise, respectively. The support S∗ of x∗, of cardinality K,
is randomly generated with a uniform distribution whereas
the non-zero coefficients of x∗ are either set to a posi-
tive constant or randomly generated from an i.i.d. folded
normal distribution. The signal-to-noise ratio is defined by
SNR = 10 log10 (PHx∗/Pn) where PHx∗ = ‖Hx∗‖2 /m
is the average power of the noise-free data and Pn is the
noise variance. The results presented below are achieved on
a macOS X system with 16 GB RAM and Intel Core i7
processor at 2.7 GHz.

Hereafter, we first evaluate the computational cost of NNOG
algorithms with the proposed implementations. In subsec-
tions V-B and V-C, the computational complexity of NNOMP,
SNNOLS and NNOLS is compared with that of OMP and
OLS. Subsection V-D contains a comparison of NNOG algo-
rithms with other non-negative sparse algorithms proposed in
the literature including FNNOMP, FNNOLS [32], [33], NN-
CoSaMP, and NN-SP [30]. Algorithms are evaluated in terms
of sparse reconstruction accuracy and reconstruction time.

B. Validation of NNOG accelerations

We generate a convolution dictionary of size 1200 × 1140
with σ = 10. For each K ∈ {20, 40, 60, 80}, 200 trials
are carried out in which the support S∗ is generated. The
non-zero coefficients of x∗ are set to 1 and the SNR is
set to 30 dB. OMP, OLS, NNOMP, SNNOLS and NNOLS
are run until the support cardinality equals K. We consider
the recursive implementation of OMP and OLS utilizing the
matrix inversion lemma. We chose this implementation to
make it consistent with our proposed NNOG implementation.
Note that NNOG algorithms may need more than K iterations
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TABLE I
ACCELERATION GAIN OF NNOG ALGORITHMS FOR A SPARSE DECONVOLUTION PROBLEM WITH GAUSSIAN KERNEL (σ = 10). MEAN OVER 200

TRIALS. THE DICTIONARY SIZE IS 1200× 1140.

K
Acceleration gain Non-negativity loss Iterations

NNOMP SNNOLS NNOLS NNOMP SNNOLS NNOLS NNOMP SNNOLS NNOLS
20 2.7 1.2 9 1.2 1.0 1.5 20 22 21
40 4.5 2.1 59 1.2 1.2 1.9 41 51 43
60 6.4 3.4 120 1.1 1.2 2.1 65 97 73
80 8.5 4.0 128 1.1 1.3 4.1 95 152 121

because of support compression. The following quantities are
computed and averaged out over the number of trials:
• Acceleration gain: CPU time ratio between the canonical

and accelerated implementations of NNOG algorithms.
• Non-negativity loss: CPU time ratio between accelerated

implementation of NNOG algorithms and the correspond-
ing unconstrained versions.

• Iterations: average number of iterations of NNOG al-
gorithms needed to yield a support of cardinality K.
This number is larger than K when support compression
occurs.

Before going further, let us clarify that the so-called “canon-
ical implementations” refer to the following settings. The AS-
NNLS algorithm is called from scratch from the initial zero so-
lution. Moreover, obvious accelerations are taken into account
such as type-I pruning, computation of the ULS solutions
for candidate supports S ∪ {i} so as to avoid calling AS-
NNLS when the augmented support is positive, and recursive
computation of the AS-NNLS iterates. On the other hand,
advanced accelerations such as type-II pruning and warm start
initialization are not included. Support compression is included
in such a way that both canonical and accelerated versions of
a given NNOG algorithm yield the same iterates.

The scores can be found in Tab. I. Accelerated implementa-
tions yield a gain in time that increases with K. Since NNOLS
needs to solve many NNLS subproblems per iteration, the gain
is much larger. The time gain is intermediate for NNOMP. We
further notice that using accelerated implementations, the cost
of NNOMP and SNNOLS becomes comparable with that of
OMP and OLS, respectively, the non-negativity loss remaining
below 1.3. Regarding NNOLS vs OLS, the non-negativity loss
remains lower than 5 in these simulations. At last, the fact that
the number of iterations is often larger than K reveals that
support compression is happening quite often.

