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a b s t r a c t 

The aim of this study is to investigate numerically the interaction between a dispersed phase composed

of micro-bubbles and a turbulent boundary layer flow. We use the Euler–Lagrange approach based on

Direct Numerical Simulation of the continuous phase flow equations and a Lagrangian tracking for the

dispersed phase. The Synthetic Eddy Method (SEM) is used to generate the inlet boundary condition for

the simulation of the turbulent boundary layer. Each bubble trajectory is calculated by integrating the

force balance equation accounting for buoyancy, drag, added-mass, pressure gradient, and the lift forces.

The numerical method accounts for the feedback effect of the dispersed bubbles on the carrying flow.

Our approach is based on local volume average of the two-phase Navier–Stokes equations. Local and

temporal variations of the bubble concentration and momentum source terms are accounted for in mass

and momentum balance equations. To study the mechanisms implied in the modulation of the turbulent

wall structures by the dispersed phase, we first consider simulations of the minimal flow unit laden with

bubbles. We observe that the bubble effect in both mass and momentum equations plays a leading role

in the modification of the flow structures in the near wall layer, which in return generates a significant

increase of bubble volume fraction near the wall. Based on these findings, we discussed the influence of

bubble injection methods on the modulation of the wall shear stress of a turbulent boundary layer on a

flat plate. Even for a relatively small bubble volume fraction injected in the near wall region, we observed

a modulation in the flow dynamics as well as a reduction of the skin friction.

1. Introduction

It is a well-established fact that any object having nonzero rel- 

ative velocity with respect to the upstream fluids experiences vis- 

cous drag at large Reynolds number due to the thin boundary layer

developing on the object’s surface, where the velocity of the fluid

gradually reduces to that of the object surface. The reduction of

viscous drag is one of the most active areas of research in fluid me- 

chanics by virtue of its importance in numerous technological ap- 

plications, such as ship locomotion, aircraft flight, fuel transporta- 

tion through pipelines and vehicle aerodynamics. Plethora of ex- 

perimental and numerical studies have been conducted in order to

manipulate shear induced drag. In the present study we have used

direct numerical simulations to study the drag modification caused

by the interaction of micro-bubbles with the near-wall structures.

Ever since the first DNS was conducted by [26] , it has become a
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fundamental tool to a better understanding of turbulence. With the

rapid advancement in data storage capability and processor speed

researchers can do DNS with a large number of bubbles. Whether

the researches use experiments or DNS, most of the drag reduction

techniques focus on the manipulation of near-wall cycle of turbu- 

lence regeneration using either active or passive mechanisms. The

near-wall structures enhance the mixing and thus the transfer of

momentum towards the wall, hence are directly responsible for the

production of drag.

1.1. Near-wall regeneration cycle

The flow visualization experiments performed by [27] revealed

structures of near-wall turbulence called streaks. Streaks are quasi- 

streamwise regions where the velocity is less than the local mean

velocity at the same height from the wall. The average spanwise

streak spacing in the viscous sublayer and the buffer layer scales

in wall units and corresponds approximately to λ+ 
z = 100 , in wall

units. These coherent structures are ubiquitous in all turbulent



shear flows. Numerous experimental and numerical investigations

observed that these structures are self-sustained through a cycle

of breaking up and regeneration. The flow structures are randomly

located in space and time, making very difficult to extract a simple

mechanism to explain the breakdown and regeneration of them.

With the minimal-flow strategy of [24] this randomness is reduced

and it becomes possible to identify a simple regeneration cycle.

Following this approach [16] investigated the minimum Reynolds

number and domain size needed to sustain a turbulent regime.

The flow visualization and careful analysis of the energy associ- 

ated with various Fourier modes evidenced a three-step process.

First, the interaction of the spanwise modulation of the streamwise

velocity component (i.e., near wall streaks) with the mean shear,

leads to the lift-up effect. This lift-up effect is responsible for the

redistribution of streamwise momentum through counter-rotating

quasistreamwise vortices. This redistribution of momentum leads

to the transient growth of the high speed and low speed stream- 

wise streaks. Second, when these streaks reach high amplitude

they become unstable to secondary perturbation via inflectional

type instability. Finally, the unstable modes of the streaks self- 

interact to re-energize the streamwise vortices. This phenomenon

of lift up and breakdown is called bursting. [27] reported that a

strong favorable pressure gradient suppresses the bursting process

and flow return to laminar state. This gave striking evidence that

bursting plays a crucial role in turbulence generation near the wall.

1.2. Mechanism of drag reduction

Bursting of near-wall coherent structures intermittently pro- 

duce and eject turbulent fluctuations into the core region of the

domain (see [17] ). In between the two bursts there is a quiescent

state where the streaks get produced, become unstable and break- 

down. Numerous attempts have been made to reduce the viscous

drag under the premise that the bursting cycle can be controlled

by the modification and alteration of near-wall coherent structures.

It is observed that streamwise riblets reduce the drag by stabiliz- 

ing the coherent streaks (see [4] ). [49] used specific patterns of

protrusions dispersed on the wall, which interfere with the coher- 

ent structures such that it reduces the rate at which energy is dis- 

sipated. They found that the streak spacing increased by 10% and

fluctuations of wall-normal velocity component is diminished as

compared to the smooth wall which was consistent with drag re- 

duction using polymer additives close to the wall [55] . used trans- 

verse traveling waves in their direct numerical simulations to sup- 

press wall turbulence. They used finely tuned transverse force con- 

fined to the viscous sublayer to induce a traveling wave which con- 

sequently eliminates the near-wall streaks [12] . induced streaks by

generating optimal vortices using equally spaced cylindrical rough- 

ness elements just before the leading edge of the boundary layer.

It was shown that the streaks suppress the instability of Tollmien-

Schlichting (TS) waves thereby delaying the transition to turbu- 

lence and reducing viscous drag.

