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A SIMPLE MASTER THEOREM FOR DISCRETE DIVIDE AND

CONQUER RECURRENCES

OLIVIER GARET

Abstract. The aim of this note is to provide a Master Theorem for some
discrete divide and conquer recurrences:

Xn = an +

m
∑

j=1

bjX⌊pj n⌋,

where the pi’s belong to (0, 1). The main novelty of this work is there is no
assumption of regularity or monotonicity for (an). Then, this result can be
applied to various sequences of random variables (an)n≥0, for example such
that supn≥1 E(|an|) < +∞.

1. Introduction

Divide-and-conquer methods are widely used in Computer Science. The analysis
of the cost of the algorithm naturly leads to divide-and-conquer recurrences. The
methods to study these recurrences are popularized as “Master theorems” in the
litterature of Computer Science. See e.g. the reference books by Cormen et al [3]
or Goodrich and Tamassia [6].

In the sequel, we consider sequences (Xn)n≥0 that are defined by X0 = a0, then

Xn = an +

m
∑

j=1

bjX⌊pj n⌋,(1)

where the pi’s belong to (0, 1) and ⌊x⌋ denotes the only n ∈ Z such that x−n ∈ [0, 1).
Of course, in Computer Science, an and Xn represent computation times and are

therefore positive. However, the case of negative an and Xn can be of theoretical
interest.

In the litterature of Computer Science, (an) is supposed to be deterministic.
Nevertheless, in the context of randomized algorithm, eventually involving Monte-
Carlo simulation, it is natural to consider the case of a random (an) and observe
the fluctuations of the computation time.

One of the most general results in the field of Computer Science is due to Akra
and Bazzi [1]. They do not seek for an exact asymptotic limit, focusing of the order
of the fluctuations. Their methods rely on classical real analysis.

The mathematical litterature is more focused on exact methods, that rely on
generating functions. The first paper in this spirit is Erdős et al [5], which solved
the case an = 0 with the help of renewal equations. Tauberian theorems lead to
simpler proofs of their result, see e.g. Choimet and Queffelec [2]. Recent results
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by Drmota and Szpankowski [4]) also rely on Tauberian theorems and some other
tools in complex analysis. They request some assumptions of monotonicity.

If one wants to cover the case of a random (an), the sequence (an) obviously
can not be supposed to be monotonic. Quite surprisingly, we did not find in the
litterature any theorem of this kind, computing an exact limit without making some
assumption of monotonicity.

Let us precise the assumptions: we assume that the bi’s and the pi’s are positive

numbers with
∑m

j=1 bj > 1 and such that there exists j, ℓ with
log pj

log pℓ
6∈ Q. The

rational case, which is not considered here, is also of great interest in Computer
Science – see e.g. Roura [7] or Drmota and Szpankowski [4].

It is known that the general growth of (Xn) is governed by the value of the
positive root s0 for the equation

m
∑

j=1

bjps
j = 1.

As said before, the originality of the present paper lies in the assumption on the
(an): under the assumption that

+∞
∑

n=1

|an|

ns0+1
< +∞,

we prove that the sequence Xn

ns0
admits a limit L when n tends to infinity and give

a fairly simple closed expression for it.
As we will see, this allow to apply our Theorem to a large class of random

variables. Then, the limit L is a random variable, which appears as the sum of a
random series.

If we specialize to the case where the (an) are independent, then one can easily
control the random fluctuations of L.

2. The deterministic Theorem

Theorem 1. Let m ≥ 1, (b1, . . . , bm) be a family of non-negative numbers and
(p1, . . . , pm) be a family of non-negative numbers in (0, 1) such that

• there exists j, ℓ with
log pj

log pℓ
6∈ Q;

•
∑m

j=1 bj > 1.

We denote by s0 the positive root s0 for the equation

m
∑

j=1

bjps
j = 1.

Then, there exist a sequence (ℓj)j≥0 such that for every sequence (an)n≥0 with

+∞
∑

n=1

|an|

ns0+1
< +∞,

then the sequence (Xn)n≥0 defined by X0 = a0 and the recursion (1) satisfies

lim
n→+∞

Xn

ns0
=

+∞
∑

n=0

ℓjaj.
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Proof. We denote by Ln(a) the value of Xn corresponding to the recursion (1) for
some sequence a.

The recursion equation. Let n0 be a non-negative integer and suppose first that
an = 0 for n > n0.

For n > n0, we have X(n) =
∑m

j=1 bjX(⌊pjn⌋).