C. Computation burden of SNNOLS and NNOLS

The purpose of this subsection is to examine thoroughly the
computation burden of SNNOLS and NNOLS so as to evaluate
the accelerations proposed in Section IV. Four indicators are
computed at each iteration:

1) ρ↓ = |DS |/|S̄|: rate of descending atoms. The rate of
discarded atoms after type-I pruning reads 1− ρ↓.

2) ρ+
cand: rate of descending candidate atoms for which
S ∪ {i} is a positive support.

3) ρII: rate of candidate atoms discarded by type-II pruning
among all atoms i for which S ∪ {i} is not a positive
support.

4) ρ+
sel: rate of selected atoms yielding a positive support
S ∪ {`}.

The computational cost of an NNOG iteration is closely
related to the values of these ratios. Indeed, large scores
indicate that the cost of testing candidate atoms is dramatically
reduced. Specifically, ρ↓ is the rate of candidates that are truly
considered in the selection rule (15) of NNOG algorithms.
Both ratios ρ+

cand and ρII quantify the computational burden
of the NNOLS selection step: large values of ρ+

cand and ρII

indicate that AS-NNLS has to be run for a few candidate
atoms only, since other atoms are either pruned or yield a
non-negative ULS solution. ρ+

sel is defined similar to ρ+
cand.

However, ρ+
sel applies to the selected atoms, which brings

information on the computational burden of the coefficient
update stage of SNNOLS.

Using the same setting as in the previous subsection
(H ∈ R1200×1140 and SNR = 30 dB) with K = 80, the
computational burden indicators of SNNOLS and NNOLS are
shown in Fig. 2. It is noticeable that the number of iterations
L required to reach a support of cardinality K is larger than K
because of support compression. Specifically, the histograms
of Fig. 2(b) show that on average, L is larger than K for
NNOLS and even larger for SNNOLS (the average values are
given in the last columns of Tab. I). This is consistent with the
fact that the NNOLS selection rule is more involved but more
reliable. Moreover, the standard deviation of L corresponding
to the histograms of Fig. 2(b) is 17 and 12 for SNNOLS
and NNOLS, respectively, which indicates that the size of
the support found after k iterations may significantly vary
between trials. In order to get meaningful evaluations, we
choose to compute the average values of each indicator over
the last t iterations, with t ∈ {0, . . . ,K − 1}. When t = 0,
only the last iteration is taken into account, so the current
support is of size K. For larger values of t, the supports
found during the last t iterations have varying sizes but the
averaging operation remains meaningful, especially for the last
iterations, which are the most costly. The curves displaying the
average of each indicator over 200 trials and over the last t
iterations are shown in Fig. 2(a). One can observe from the
curve (1−ρ↓) that the rate of non-descending atoms gradually
increases for both SNNOLS and NNOLS. Therefore, type-I
pruning is more effective at late iterations, where half of the
atoms are discarded.

The efficiency of NNOLS implementation is measured by
ρ+

cand and ρII in Fig. 2(a). Large values of ρ+
cand and ρII are

obtained, which indicates that the computing cost of NNOLS
is dramatically reduced. The score of ρ+

cand always remains
above 70%. This means that the computation of the NNLS
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(a) Complexity indicators of SNNOLS (left) and NNOLS (right)
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(b) Histograms of SNNOLS (left) and NNOLS (right)

Fig. 2. Complexity analysis of SNNOLS and NNOLS for a sparse deconvolution problem with Gaussian kernel (σ = 10) and a SNR of 30 dB. The dictionary
size is 1200× 1140, K = 80 and 200 trials are performed. (a) Evolution of complexity factors during the last t iterations (from L− t to L). (1−ρ↓): atoms
discarded by type-I pruning; ρ+sel: positive supports found by SNNOLS; ρ+cand: candidate atoms yielding a positive support in NNOLS; ρII: atoms discarded
by type-II pruning in NNOLS. (b) Histogram of the average number of iterations L required to reach a support of cardinality K = 80.

solutions reduces to a single ULS update for more than 70%
of candidate atoms. Moreover, many of the remaining atoms
can be discarded due to type-II pruning. For instance, in the
last iterations, around 25% of descending atoms do not yield a
positive support and type-II pruning eliminates 90% of them.
As a result, only 3% of descending atoms require to proceed
with a complete NNLS solving. Let us stress that the extra cost
of NNOLS as compared with SNNOLS essentially comes from
the number of atoms related to a complete NNLS solving, so
it directly depends on the efficiency of type-II pruning.