Injections of micro-bubbles in a turbulent flow is another ro- 

bust method for drag reduction. [38] were the first to demon- 

strate this phenomenon for fully submerged asymmetric body,

where hydrogen bubbles generated via electrolysis in the boundary

layer resulted in significant drag reduction. Since then numerous

approaches both experimental [13,14,18,33,42,45] and numerical

[9,11,25,36,44,52,54,54] have been carried out in order to under- 

stand this phenomenon and the relative importance of other phys- 

ical parameters such as diameter and concentration of the bubble,

bubble deformation, bubble coalescence and breakdown and the

method of bubble injection into the flow, and promising efficiency

in actual ships can now be obtained [28] . [54] numerically sim- 

ulated a fully developed turbulent channel flow at Re τ = 135 and

injected bubbles of different sizes to achieve drag reduction. They

proposed three possible mechanisms: first associated with initial

seeding of the bubbles, second is related to the density variation

which reduces the turbulence momentum transfer and third is

regulated by the correlation between the bubbles and turbulence.

They emphasized that unlike the drag reduction techniques of ri- 

blets, spanwise traveling waves, ”V” shaped protrusions or poly- 

mers where the spanwise spacing was increased and streaks were

stabilized, here the streak spacing seems to be affected very little

and they become more distorted due to the unsteady bubble forc- 

ing. [9] numerically simulated turbulence boundary layer seeded

with micro-bubbles, they took the concentration of bubbles into

account while solving the continuity and momentum equations for

the carrier fluid flow. It was reported that micro-bubbles create

positive divergence for the fluid and shifts the quasi-streamwise

vortical structures away from the wall thereby displacing Reynolds

stress 〈 u v 〉 peak in positive wall normal direction which results in
the reduction of production of turbulent kinetic energy. The span- 

wise gap between the streaks close to the wall was found to be

increased, this effect was similar to the drag reduction method

of riblets, traveling waves or polymer but different from findings

of [54] . Furthermore, [18] conducted experimental investigation of

the turbulent boundary layer over a flat plate with ”plate on top”

configuration injecting bubbles at the leading edge. They found

that bubbles get preferentially accumulated in the narrow spatial

region close to the wall and the bubble concentration peaks at

y + = 25 due to buoyancy force that is acting towards the wall for

this configuration. It was asserted this high bubble concentration

close to the wall decreases the coherence of the near-wall struc- 

tures thereby reducing their length scales. This eventually leads to

the reduction of momentum flux towards the wall which resulted

in the decrease in wall shear stress by 25%.

The case of the vertical channel flow has been investigated

experimentally [48] and numerically [41] , and an increase (re- 

spectively decrease) of the wall shear stress has been observed

in upflow (respectively downflow) configurations. As described by

[41] the presence of the dispersed phase will induce, through the

forcing term in the momentum equation, an equivalent additional

pressure gradient equal to ±φv (ρ f − ρb ) g (where φv is the global

void fraction, ρ f and ρb the density of the fluid and the bubbles

and g the gravitational acceleration) that contributes to a signifi- 

cant amount of wall shear stress modification.

1.3. Goal of the present study

As described in the section §1.2 significant amount of effort has

been put in order to advance the drag reduction techniques in the

last three decades. However, it is hard to ignore that there is still

no consensus on the mechanism behind drag reduction observed

due to bubble injection. For instance, some studies suggest the de- 

crease in the coherence of the near-wall structures due to the in- 

teraction of bubbles with near-wall turbulence, whereas others re- 

ported near-wall coherent structures becoming more organized as

a consequence of streaks stabilization. The mechanism responsible

for the drag reduction is dependent on the void fraction, bubble

diameter, physical forces like buoyancy and lift forces and initial

seeding of bubbles. The goal of our study is to investigate numer- 

ically the dispersion of bubbles in turbulent boundary layer flows

and the effects of different bubble injection methods on the drag

modulation. For this purpose we first consider the minimal-flow

unit configuration in order to isolate the influence of the different

contributions of the two-way coupling, namely the forcing due to

momentum exchange between the bubbles and the flow, the in- 

fluence of the local concentration in the continuity equation (i.e.

divergence effect) and in the momentum equation. We propose

four configurations in which those contributions are activated sep- 

arately. Then the Synthetic Eddy Method (SEM) is used to gener- 



ate the inlet boundary condition for the simulation of the turbu- 

lent boundary layers. A numerical strategy based on two different 

domains is proposed to save computational time. Different bub- 

ble injection methods for a fixed bulk void fraction were tested 

to know whether they have different im pact on the flow modifica- 

tion and their influence on the near-wall regeneration cycle. Non- 

deformable spherical bubbles which are typically smaller than the 

smallest structure of the background flow are considered in this 

study. Lagrangian tracking of the dispersed phase fits this type of 

physical configuration. Our approach is in this way similar to the 

Lagrangian tracking employed by [53] in Taylor-Couette flow and 

can reproduce effective compressibility effects due to void fraction 

variations as described in the work of [9] . 

The paper is organized as follows: Section 2 is devoted to a 

description of the numerical method. We introduce the numeri- 

cal strategy based on the Synthetic Eddy Method (SEM) to simu- 

late turbulent boundary layer and we detail the model accounting 

for the feedback effect of the bubbles on the carrying phase. In 

Section 3 some direct numerical simulations of minimal flow unit 

configuration were conducted to study the preferential accumu- 

lation of bubbles and investigate their influence on the turbulent 

structures and regeneration cycle. Finally, the main results on the 

drag modulation related to the injection of bubbles in a boundary 

layer are reported in Section 4 . More specific details on the SEM is 

provided in Appendix B followed by a validation of the simulation 

of the turbulent boundary layer as well as a set of verifications of 

the implementation of the different contributions of the two-way 

coupling of the bubble phase on the liquid. 

2. Numerical method

The numerical approach is based on Euler–Lagrange modeling: 

the continuous phase flow is predicted through direct solution 

of the Navier-Stokes equations while Lagrangian bubble trajecto- 

ries are computed by numerical integration of momentum balance 

equation. Modeling the presence of bubbles is based on volume- 

averaging of the momentum and continuity equations including 

momentum source terms together with spatial and temporal void 

fraction variations. 