We can choose C such that |Xk| ≤ Cks0 for 0 < k ≤ n1 = max(n0, 1/p1, . . . , 1/pm).
Then, it follows by natural induction that |Xk| ≤ Xks0 for each k ∈ N∗. In the
sequel, we put X(t) = X(⌊t⌋) to simplify some notation. Now define

φ(s) = s

∫ +∞

n0+1

X(t)

ts+1
dt(2)

for s ∈ C with Re(s) > s0. The recursion Equation leads to

φ(s) = s

∫ +∞

n0+1

m
∑

j=1

bj

X(pjx)

ts+1
dt = s

m
∑

j=1

bjps
j

∫ +∞

(n0+1)pj

X(t)

ts+1
dt

=





m
∑

j=1

bjps
j



 φ(s) + s

m
∑

j=1

bjps
j

∫ n0+1

(n0+1)pj

X(t)

ts+1
dt.

So we have

φ(s) =
P (s)

1 −
∑m

j=1 bjps
j

, with P (s) = s

m
∑

j=1

bjps
j

∫ n0+1

(n0+1)pj

X(t)

ts+1
dt(3)

Tauberian magic. Suppose here that a = In0
with In0

(i) = 1i≤n0
. By natural

induction, it is easy to see that (Xn)n≥0 is non-decreasing.
Following the reasoning by Choimet and Queffelec [2], we see that 1−

∑m

j=1 bjps
j

does not vanish for s ∈ C with Re(s) ≥ s0 and s 6= s0. It follows that for

c = Ress0
φ =

P (s0)

−
∑m

j=1 bjps0

j log(pj)
,

the map s 7→ φ(s) − c
c−s0

is holomorphic on {s ∈ C; Re(s) ≥ s0}.

Now note b(x) =
∑

n0<n≤x Xn − Xn−1. The Abel transformation gives

+∞
∑

n=n0+1

Xn − Xn−1

ns
= s

∫ +∞

n0+1

b(t)

ts+1
dt

Since b(t) = X(t) − Xn0
, we have

+∞
∑

n=n0+1

Xn − Xn−1

ns
= s

∫ +∞

n0+1

X(t)

ts+1
dt −

Xn0

(n0 + 1)s
= φ(s) −

Xn0

(n0 + 1)s
.

Since (Xn)n≥0 is non-decreasing, the sequence (Xn −Xn−1)n>n0
is non-negative, so

the Wiener-Ikehara Theorem for series applies: since b(t) = O(ts0 ) when t → +∞,
we get b(x) ∼ c

s0
xs0 ,so

lim
n→+∞

Ln(In0
)

ns0
=

∑m

j=1 bjps0

j

∫ n0+1

(n0+1)pj

Lt(In0
)

ts0+1 dt
∑m

j=1 bjps0

j log(1/pj)
.

For n0 = 0, we have
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ℓ0 = lim
n→+∞

Ln(δ0)

ns0
= lim

n→+∞

Ln(I0)

ns0
=

1
∑m

j=1 bjps0

j log(1/pj)

m
∑

j=1

bjps0

j

∫ 1

pj

1

ts0+1
dt

=
1

∑m

j=1 bjps0

j log(1/pj)

m
∑

j=1

bjps0

j

p−s0

j − 1

s0

Note that this equality and the related convergence form the result by Erdős et
al [5].

Let n0 ≥ 1. Since δn0
= In0

− In0−1, it follows that

Ln(δn0
)n−s0 = Ln(In0

)n−s0 − Ln(In0−1)n−s0

has a limit when n tends to infinity. Let us denote it by ℓn0
.

To compute it, take a = δn0
and consider again the associated φ. From (2), we

get ℓs0
= 1

s0
lims→s

+

0

1
s0

(s − s0)φ(s). On the other side, Equation (3) is still valid,

with

P (s) = s

m
∑

j=1

bjps
j

∫ n0+1

(n0+1)pj

X(t)

ts+1
dt

= s

m
∑

j=1

bjps
j

∫ n0+1

max(n0,(n0+1)pj)

1

ts+1
dt,

also

1

s0
(s − s0)φ(s) = −

s

s0

s0 − s

1 −
∑m

j=1 bjps
j

m
∑

j=1

bjps
j

∫ n0+1

max(n0,(n0+1)pj)

1

ts+1
dt

and

ℓn0
=

1
∑m

j=1 bjps0

j log(1/pj)

m
∑

j=1

bjps0

j

∫ n0+1

max(n0,(n0+1)pj )

1

ts0+1
dt.

With the supplementary assumption that pi ≤ 1/2 for each i, we simply have

ℓn0
=

1
∑m

j=1 bjps0

j log(1/pj)

m
∑

j=1

bjps0

j

∫ n0+1

n0

1

ts0+1
dt.

The general case. For n, j ≥ 0, we note Kj
n = Ln(δj). It is obvious that Kj

n = 0

for n < j and Kj
j = 1. It easily follows by natural induction on n that 0 ≤ Kj

n ≤
K0

n

K0
j

.

Now, the affine nature of the recursion gives

Xn =

n
∑

j=0

Kj
naj

For each j ≥ 0, we have lim
n→+∞

Kj
n

ns0
= ℓj . Moreover, for each j, n ≥ 0, we have

|
Kj

naj

ns0
| ≤

K0
n

ns0

|aj |

K0
j

≤ M
|aj |

(j + 1)s0
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and by the Weierstrass criterion,

lim
n→+∞

Xn

ns0
=

+∞
∑

j=0

ℓjaj .