Regarding SNNOLS, the ratio ρ+
sel remains above 20%,

which indicates that the computation of the SNNOLS iterate
reduces to a single ULS update for at least 20% of the trials.
Generally speaking, the slight decrease of ρ+

sel, ρ
+
cand and ρII

shows that both SNNOLS and NNOLS call AS-NNLS more
often at the late iterations. A possible reason for this behavior
might be that the average correlation between selected atoms
increases with the cardinality of the support.

D. Performance comparison between NNOG and competing
algorithms

NNOG algorithms NNOMP, SNNOLS and NNOLS, inte-
grating support compression and the proposed acceleration
strategies, are compared with the corresponding unconstrained
versions OMP and OLS, where a post-processing is applied
to obtain non-negative coefficients. NNOG algorithms are also
compared to the fast versions FNNOMP and FNNOLS [32],
[33], as well as the non-negative extensions of CoSaMP and
Subspace Pursuit proposed in [30]. All comparisons are based
on reconstruction accuracy and CPU time. Reconstruction
accuracy is quantified by three factors:
• Support recovery: ratio of true positives to K;
• Coefficient inaccuracy: relative error for the recovered

coefficients (‖x− x∗‖ / ‖x∗‖);
• Residual norm: Euclidean norm of the data residual

(‖y −Hx‖).
The curves shown in Fig. 3 are obtained for a convolution

dictionary of size 2400 × 2388, with σ = 2 and for various
settings of K ∈ [2, 80]. For each K, 400 trials are carried out
in which the support S∗ is drawn according to the uniform
distribution and the non-zero coefficients of x∗ are drawn from

a Gamma distribution with shape and scale parameters set to
1 and 2, respectively. Note that for increasing K, the density
of spikes increases, and hence the difficulty of the problem.
Working at a given level of SNR would have even increased
the difficulty at large values of K, so we have preferred to
keep the noise level Pn constant; it is set to Pn = 10−2. In
this simulation condition, it is noticeable in Fig. 3(b,f) that the
coefficient inaccuracy ‖x−x?‖ becomes somewhat large when
the spike density is high. For easier problems (lower value of σ
and lower density of spikes), many algorithms would provide
good results, so it would be difficult to observe differences in
terms of estimation quality.

1) Comparison with unconstrained greedy algorithms: We
first perform a comparison of the NNOG algorithms with
(unconstrained) OMP and OLS to demonstrate the useful-
ness of working with NNOG algorithms. In order to obtain
non-negative coefficients from the OMP (respectively, OLS)
outputs, a simple possibility is to apply a post-processing
step using the solution support yielded after K iterations of
OMP (resp., OLS). This post-processing consists of solving
the NNLS problem related to the support found by OMP/OLS,
with possible annealing of coefficients when non-negativity
constraints are activated. The resulting schemes are denoted
by OMP+ and OLS+.

Fig. 3(a-d) includes a comparison of NNOMP and NNOLS
with OMP, OLS, OMP+ and OLS+. Their support recovery
and coefficient accuracy performances are weaker than those
of NNOG algorithms. In Fig. 3(a), the scores of OMP+
(OLS+) are identical to those of OMP (OLS). This is be-
cause the support recovery measure considers the rate of
true positives, which is unchanged since the post-processing
step of OMP+ (OLS+) essentially removes false positives.
On the contrary, the coefficient inaccuracy ratio is improved
due to the latter removal. In Fig. 3(c-d), the time and error
scores of OMP (resp., OLS) are both lower than those of
NNOMP (resp., SNNOLS and NNOLS). This is not a surprise
since unconstrained algorithms are simpler, and the obtained
solutions are expected to reach lower values of the residual
since they do not satisfy the non-negativity constraint. The
simple post-processing in OMP+/OLS+ does not allow to
yield a residual norm as small as the one obtained using
NNOG. This shows that NNOG algorithms do improve the