2.1. Equation for the carrying single phase flow 

Assuming constant physical properties (viscosity and density) 

for a Newtonian incompressible fluid, we consider the Navier–

Stokes equations for the continuous (liquid) phase 

∇ · u = 0 (1) 

∂u 

∂t 
+ ∇ · (uu ) = −

1 

ρ
∇p + ∇ ·

(

ν
[

∇u + ( ∇u ) 
T 
])

+ g (2) 

The system of equations is discretized on a staggered nonuniform 

grid with a finite volume approach. Spatial derivatives are calcu- 

lated with second order accuracy and we use semi-implicit Crank- 

Nicolson scheme for the viscous term and three steps Runge–Kutta 

scheme for time integration. The JADIM code has already been 

widely used and validated for laminar and turbulent configurations 

in single-phase configurations (see for example during the last two 

decades [2,15,31,35,40] ). 

Spatially developing flows as a turbulent boundary layer pose 

some challenges: if one wants to avoid an unnecessary long do- 

main, time-dependent inlet boundary conditions need to be con- 

sidered. The flow downstream is highly dependent on the inlet 

condition which should be very close to the real turbulence. Tur- 

bulent inlet generation techniques for spatially developing flows 

have been an active area of research from the last three decades. 

For bubble laden turbulent boundary layer, [10] adapted a spectral 

method to synthetically generate turbulent initial condition with 

prescribed energy spectra and Reynolds stress tensor. With this 

initialization they did a small precursor simulation and combined 

it with the method of [32] to generate the inlet velocity field for 

the main simulation with longer domain. In the present study we 

implemented Synthetic Eddy Method ( SEM ) proposed by [20] to 

generate the inlet boundary condition. SEM gives a time depen- 

dent two dimensional velocity field at the inlet plane with the pre- 

scribed mean and covariance along with two points and two times 

correlations. This approach along with the numerical implantation 

details are presented in Appendix A . Note that the recycling tech- 

nics ( [51] , [50] , [32] ) are not considered here due to the two-way 

coupling with the bubbly phase. Indeed, the flow is already mod- 

ified and therefore cannot be recycled as the flow is not pseudo- 

periodic anymore. 

2.2. Lagrangian tracking of bubbles 

We utilize two-way coupled Euler-Lagrangian framework where 

the dispersed phase is composed of N b pointwise spherical bub- 

bles. Bubble trajectories are computed solving Newton’s second 

law, where the rate of change of momentum of the bubble is equal 

to the total external forces 6F b acting on it. The external forces 

consist of drag, fluid acceleration, added-mass and lift forces. The 

radius, volume and velocity of the bubble are noted as R b , V b = 

(4 / 3) πR 3 
b 
and v , respectively. The vorticity of the liquid is Ä. The 

bubble force balance can be written as: 

d x 

d t 
= v (3) 

ρb V b 
d v 

d t 
= (ρb − ρ f ) V b g − ρ f V b 

3 

8 R b 
C D | v − u | (v − u ) + ρ f V b 

D u 

D t 

+ ρ f V b C M

[

D u 

D t 
−
d v

d t

]

− ρ f V b C L (v − u ) × Ä (4) 

where C D is the drag coefficient, C M the added mass coefficient, C L 
is the lift coefficient and the history force is neglected [34] . 

Bubble shape is assumed to be spherical in this study. The as- 

sumption has been a posteriori validated by calculating from the 

simulations the bubble Weber number W e = ρd | v − u | 2 d/σ based

on the slip velocity | v − u | . Its maximum value has been found to 

be of the order of 10 −2 . Hence, the drag coefficient C D is calculated 

through the correlation of [39] 

C D = 
16

Re b 

[

1 + 

(

8 

Re b 
+
1

2

(

1 + 
3 . 315

Re 1 / 2 
b 

))−1 
]

(5) 

where the bubble Reynolds number is defined as 

Re b = 
| u − v | 2 R b 

ν
, (6) 

the added-mass coefficient is C M = 1 / 2 and the lift coefficient C L is 

given by the relation of [31] : 

C L = 

[

1 . 8802 

( 1 + 0 . 2 Re b /Sr ) 
3 

1 

Re b Sr 
+ 

(

1 

2 

1 + 16 /Re b 
1 + 29 /Re b 

)2 
]1 / 2

(7) 

with Sr the local shear rate nondimensionalized by the relative ve- 

locity and the bubble diameter. 

Direct bubble/bubble interactions are neglected considering that 

the averaged void fraction in Section 3 and 4 is 8v = 0 . 02 and 

0.001, respectively. However, the effect of concentration peaks on 

bubble/bubble interaction will be discussed in Section 4.1 . Bub- 

ble/wall overlap is prevented by assuming an elastic bouncing with 

the plane wall. The computation of these forces requires the inter- 

polation of the fluid velocity and its time and space derivatives at 



each bubble location. We used second-order accuracy linear inter- 

polation scheme. A third-order Runge-Kutta scheme is used for in- 

tegrating the force balance in time with a typical time step equal 

to one fifth of the viscous relaxation time of the bubbles. Loop 

nesting is used when time steps of both phases are widely sep- 

arated. When the Eulerian time step (based on numerical stabil- 

ity criteria) is smaller than the Lagrangian characteristic time then 

solutions of both sets of equations are synchronized. For large ra- 

tio of these time steps 1t Euler / 1t Lagrange , Lagrangian inner loops are 

integrated in a frozen flow field and the global computing time is 

dominated by the Lagrangian solver for O (10 5 − 10 6 ) bubbles. Typ- 

ically, we have 1t Euler / 1t Lagrange C 20. 

The Lagrangian solver JADIM has also been validated and used 

in the past for the simulation of bubbles induced convection [5] , 

bubble migration in a pipe flow [30] and bubble preferential accu- 

mulation in Couette-Taylor flow [3,6] . 

2.3. The two-way coupling model 

To account for the feedback effect of the dispersed phase on 

the carrying fluid flow, we average the Navier-Stokes equations 

in a control volume of fluid populated by many bubbles. The ba- 

sic principles of this operation can be found in several previous 

works such as [1,7,9] . The averaging procedure is based on the 

function characterizing the presence of the continuous phase χ c 

locally which is unity if there is fluid at location x at time t and 

zero otherwise. 