�

3. Application to sequences of random variables

We give below some applications of Theorem 1 to sequences of random variables.

Convergence.

Theorem 2. Assume that the pi’s, the bi’s and s0 fulfill the assumptions of Theo-
rem 1 and (an) is a sequence of random variables. Under each of the following sets
of supplementary assumptions, the sequence (Xn)n≥0 defined by X0 = a0 and the

recursion (1) is such that Xn

ns0
almost surely converges to some random variable:

(A) The (an) are integrable random variables with C = supn≥1 E|an| < +∞.

(B)
∑m

j=1 bjpj > 1 and the an are random variables following the Cauchy C(0, 1)
Law.

Proof. (A) If the (an) are integrable random variables with C = supn≥1 E|an| <

+∞, then E(
∑+∞

n=1
|an|

ns0+1 ) ≤ Cζ(s0 + 1) < +∞, so
∑+∞

n=1
|an|

ns0+1 < +∞

almost surely, which gives the almost sure behavior of Xn

ns0
.

(B) If
∑m

j=1 bjpj > 1 and the an are random variables following the Cauchy

C(0, 1) Law, then the condition
∑m

j=1 bi > 1 implies that s0 > 1. Let fix

η with s0 > η > 1. Then P(|an| > nη) = O(n−η) and
∑+∞

n=1 P(|an| >
nη) < +∞, so by the Borel-Cantelli Lemma, for almost every ω, there
exists n0(ω) with |an(ω)| ≤ nη for n ≥ n0(ω), which gives the convergence

of
∑

n≥1
|an|

ns0+1 and our Master Theorem still applies.
�

Exponential moments.

Theorem 3. Assume that the pi’s, the bi’s and s0 fulfill the assumptions of The-
orem 1 and (an) is a sequence of independent random variables. The sequence
(Xn)n≥0 is defined by X0 = a0 and the recursion (1).

• If there exists a distribution µ with exponential moments such that |an| is
stochastically dominated by µ∗n for each n ≥ 0, then |Xn| as exponential
moments for each n.

• If s0 > 1 (or equivalently
∑m

j=1 bjpj > 1) and there exists a distribution µ

with exponential moments such that |an| is stochastically dominated by µ
for each n ≥ 0, then Xn

ns0
→ L a.s. where |L| has exponential moments.

• If s0 > 2 (or equivalently
∑m

j=1 bjp2
j > 1) and there exists a distribution µ

with exponential moments such that |an| is stochastically dominated by µ∗n

for each n ≥ 0, then Xn

ns0
→ L a.s. where |L| has exponential moments.

Proof. We begin with an easy lemma:

Lemma 1. Let X be a random variable with E(eαX) < +∞ and Y a random
variable following the exponential law E(α) Then, for a = 1

α
logE(eαX1 ), we have

the stochastic domination X ≺ Y + a.
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Proof. We just have to prove that for t ∈ R, P(X ≥ t) ≤ P(Y + a ≥ t), or
equivalently P(X ≥ t) ≤ P(Y ≥ t − a). For t ≤ a, we have P(X ≥ t) ≤ 1 = P(Y ≥
t − a). For t ≥ a, the Markov inequality gives

P(X ≥ t) ≤
EeαX

eαt
=

eαa

eαt
= exp(−α(t − a)) = P (Y ≥ t − a).

This completes the proof. �

Now, we have a and α such that for each n ≥ 1

|an| ≺ µ∗n ≺ (δa ∗ E(α))∗n = δna ∗ Γ(n, θ).

Let (Zn)n≥0 be a sequence of independent variables with Zn ∼ Γ(n, θ), where
Γ(a, γ) is the Law with the density

x 7→
γa

Γ(a)
xa−1e−γx

1]0,+∞[(x).

|Xn|
ns0

is stochastically dominated by

M
n

∑

j=0

ja + Zj

(j + 1)s0
,

so for t < 1/α, we have

E(et
|Xn|

ns0 ) ≤ exp(Ma
n+1
∑

j=1

j−s0 )
n

∏

j=0

E exp(
tZj

(j + 1)s0
)

≤ exp(Ma

n+1
∑

j=1

j−s0 )

n
∏

j=0

(1 −
αt

(j + 1)s0
)−j

When j is large enough, (1 − αt
(j+1)s0

)−j ≤ exp( αt
js0−1 ), which gives the existence of

an exponential moment for s0 > 2.
The proof in the case |an| ≺ µ and s0 > 1 is similar.

�

As an example of domination by µ∗n, we can think about the case where a recur-
sive function called with parameter n requires n simulations with an acceptance-
rejection method. Then, an appears as the sum of n independent variables following
a geometric distribution µ = G(p).
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