TECHNICAL REPORT, AUGUST 22, 2019 11

10 20 30 40 50 60 70 80

65

70

75

80

85

(a) Support recovery

10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Coefficient inaccuracy

10 20 30 40 50 60 70 80

4.8

4.85

4.9

(c) Residual norm

10 20 30 40 50 60 70 80

10
-3

10
-2

(d) CPU time

10 20 30 40 50 60 70 80

70

75

80

85

(e) Support recovery

10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(f) Coefficient inaccuracy

10 20 30 40 50 60 70 80

4.8

4.85

4.9

4.95

5

5.05

(g) Residual norm

10 20 30 40 50 60 70 80

10
-2

10
0

(h) CPU time

Fig. 3. Comparison of NNOG algorithms with unconstrained greedy algorithms and other non-negative sparse solvers. Performances are averaged over 400
trials in a simulated sparse deconvolution problem with Gaussian kernel with σ = 2, Pn = 10−2, and a dictionary of size 2400× 2388. (a)–(d) NNOG vs
unconstrained greedy algorithms; (e)–(h) NNOG vs other sparse non-negative algorithms.

performance of (unconstrained) OMP and OLS.
2) Comparison with approximate fast non-negative greedy

algorithms: Fig. 3(e-h) includes a comparison with the
FNNOMP and FNNOLS implementations3 of Yaghoobi et
al. [32], [33]. FNNOLS turns out to be much slower and
less accurate than our fast implementations of SNNOLS and
NNOLS. On the other hand, the statistical performances of
NNOMP and FNNOMP are very close both in terms of
computational time and accuracy. However, FNNOMP may
return some negative coefficients in the reconstructed sparse
vector. FNNOMP was introduced as a fast but approximate
version of the canonical NNOMP algorithm by Bruckstein et
al. In contrast, our fast implementation of NNOMP is exact
and the non-negativity constraint is always satisfied.

3) Comparison with non-negative versions of CoSaMP and
SP: In Fig. 3(e-h), NNOG implementations are also compared
with NN-CoSaMP and NN-SP [30]. NN-HTP [30] yields the
weakest performance, so it is not further considered here.

The principle of NN-CoSaMP and NN-SP is to maintain
an estimated support of size K. To do so, three kinds of
operations are performed at each iteration including support
merging, NNLS estimation of coefficients and support pruning.
In NN-CoSaMP, the current support of size K is merged with
a support of size 2K, and an NNLS problem is solved with
this augmented support. Then, thresholding is performed by
keeping the K coefficients having the largest magnitudes. The
structure of NN-SP is similar, but two NNLS problems (of size
roughly 2K and K) are solved before and after thresholding.
The NN-SP output thus contains at most K nonzero elements
depending on the activation of nonnegativity constraints.

In Fig. 3(e-h), the NNOG algorithms yield competitive
accuracy performance compared to NN-SP and NN-CoSaMP.

3kindly provided by Dr. Mehrdad Yaghoobi.

In particular, NNOG algorithms have a better ability to find
a low value of the residual norm for a given cardinality K.
This said, no algorithm outperforms all competitors in terms of
coefficient accuracy for all scenarios. Nonetheless, the times
of computation of NNOG with our recursive implementations
are always lower than those of NN-CoSaMP and NN-SP. Let
us stress that the structure of the latter algorithms does not
easily lend itself to recursive implementations. Indeed, there is
no nested property between the supports found at consecutive
iterations. Consequently, solving the NNLS problems in a
very efficient manner does not seem obvious anymore. For
instance, NN-CoSaMP needs to solve NNLS problems for
augmented supports of size roughly 3K. The current K-sparse
vector obtained after thresholding may be used as a warm start
(although it is usually not an NNLS solution), but the number
of inner NNLS iterations is expected to be much larger than
for NNOG algorithms.