Then the local volume fraction of the continuous phase εc ( x , t ) 

ε c (x , t) = 
1

V 

∫ ∫ ∫ 

V 

χc (ξ , t) d 3 ξ = 〈 χc 〉 V , (8) 

where V is the volume of the cells. We note that the corresponding 

void fraction is computed as ε d (x , t) = 1 − ε c (x , t) . In our study, 
the void fraction associated with the control volume is estimated 

by adding the volume of each bubble contained in this control vol- 

ume, which is estimated through the Lagrangian tracking of the 

bubbles. The volume averaging process leads to a new system of 

continuity and momentum equations: 

∂ε c 
∂t 

+ U c · ∇ε c = −ε c ∇ · U c (9) 

ε c ρc 
∂ U c 

∂t 
+ ε c ρc U c · ∇ U c = −∇[ ε c P c ] + ∇[ µc ε c 

[

∇ U c + (∇ U c ) 
T
]

] 

+ F d → c (10) 

F d → c = −
1 

V 

N b,l, (i, j,k )
∑ 

b=1

[

ρb V b ( 
d v b 
d t 

− g)

]

. (11) 

The influence of the bubbles on the continuous phase is related to 

the local forcing induced by each bubble via the momentum source 

term F d → c and to the local evolution of the fluid volume fraction 

εc . In those equations, we have neglected momentum transport by 

small-scale fluctuations (scales smaller than the control volume). 

The corresponding tensor 〈 u ′ 
i u 

′ 
j 〉 c , similar to the Reynolds stress

tensor, may have two main physical origins: the classical turbulent 

fluctuation of the continuous phase, and the bubble induced fluc- 

tuations due to finite size effects and wake interactions ( [47] ). The 

former contribution is not considered since we intend to perform 

direct numerical simulations of the continuous liquid flow while it 

is reasonable to neglect the latter when considering dilute bubbly 

flows. Note that, in some studies (see for example [5,9,29,37] ), the 

fluid inertia is subtracted from (11) , because in these studies the 

volume occupied by the bubbles in the cell is not considered in 

the momentum balance equation (10) through εc ( x , t ). 

Fig. 1. Schematic representation of bubble close to the wall. Cell 4 contains the

center of the bubble, the contribution due to this bubble to εc is accounted at cell

4 only. Cell 1, 2 and 3 also share some portion of this bubble therefore we set

ε c (1) = ε c (2) = ε c (3) = ε c (4) . 

The system of equation is discretized on a staggered nonuni- 

form grid with a finite volume approach. The pressure and the liq- 

uid volume fraction are located at the same node and the velocities 

are face centered. In the cell ( i , j , k ) of volume V i, j,k , the value of 

εc , ( i , j , k ) is directly calculated from the number of bubbles N b , ( i , j , k ) 

present in the cell ( i , j , k ) by: 

ε c, (i, j,k ) = 1 − ε d, (i, j,k ) = 1 −

N b, (i, j,k )
∑ 

b=1

V b 

V i, j,k 
(12) 

The point particle approach is well suited when the size of 

the bubbles is smaller than the smallest scale of variation of the 

fluid flow. Fig. 1 gives a schematic representation of a single bub- 

ble close to the wall. Grid size in streamwise and spanwise direc- 

tions is much larger than the bubble diameter. Eq. 12 is valid for 

R b ≪1, but close to the wall 1y > R b . Although beyond the model’s 

assumptions, it is unavoidable to simulate large Reynolds number 

flows with intermediate bubble size at a reasonable computational 

cost. The minimum possible distance of the bubble is y + = R + 
b
from 

the wall. The value of εc is based on the position of the center of 
the bubble, as a consequence, the cells close to the wall (where 

R b > y ) does not feel the presence of the bubbles ( ε c = 0 ). To rem- 

edy this problem and prevent the large wall-normal gradient of εc 
in the vicinity of the wall we impose a constant value for εc for 
the cells located between y = 0 and y = R b . We note that the ap- 

proximation is rather crude but we tested that without any specific 

treatment for the value of εc close to the wall and we obtained 
qualitatively similar results. 

In Appendix B we provide various verification and validation 

of the numerical development proposed for this paper. Namely, 

B.1 presents validation of the single phase turbulent boundary 

layer simulations against the numerical simulations of [23] . Then 

in B.2 and B.3 , we propose simple original test cases to check the 

two-way coupling method in order to verify each contribution of 

the terms induced by the presence of bubbles in the system of 

equations (9–10) . 

3. Minimal-flow-unit configuration

As seen from the Eqs. 9 and 10 , the presence of bubbles af- 

fects the flow through different contributions. There is a void ef- 

fect in both momentum and continuity equations as well as a di- 

rect contribution to the momentum coupling ( Eq. 11 ). The point of 

the section is to study the effect of each of these contributions (as 

well as their possible interplays) on the near wall flow structure. 

We consider in this section the minimal flow unit [24] in which 

a dynamical process for the generation of the wall flow structures 

is extracted. More specifically, to study the interactions of the dis- 

persed bubbly phase with the self-sustained wall structure mecha- 

nism, we study the following 5 cases : 

mfu0: One-way coupled simulation i.e. F d → c = 0 in eq 10 and 

ε c = 1 in eq 9 and eq 10 



Fig. 2. (a) mean bubble concentration profiles ( εd ( y )) as a function of wall normal coordinates for mfu0, 1, 2, 3, 4 . (b) mean lift, drag and added mass forces acting on the 

bubbles for mfu0 (black) and mfu4 (red) normalized by the friction velocity of the mfu0 case. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)

Table 1

Computational domain and discretization parameters used in the minimal-flow- 

unit box at Re τ = 180 . 

Name L x L y L z N x N y N z S t 8v R + 
b Re τ

mfu0 2.2h 2h 1h 32 82 24 0.28 0.02 1.3 180

mfu1: Only momentum feedback from the dispersed to the 

fluid phase is considered i.e. F d → c 6 = 0 in eq 10 and ε c = 1 

in eq 9 and eq 10 

mfu2: Only the void effect is considered in continuity equation 

(9) via εc with F d → c = 0 in eq 10 and ε c = 1 in eq 10

mfu3: Only the void effect ( εc 6 = 1) is considered in momentum 

equation (10) with F d → c = 0 in eq 10 and ε c = 1 in eq 9 

mfu4: The void effect ( εc 6 = 1) is considered both in continu- 

ity and momentum equations and the feedback ( F d → c ) term 

from the dispersed to continuous is also accounted for. 

The description of the domain size and parameters used for the 

two-phase simulation is given in Table 1 and are similar to the 

configuration proposed in Jiménez and Moin [24] . The Stokes num- 

ber is defined as S t = τb /τ∗, where τ b is the bubble relaxation time 

defined as τb = R 2 
b 
/ 6 ν and τ∗ = ν/u 2 τ is the time scale based on 

friction velocity u τ . We use periodic boundary conditions for the 

velocity in all three directions, and a mean pressure gradient is 

imposed in order to obtained the prescribed flow rate. Please note 

that the case of the mfu4 simulations have also been performed 

with a twice finer mesh in all directions, and that no sizable dif- 

ferences were observed. Therefore we conclude that the mesh used 

for the simulations described in the paper is fine enough to cap- 

ture all the hydrodynamic fluctuations. 

In case of one-way coupled minimal-flow-unit ( mfu0 ) the 

streamwise and the spanwise dimensions of the computational do- 

main are L + x ∼ 400 and L + z ∼ 180 respectively in wall units. The

Reynolds number based on u τ corresponds to Re τ ∼180. Spacing 

between the near-wall structures is found to be around λ+ 
z ∼ 80 −

100 therefore mfu0 could have two pairs of high and low speed 

streaks. This size is chosen so that bubble dynamics could be stud- 

ied during the interaction of these streaks. We set the bubble vol- 

ume fraction at 8v = 0 . 02 along with a bubble radius of R + 
b 

≈ 1 . 3 ,

corresponding to a Stokes number S t ≈0.28. 

In Fig. 2 (a) we present the mean bubble concentration profile 

as a function of the wall normal coordinate. The bubble concen- 

tration is computed by averaging over time and directions paral- 

lel to the wall. We remark that the profile obtained for mfu0 and 

mfu1 are very close and decrease towards the wall whereas in 

the mfu 2, 3, 4 there is a sharp increase in the bubble concentra- 

tion close to the wall. Since the different bubble distributions are 

only due to a modification of the carrier flow, we conclude that, 

at this volume fraction, void effects in both the continuity or mo- 

mentum equations have much more pronounced effect on the flow 

than direct interphase momentum coupling. To analyze further the 

strong modification of the mean bubble concentration we give in 

figure 2 (b) the mean drag, lift and added mass forces acting on 

the bubble as a function of wall normal distance for the mfu0 and 

mfu4 . It appears that in mfu4 , lift and drag forces are modified 

when the void effect alters the carrier phase flow and there is a 

negative peak in the drag force close to the wall. As a consequence, 

there is a net force acting on the bubbles towards the wall which 

results in high bubble concentration close to the wall. 

The second-order turbulent statistics are analyzed to further 

understand the effect of bubbles on the fluid phase. In Fig. 3 (a) 

root-mean-square velocity in the streamwise and wall normal di- 

rection is shown as a function of wall distance for all cases. In all 

cases except mfu1 turbulence intensity is higher than single phase 

case and the peak is slightly shifted towards the wall. Similarly, 

Reynolds stress profile is also modified due to the presence of the 

bubble, higher turbulent stress intensity is observed in mfu2,3,4 

as compared to mfu0 and mfu1 ( Fig. 3 (b)). The peak of Reynolds 

stress is moved towards the wall which in turn increases the pro- 

duction of turbulent kinetic energy production near the wall. 

Reynolds stress is determined by the contribution of the burst- 

ing and sweep events, therefore we investigate the effect of bub- 

ble injections on the bursting and sweep cycle. Contribution to the 

Reynolds stress from the four quadrants ( Fig. 4 ) is computed for 

mfu0 and mfu4 (see Section 4.4 for details). Negative contribu- 

tion to the Reynolds stress (- u v ) from the second and fourth quad- 

rant accounts for the burst and sweep events. Close to the wall 

sweep event dominates and bursting is more prominent away from 

the wall. The crossover takes place at y + ≈ 15 for mfu0 . In mfu4 

where drag increase was observed, the negative contribution from 

both sweep and burst events have increased and the point where 

they first cross each other is shifted towards the wall ( y + ≈ 14 ). 

The positive contribution to - u v from the first and third quadrant 

is reduced in mfu4 as compared to mfu0 . 

The above test cases indicated that feedback force F d → c 6 = 0 has 

minimal effect on the near-wall structure or drag modulation. The 

most important factor is the void effect in the continuity and mo- 

mentum transfer equations, which plays a crucial role in the mod- 

ification of the near-wall coherent structures and significantly in- 

creases the bubble concentration near the wall. Drag change is al- 

most same in both mfu2 and mfu4 as reported in Table 2 . This 

similarity between mfu2 and mfu4 is also clear from rms and 

Reynolds stress (- u v ) profiles in Fig. 3 . From the above test cases 

it is clear that bubble concentration close to the wall has a domi- 

nant effect on the wall friction. 



Fig. 3. (a) Comparison of u rms (y + ) and v rms (y + ) for the mfu0, 1, 2, 3, 4 cases. Each curve is normalized by the friction velocity of the mfu0 case. (b) Reynolds stress profiles 

−u v normalized by the friction velocity of the mfu0 case.

Fig. 4. Contribution to the Reynolds stress from the four quadrants. black lines:

mfu0 and red lines: mfu4 . Each curve is normalized by the friction velocity of the 

mfu0 case. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)

Table 2

Drag modulation in different cases.

Name mfu0 mfu1 mfu2 mfu3 mfu4 
C f −C f, 0
C f, 0

0% 0% 8.5% 10.3% 8.5%

4. Modification of a turbulent boundary layer due to bubble

injection

We now consider the case of the turbulent boundary layer. The 

flow is generated with the aid of the Synthetic Eddy Method in- 

troduced in Section 2 and detailed in Appendix A . Table 3 summa- 

rizes the specificities of the computational domain and discretiza- 

tion used in the current section. For more details on the validation 

of the simulation of the single-phase turbulent boundary layer the 

reader is referred to B.1 . 

Table 3

Computational domains and discretization parameters used in turbu- 

lent boundary layer simulation.