VI. SPARSE DECOMPOSITION OF NIR SPECTRA

A. Real data and generated dictionary

More than 300 wood samples with different compositions
(raw wood, plywood, particle boards, MDF-HDF) and finitions
(raw, painted, varnished) were collected on a wood waste park
and scanned using a Nicolet 8700 FTIR spectrometer. The re-
sulting reflectance spectra are composed of 1647 wavenumbers
covering the NIR range 3600–10000 cm−1 (which corresponds
to wavelengths in the interval [1, 2.8] µm). The aim is to
design a binary classifier based on the identification of a
subset of informative wavelengths for detecting the so-called
non recyclable samples, i.e., MDF-HDF [47], [48]. As the
final objective is to design an industrial (fast) sorting system,
the number of selected wavelengths has to be as small as
possible (typically between 16 and 32). Sparse modeling of the
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TABLE II
CPU TIME AND NORMALIZED APPROXIMATION ERROR OF GREEDY ALGORITHMS FOR SPARSE DECOMPOSITION OF NIR SPECTRA. AVERAGE OVER 50

SPECTRA. SYMBOL ** INDICATES THAT THE CONSIDERED ALGORITHM DOES NOT ENFORCE THE NON-NEGATIVE CONSTRAINT.

Algorithm **OMP OMP+ NNOMP FNNOMP Sparse NNLS **OLS OLS+ SNNOLS NNOLS FNNOLS NN-CoSaMP NN-SP
Time (ms) 23 24 28 25 25 25 26 30 40 2720 45 57
‖y −Hx‖/‖y‖ × 102 6.6 16.4 9.6 9.6 9.6 5.7 16.6 6.4 6.4 7.0 10.1 8.2
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Fig. 4. Data approximation and sparse recovery of an NIR spectrum using various algorithms. The Gaussian dictionary contains 2998 atoms and the sparsity
level is set to K = 20.

NIR spectra is a common approach to select the informative
wavelengths. For instance, Turlach et al. [49] proposed an
algorithm for variable selection based on an extension of the
LASSO and applied it to near infrared measurements.

Hereafter, we consider the decomposition of 50 NIR spectra,
seen as data vectors y of length 1647. Data pre-processing
includes baseline removal, offset correction ensuring zero
lower bound, and unit energy normalization. To decompose the
spectra, a dictionary H is built with Gaussian-shaped columns
obtained by discretizing the parameters of a Gaussian function
(centers and widths). It is formed by appending the columns of
the convolution dictionaries (corresponding to a fixed width σ)
used in Section V for 60 equally spaced values of σ ∈ [10, 600]
cm−1. The generated dictionary is composed of 2998 atoms.
The centers of Gaussian atoms of same width σ are sampled
with a step equal to σ, whereas the sampling step of the input
signals y equals 4 cm−1.

B. Decomposition results

For each spectrum, NNOMP, SNNOLS, NNOLS, Sparse
NNLS, OMP, OLS are run until a support of cardinality K =
20 is found. The simple OMP+ and OLS+ algorithms intro-
duced in § V-D are also considered, together with FNNOMP,
FNNOLS, NN-CoSaMP, and NN-SP. For each algorithm, the
CPU time and the relative residual norm ‖y − Hx‖/‖y‖,
averaged over 50 spectra, are displayed in Tab. II.

First, the time and approximation errors of OMP (resp.,
OLS) are both lower than those of NNOMP (resp., SNNOLS
and NNOLS). This is not a surprise since unconstrained algo-
rithms are expected to reach lower criterion values. When one
performs a post-processing by removing these negative spikes
such as with OMP+/OLS+, the error scores become larger
than those of NNOG algorithms, and the sparse approximation
accuracy is weaker. This confirms the weak capacity of OMP
and OLS to reconstruct correct supports from non-negative
sparse representations. NNOMP, Sparse NNLS, and FNNOMP
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have roughly the same cost and performance. Furthermore,
SNNOLS and NNOLS yield the lowest approximation errors.

Similar to the simulations of Section V, the computing
times of NN-CoSaMP and NN-SP are greater than those
of NNOG implementations. NNOLS is significantly slower
than NNOMP and SNNOLS, while SNNOLS has the same
performance as NNOLS and a computing time closer to that of
NNOMP. Finally, the CPU times of NNOG algorithms vs their
related unconstrained versions given in Tab. II are consistent
with the non-negativity losses gathered in Tab. I.