L x L y L z N x N y N z 1+ 
x y + 

min
1+ 

z 

10 δ0 2 δ0 3.56 δ0 360 66 136 18 0.14 9.0

4.1. Influence of the bubble injection strategy 

Contrary to the minimal flow unit considered in the previous 

section, in the real wall flows at large Reynolds number, there are 

multiple near-wall structures along with the large-scale structures. 

[36] in their DNS of turbulent boundary layer with micro-bubbles

showed that bubbles migrate away from the wall as they move

along the streamwise direction and this decreases their ability to

modulate the near-wall coherent structures. In Turbulent Boundary

Layer (TBL) simulation of [9] , any time a bubble leaves the domain

it is randomly reinjected inside the turbulent boundary layer. With

this injection procedure, the bubble concentration profiles peak af- 

ter y + = 100 and when the average volume fraction of the bubbles 

is low ( ε d = 0 . 001 ) there are very few bubbles near the wall (see 

Fig. 5 ). For this reason, the modification of the drag coefficient and 

the near-wall dynamics is minimal. Therefore, higher bulk bubble 

volume fraction is required to generate some significant changes in 

drag. The alternative to enhance the bubble interaction with near- 

wall coherent structures for a fixed global volume fraction is to 

inject bubbles at different heights close to the wall. 

We consider five cases of bubble injections as summarized in 

Table 4 . In the first four cases (denoted: 2R b , 4R b , 6R b and 8R b ) 

bubbles are injected close to the wall at different y + . In the fifth 

case (named: Random ), the bubbles are spontaneously nucleated 

at random positions in the whole domain with a velocity equal to 

the local fluid velocity. In addition those simulations are compared 

Fig. 5. Panel (a) on the left compares the mean bubble concentration profiles, panel (b) shows the streamwise evolution of the friction coefficient C f ( x ), the solid black line

corresponds to the single phase flow.



Fig. 6. Comparison of the velocity RMS for Single-phase , 2R b , 4R b , 6R b and 8R b cases. (a) variance of the streamwise u rms and (b) wall-normal v rms velocity components 

normalized by the free stream velocity U 0 as a function of wall-normal coordinate ( y ). Color coding is similar to Fig. 7 .

with a single phase flow whose parameters are given in Table 3 . 

In all cases the overall bubble volume fraction within the bound- 

ary layer is kept fixed at 8v = 0 . 001 . Note that in the case denoted 

2R b the bubble radius is one fourth of the radius of the other three 

cases, this was done to investigate the effect of injecting the bub- 

bles very close to the wall (the injection position has to be larger 

than the bubble radius). However, note that since the bubble di- 

ameter is already smaller than the turbulent wall structures we do 

not expect a very important effect of the bubble diameter as long 

as the gas volume fraction is constant. The case Random is sim- 

ilar to the case-B of [9] in which whenever a bubble leaves the 

computational domain it is reinjected at a random location inside 

the boundary layer. In other cases when the bubbles leave the do- 

main they are reinjected at random positions on the x − z plane 

located at the height of 2 R b , 4 R b , 6 R b and 8 R b from the wall re- 

spectively. Note that for the bubble diameter considered here, it 

can be checked that for air bubbles in water and for a realistic 

boundary layer thickness the Weber number is actually vanishingly 

small, consistently with the assumption of spherical bubbles con- 

sidered in Section 2.2 . 

Figure 5 (a) presents the profile of the average bubble volume 

fraction of the various cases. The profiles are computed from spa- 

tial average in spanwise direction and time averaging and are given 

for a streamwise location x = 10 δ0 , for which Re θ ≈1100. Bubble 

concentration profile peaks at the location of the bubble injection 

and then gradually decreases as we move away from the wall. This 

explains that the concentration profiles differ from the trend of the 

literature ( [9,36] ) with much more intense peaks that can be also 

located in the buffer layer. The peak of bubble concentration in the 

near wall region suggests the existence of bubble/bubble interac- 

tions, which have been neglected in the paper. To discuss the im- 

pact on the bubble dynamics of the induced bubble/bubble inter- 

actions in the near wall region, we consider the bubble-bubble dis- 

tance compared to the characteristic length of the turbulent struc- 

tures. The minimum average inter-bubble distance, in wall unit, is 

expressed as δ+ 
b 

= R + 
b

(

4 π

3 ε d 

)1 / 3

. Taking the value of the local con- 

centration peak, εd ∼0.1 (see fig. 10 ) gives: δ+ 
b

≈ 5 , which remains 

smaller than the wall structures in the very near-wall region. This 

indicates that the bubbles interact much more with the turbulent 

structures than with other bubbles, and that bubble-bubble inter- 

actions are not expected to be dominant in this region. 

The evolution of the temporal and spanwise average skin fric- 

tion coefficient C f (x ) = 2 〈 τw 〉 (x ) /ρU 2 in the streamwise direction
is shown in figure 5 (b), here τw = µd U/d y . In the case of 2R b and 

4R b the drag is smaller than in the one-way coupled case, for case 

Random the drag seems to be unchanged, whereas the drag in- 

creases in cases 6R b and 8R b . This increase can be interpreted as 

the consequence of the wall-normal location of bubble injection. 

Note that the small variations between the cases 2R b and 4R b in- 

dicate that the main parameter for the alteration of the wall struc- 

tures is the local volume fraction of the near wall region. The bub- 

ble diameter and the bubble number density separately are not 

dominant. This is consistent with the previous section where it is 

observed that the bubbles mainly influence the wall through void 

fraction effect and not direct momentum coupling. This conclusion 

only holds for small enough bubbles, for large bubbles the momen- 

tum forcing caused by each bubble should prevail. The induced ef- 

fect of the injection position is further detailed in the following 

considering the Reynolds stress and its analysis using quadrant de- 

composition. 