These approximation and sparse recovery results are further
illustrated for a given spectrum in Fig. 4. Note that the Sparse
NNLS result (not shown) identifies with that of NNOMP. OMP
and OLS (not shown) yield 7 and 9 negative peaks. Besides,
the OMP+ and OLS+ approximations around 4500–7000
cm−1 and 5000 cm−1, respectively, are rather poor. SNNOLS
and NNOLS outputs almost coincide. They outperform that of
NNOMP, in particular, around 4200 and 7000 cm−1 and those
of NN-CoSaMP and NN-SP around 9000 cm−1. FNNOLS
is more costly and slightly less accurate than SNNOLS and
NNOLS.

VII. CONCLUSION

Until now, greedy algorithms dedicated to non-negative
sparse signal reconstruction have been considered as slow
schemes, requiring the repeated resolution of constrained least
square problems. In order to accelerate the computation,
approximate schemes have been proposed [32], [33] at the
price of some loss of control on the algorithmic behavior,
and possibly degraded performance. Another commonly found
option has been to replace the `0 “norm” by the `1-norm
and to solve the resulting convex programming problem, with
a possible loss in terms of performance (see [27] for an
interesting case of sparse NMF).

The first contribution of this paper is to provide a unified
framework to define non-negative orthogonal greedy algo-
rithms in a formal way, ensuring well-defined iterations. The
second and probably most important one in terms of practical
impact, is to show that the additional cost of non-negative
greedy algorithms to handle the sign constraint can be strongly
reduced using three ingredients. The main one is that non-
negative greedy algorithms can be made fully recursive. More-
over, several pruning strategies can be combined to reduce
the number of tests at the atom selection stage. Finally,
the latter step can benefit from vectorized computations.
According to our practical tests with Gaussian dictionaries,
the computing time of NNOMP becomes comparable to that
of OMP. Hence, we believe that the additional cost should
not prevent users from skipping from OMP to NNOMP in
nonnegative sparse problem. The performances of NNOMP
and FNNOMP are very close both in terms of computational
time and accuracy. Since FNNOMP was introduced as a
fast but approximate version of NNOMP, it does not seem
mandatory to work on approximate schemes to derive efficient
implementations. On the other hand, we have obtained a
dramatic acceleration of NNOLS compared to both canonical
and fast versions proposed in [33]. The computing cost of

NNOLS remains larger than that of OLS. However, whenever
OLS can be used, our exact implementation of NNOLS is
a realistic option to handle nonnegativity constraints, given
that the potential of performance gain between NNOMP and
NNOLS is comparable to the one between OMP and OLS
in the unconstrained case. We have also studied SNNOLS,
which is a suboptimal version of NNOLS originally introduced
in [33]. Our conclusion is that SNNOLS represents a good
trade-off between NNOMP and NNOLS: it is structurally
simpler than NNOLS and possibly faster, with very similar
performance in terms of estimation error. Likewise, we have
compared NNOMP with Sparse NNLS and concluded that
Sparse NNLS is structurally simpler than NNOMP with almost
the same performance as NNOMP, and a slightly reduced
computing cost. Let us point out that the computation time
and accuracy found for different algorithms might potentially
follow different trends with different kinds of dictionaries.
The latter conclusions (e.g., comparisons between NNOLS and
SNNOLS) found with Gaussian dictionaries could therefore be
different when working with other problems. We conjecture
though that the performance gain between SNNOLS/NNOLS
with respect to NNOMP would be observed as well for other
problems involving ill-posed dictionaries, since this conclusion
is consistent with the practitioner knowledge of OLS and OMP.

Our comparisons with NN-SP and NN-CoSaMP show that
NNOG algorithms are very competitive in terms of accuracy,
although no algorithm outperforms the others in all scenarios.
The proposed recursive implementations yield a substantial re-
duction of computation compared to NN-SP and NN-CoSaMP.
An attractive feature of NNOG algorithms is their versatility.
Indeed, the implementations presented in this paper can be
used to address both forms of (`0+) problems with constraints
‖x‖0 ≤ K (as addressed in this paper) or ‖y −Hx‖22 ≤ ε2,
where ε2 is related to the noise variance. In the latter case,
one simply needs to replace the stopping condition |S| = K
in Algorithm 1 by ‖rS‖22 ≤ ε2. NN-SP, NN-CoSaMP, and
NN-HTP are apparently less versatile, although the proposal
of novel versions dedicated to the constraint ‖y −Hx‖22 ≤ ε2

could be addressed as a perspective to the work in [30].
Our contributions can be extended in several directions.

A straightforward generalization can be made to deal with
nonnegativity-constrained simultaneous sparse decomposition,
which is useful in several applications such as hyperspectral
imaging [39], dynamic PET [50], and diffusion MRI [30]. On
the other hand, other greedy algorithms such as BOMP [42]
and SBR [43] could also be extended to the non-negative
setting using similar principles and using a recursive imple-
mentation. Finally, let us mention that [51] establishes the first
K-step recovery analysis of NNOMP, NNOLS and SNNOLS
under the Mutual Incoherence Property condition.
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APPENDIX A
PROOF OF TECHNICAL RESULTS

A. Proof of Proposition 1

Let us first prove that ht
ir

+
S > 0 implies i ∈ DS . Let

ht
ir

+
S > 0. According to (1) for r = r+

S , we deduce that
i ∈ DS since

‖r+
S∪{i}‖

2 ≤ min
v≥0

∥∥r+
S − vhi

∥∥2
< ‖r+

S ‖
2.

Conversely, let i ∈ DS . Define f(z) =
∥∥y −HS∪{i}z

∥∥2

where z ∈ R|S|+1. Let us also define the subvectors zS :=
x̂+
S (S ∪ {i}) and zS∪{i} := x̂+

S∪{i}(S ∪ {i}), x̂+
S and x̂+

S∪{i}
being two NNLS solutions related to S and S ∪ {i}. Condition
i ∈ DS reads

f(zS∪{i}) < f(zS).

Since f is convex, one has

(zS∪{i} − zS)t∇f(zS) ≤ f(zS∪{i})− f(zS) < 0 (21)

where the gradient of f is defined by

∇f(zS) = 2Ht
S∪{i}(HS∪{i}zS − y) = −2Ht

S∪{i}r
+
S .

Denoting by C := supp(x̂+
S ) the compressed support, we

have from Lemma 1 that Ht
S\Cr

+
S ≤ 0 and Ht

Cr
+
S = 0.

Since x̂+
S is supported by C, the latter equality implies that

zt
S∇f(zS) = 0. (21) yields (zS∪{i})

tHt
S∪{i}r

+
S > 0, i.e.,

(x̂+
S∪{i}(S ∪ {i}))

tHt
S∪{i}r

+
S > 0. (22)

Since Ht
Cr

+
S = 0, (22) rereads:

(x̂+
S∪{i}(S\C))tHt

S\Cr
+
S + (ht

ir
+
S ) x̂+

S∪{i}(i) > 0 (23)

and since Ht
S\Cr

+
S ≤ 0 and x̂+

S∪{i} ≥ 0, (23) implies that

(ht
ir

+
S ) x̂+

S∪{i}(i) > 0 (24)

and thus ht
ir

+
S > 0.

Let us now assume that S is a positive support. According
to Lemma 2, we have x̂+

S = x̂S and r+
S = rS , so (7) and (8)

are identical, as well as (9) and (10). To show that (7)-(8) are
equivalent to (9)-(10), we first notice that rS ∈ (span(HS))⊥,
thus h̃t

irS = ht
irS since h̃i − hi ∈ span(HS). Therefore,

(8) rereads 0 < h̃t
irS , which implies that h̃i 6= 0 and g̃i =

h̃i/‖h̃i‖ 6= 0. Hence, (8) rereads 0 < g̃t
irS , which identifies

with (10).
Finally, let us show that i ∈ DS is equivalent to condi-

tion (11). Consider the function f(z) =
∥∥y −HS∪{i}z

∥∥2
and

the notations zS and zS∪{i} defined above. Assuming that
HS∪{i} is full column rank, we have that f is strictly convex,
so f admits a unique minimizer zS∪{i}. If x̂+

S∪{i}(i) > 0,
then zS∪{i} 6= zS and

‖r+
S∪{i}‖

2 = f(zS∪{i}) < ‖r+
S ‖

2 = f(zS),

that is, i ∈ DS . Conversely, x̂+
S∪{i}(i) = 0 implies x̂+

S∪{i} =

x̂+
S , hence r+

S∪{i} = r+
S and i /∈ DS .