4.2. Turbulent fluctuations and energy-Spectrum 

The turbulent statistics ( u rms = 

√ 

u ′ 2 ) computed for the cases 

discussed above are shown in Figs. 6 (a) and (b). The velocity com- 

ponents are normalized by the free stream velocity U 0 . In cases 

2R b , 4R b streamwise and wall-normal turbulent energy fluctua- 

tions are slightly lower than the Single-phase case, whereas they 

are higher in 6R b and 8R b . These findings are consistent with 

observed modification of the skin-friction coefficient. Similarly, a 

reduction of the turbulent fluctuation was reported by [11] and 

[44] in their DNS of turbulent boundary layer and channel flow

simulations laden with micro-bubbles. However, unlike them we

do not observe any noticeable shift in the rms peak along the wall- 

normal direction. It is possible that because the drag reduction ob- 

served here is less than 4 percent, the shift in wall-normal direc- 

tion is negligible.

To analyze the cause of drag modification due to this injec- 

tion strategy pre-multiplied spanwise energy spectrum is analyzed 

for cases 2R b , 4R b , 6R b , 8R b and Single-phase case. Figures 7 (a) 

and 7 (b) show pre-multiplied spanwise energy spectra for stream- 

wise ( K z E uu ) and spanwise velocity components ( K z E ww ) at three 

different heights from the wall ( y + = 4 . 0 , 10 , 15 ). In all the cases 

the spectral energy peaks at the wavelength of λ+ 
z ≈ 80 − 100 and

this peak shifts gradually towards higher wavelengths as we move 

away from the wall. This wavelength corresponds to the character- 

istic spacing between the streaks close to the wall. However, 2R b 

and 4R b have lower energy content than the Single − phase simula- 

tion, whereas 6R b and 8R b has higher energy content. As explained 

in Section 1.1 near-wall cycle consists of streaks which after gain- 

ing sufficient energy become unstable and break down to gener- 

ate vortices. In cases 6R b and 8R b higher energy streaks are more 

prone to instability which results in their eventual breakdown into 

vortices. Increase in instability of the coherent structures leads to 

more violent burst and sweep events, which results in the increase 

in turbulent shear stress production (see Fig. 9 ). Opposite could 

be said about the case 2R b and 4R b where energy in the coher- 



Fig. 7. Pre-multiplied spanwise energy spectrum comparison for Single-phase , 2R b , 4R b , 6R b and 8R b case at y 
+ = 4 . 0 , 10 , 15 . Panel (a) on the left shows pre-multiplied 

streamwise energy spectra ( K z E uu ) for streamwise velocity component and Panel (b) on the right shows pre-multiplied spanwise energy spectra ( K z E ww ) for streamwise

velocity component. To better discern the curves at y + = 10 and 15 for K z E uu we have plotted 5 · 10 3 + K z E uu at y + = 15 . Similarly, 1 · 10 3 + K z E ww is plotted at y + = 15 for 

K z E ww .

Fig. 8. Single-phase , 2R b , 4R b , 6R b and 8R b cases are compared. Panel (a) on the left compares the Reynolds stress profiles −u v as a function of y 
+ , panel (b) on the right 

compares turbulent energy production term ( P = −u v d U/d y ) as a function of y + . All curves are normalized with the free stream velocity. Color coding is similar to Fig. 7 . 

ent structures is reduced which makes them less unstable and de- 

creases turbulent shear stress production (see figure 9 ). 

4.3. Shear stress and turbulent energy production 

We examine the Reynolds stress ( −u v ) and turbulent energy 

production term ( P = −u v d U/d y ) in Figs. 8 (a), (b) respectively. It is 

apparent that when compared to Single − phase case the Reynolds 

stress is reduced for 2R b , 4R b cases and remains almost unchanged 

for Random case, whereas for 6R b and 8R b it increases. Reynolds 

stress profile is mildly shifted away from the wall in cases 2R b and 

4R b compared to Single − phase case. However, for cases 6R b and 

8R b the Reynolds stress profile shifts towards the wall. Reynolds 

stress profile peaks at y + ≈ 69 in Single − phase case, it shifts to 

y + ≈ 73 for 2R b and 4R b and to y 
+ ≈ 64 for 6R b and 8R b . The shift 

in Reynolds stress away from the wall could be attributed to the 

shift in vortex cores to higher y location. The opposite trend oc- 

curs for 6R b and 8R b where the Reynolds stress peak is moved to 

lower y location inferring the movement of vortical structures to- 

wards the wall. Turbulent energy production P term appears to be 

decreased for cases 2R b and 4R b and increased for 6R b and 8R b 

when compared to Single − phase case. 

4.4. Quadrant analysis: Bursting and sweeping events 

Intensity and frequency of bursting and sweep events are the 

main contributor to the Reynolds stress. In order to understand the 

modification of Reynolds stress, the influence of micro-bubbles on 

the bursting cycle is investigated using quadrant analysis. Quad- 

rant analysis computes the fractional contribution of the turbu- 

lent fluctuations to the Reynolds stress at each point in the do- 

main. The u − v plane is divided into four quadrants; Q1 represents 

u > 0 , v > 0 , where high-speed fluid rushes away from the wall, Q2

contains u < 0 , v > 0 , where low-speed fluid moves away from the 

wall, this is generally called bursting, Q3 represents u < 0 , v < 0 

events where low speed fluid moves towards the wall and Q4 con- 

tains u > 0 , v < 0 events where high-speed fluid rushes towards 

the wall, usually referred as sweep events. Therefore, Q2 and Q4 

contribute to the negative part of Reynolds stress and Q1 and Q3 

bring a positive contribution. Contribution from Quadrant 2 and 4 

is generally much higher than Quadrant 1 and 3. 

In Fig. 9 we show the fractional contribution of these four quad- 

rants as a function of wall-normal coordinate at the streamwise 

location of x = 6 δ0 for the first four cases in Table 4 . Very close 
to the wall, sweeping events (Q4) is a leading contributor to the 

turbulent Reynolds stress. For the single phase case, at around 

y + ≈ 14 the contribution of Q2 becomes equal to Q4 and further 

away bursting events dominate the Reynolds stress. For cases 6R b 

and 8R b this intersection point for Q4 and Q2 mildly shifted to- 

wards the wall to y + ≈ 13 . 6 & 13.4 respectively. On the other hand, 

for cases 2R b , 4R b this intersection point is moved away from the 

wall to y + ≈ 14 . 6 & 15.11 respectively. In cases 6R b and 8R b the 

intensity of sweep and ejection is enhanced as compared to all 

the other cases. Whereas in cases 2R b , 4R b contribution to the 

Reynolds stress due to sweeping and bursting events is reduced. 