Algorithm 4: Recursive ULS [21].
Format: ULS(y, H, V, fw, `, x̂,Θ, e2)

1 if fw then
2 φ← Ht

V h` ;
3 δ ← (1− φtΘφ)−1 ;
4 β ← φtx̂(V )− ht

`y ;
5 e2 ← e2 − δβ2 ;

6 x̂(V ∪ {`})← x̂(V ∪ {`}) + δβ

[
Θφ
−1

]
;

7 Θ←
[
Θ 0
0 0

]
+ δ

[
Θφ
−1

] [
Θφ
−1

]t

;

8 V ← V ∪ {`} ;
9 else

10 j ← index of ` in V ;
11 e2 ← e2 + (x̂(`))2/θj(j) ;
12 x̂(V )← x̂(V )− x̂(`)θj/θj(j) ;
13 Θ← Θ(−j,−j)− θj(−j)θj(−j)t/θj(j) ;
14 V ← V \ {`} ;
15 end

B. Proof of Proposition 3

Any iteration of AS-NNLS starts with the addition of a new
atom to the current support (Line 4 of Algorithm 2). Then, a
variable number of atoms are removed from it one after the
other (Lines 6 to 12). Let r denote the number of removals
at the current AS-NNLS iteration. Let also V ⊂ {1, . . . , n}
and x̂V respectively stand for the current support and solution
obtained at Lines 4 and 5, and let V ′ ⊂ V and x̂V ′ denote the
corresponding quantities after r removals. Let us show that
any AS-NNLS iteration for which r = 0 or r = 1 yields a
solution of the NNLS problem restricted to the support V .

If x̂V ≥ 0, then r = 0, so V ′ = V and x̂V ′ = x̂+
V ≥ 0.

Otherwise, we have min(x̂V ) < 0 and r > 0. If r = 1, a single
index `− is removed at Lines 6-12, so that V ′ = V \{`−}, and
x̂V ′ ≥ 0. Let us remark that we have x̂V (`−) < 0 according
to Line 7. Let us then prove that x̂V ′ = x̂+

V by showing that
KKT conditions are satisfied at x̂V ′ for the NNLS problem
related to support V . Note that the NNLS solution is unique
since the supports generated by AS-NNLS are such that HV is
full column rank, as pointed out in subsection III-B. According
to Lemma 1, the KKT conditions read:

Ht
V ′(y −Hx̂V ′) = 0, (25a)
ht
`−(y −Hx̂V ′) ≤ 0. (25b)

(25a) is obviously satisfied. On the other hand, remark that
x̂V ′ = x̂+

V ′ since x̂V ′ ≥ 0 and that according to Proposition 1,
x̂V (`−) < 0 implies that ht

`−rV ′ ≤ 0, which identifies
with (25b). This concludes the proof.

APPENDIX B
RECURSIVE IMPLEMENTATION OF ULS

Algorithm 4 recalls the recursive ULS computation using
MIL [21] for selection (forward move V ← V ∪ {`}) and de-
selection (backward move V ← V \{`}) operations. The ULS
solution x̂ := x̂V is updated. Moreover, Θ := (Ht

VHV )−1
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refers to the inverse of the Gram matrix related to subset V .
The Boolean entry fw is set to true and false for selection
and deselection updates, respectively. Finally, e2 stands for the
squared residual error ‖rV ‖2. All these factors are updated in
Algorithm 4. Notation −j refers to all indices except j, and
θj stands for the j-th column of Θ.

The calls to Algorithm 4 for updating ULS solutions at
Lines 4-5 and 10-11 of Algorithm 2 take the respective forms:

ULS(y, H, V, 1, `+, x̂V ,Θ, ‖rV ‖2),

ULS(y, H, V, 0, `−, x̂V ,Θ, ‖rV ‖2).
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