The positive contribution to the Reynolds stress from quadrant Q1 

and Q3 is enhanced in cases 2R b and 4R b and reduced for cases 

6R b and 8R b . 

Thus, for cases 6R b and 8R b the bubble injection increases the 

intensity of bursting and sweeping events thereby increasing the 

Reynolds shear stress. Whereas, in cases 2R b , 4R b , there is a de- 

crease of the negative contribution from Q2 and Q4 and an in- 

crease of the positive from Q1 and Q3, which results in the de- 

crease in total Reynolds stress. As burst and sweeps are located 

respectively above the low and high speed near-wall streaks i.e 



Fig. 9. Single-phase , 2R b , 4R b , 6R b and 8R b cases are compared. Panels (I), (II), (III) and (IV) are arranged according to the four quadrants of the u-v plane. Color coding is 

similar to Fig. 7 .

Fig. 10. Contour of λ2 < 0 is shown at 10% of its absolute value in light green

color up to streamwise distance of x = 8 δ. Bubbles positions are shown with black 

spheres. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

adjacent to the quasi-streamise vortices (see [9] ) change in their 

intensity must be correlated to the interaction of bubbles with the 

near-wall coherent structures. 

4.5. Bubble dispersion: λ2 criterion 

In this section, preferential accumulation of bubbles induced by 

the coherent structures is examined. Bubbles and vortical struc- 

tures mutually interact with each other in a turbulent flow. Lift 

force, local pressure gradient and added mass force encourage the 

accumulation of bubbles in low pressure regions of the flow [8,37] . 

Such low pressure regions, which often correspond to the vor- 

tex cores, are classically identified by λ2 criteria ( [22] ). It cor- 
responds to negative values of the second-largest eigenvalue of 

S 
2 

+ Ä
2 where S and Ä are the symmetric and antisymmetric parts 

of the velocity gradient tensor ∇u . Figure 10 shows the contour of 

λ2 < 0 at 10% of its absolute value and the bubble positions at a 

particular instant. One can observe that bubbles are preferentially 

accumulated in λ2 < 0 regions. We further compare the probabil- 

ity ( P b 
λ2
) of bubbles to sample the region of the fluid with λ2 < 0 

against the probability of the fluid ( P 
f 
λ2
) having λ2 < 0. Fig. 11 (a) 

shows the probabilities P 
f 
λ2

and P b 
λ2

as a function of wall nor- 

mal distance for all the cases listed in Table 4 . Basically, for all 

the case P 
f 
λ2

presents a similar profile, with a minimum around 

Fig. 11. Probability of occurrence of λ2 < 0 for cases listed in Table 4 and Single- 

phase case. P f 
λ2 

(y ) and P b 
λ2 

(y ) are shown with lines and points respectively. 

Table 4

Bubble radius and distance to the wall of the injec- 

tion plane for the different run. For all cases the over- 

all bubble volume fraction within the boundary layer

is 8v = 0 . 001 . 

Case 2R b 4R b 6R b 8R b Random 

R + 
b 0.3 1.3 1.3 1.3 1.3

y + 
in j

0.66 5.28 8.0 10.5 -

y + = 20 . More specifically, for the Single-phase case P 
f 
λ2 

peaks at

y + ≈ 19 . 5 , whereas in cases 2R b , 4R b , 6R b and 8R b the peak re- 

spectively shifts to y + ≈ 21 . 2 , 21 . 5 , 16 . 8 and 16.7. For the cases 2R b 

and 4R b where drag reduction was observed, the peak of the prob- 

ability distribution P 
f 
λ2

shifts away from the wall, while in case 

6R b and 8R b it slightly shifts towards the wall, and for the Random 

case no such shift was observed. This indicates that the vortical 

structures are displaced to higher wall normal locations when the 

drag is reduced and they move towards the wall in case of drag 

increase. Overall, the probability P b 
λ2

> P 
f
λ2

demonstrates that bub- 

bles in turbulent flow get preferentially accumulated in the vor- 

tex cores, which is consistent with the observations of [6] and [3] . 



At the distance to the wall corresponding to the bubble injection 

there is a sudden variation in P b 
λ2

but further away, say y + > 10 , 

bubbles accumulate in λ2 < 0 regions. Moreover, the probability 

distribution P b 
λ2

becomes similar away from the wall for all the 

cases corresponding to bubble injection at the wall ( 2R b , 4R b , 6R b 

and 8R b ). This is in contrast with the Random case which devi- 

ates from the other cases. This is due to spontaneous nucleation of 

bubble randomly in the whole domain. 

5. Conclusion

We develop further the numerical tools necessary to simulate 

a spatially developing turbulent boundary layer laden with micro- 

bubbles. We have implemented a numerical approach which en- 

ables to compute bubble dispersion with two-way coupling based 

on Euler-Lagrange approach. The formulation of the feedback of the 

dispersed phase on the continuous one is based on local averag- 

ing that modifies the Navier-Stokes equations. To study the physi- 

cal mechanisms at play in the alteration of the wall flows by the 

presence of micro-bubbles, we considered two distinct situations. 

First we considered a minimal flow unit laden with micro-bubbles. 

This model flow enables to isolate the self-sustain process of gen- 

eration of the wall structures. Our results demonstrate that the 

bubbles tend to migrate close to the wall mainly due to the oc- 

currence of sweep events. This migration can be attributed to the 

relative low Reynolds numbers explored for those configurations 

and the simplified dynamics of the minimal flow that might em- 

phasize the influence of those sweep events. Moreover, we notice 

that the presence of the bubbles tends to reinforce the occurrence 

of such violent events. Also it appears that the bubbles influence 

the flow mainly through effects caused by the void fraction fluc- 

tuations (both in momentum and continuity equations) and not 

through direct momentum coupling. Since most of the effect on 

the wall shear stress appears to be due to the bubbles in the close 

vicinity of the wall, we discussed the influence of bubble injection 

methods on the modulation of the wall shear stress of a turbulent 

boundary layer. We observe a change in the flow dynamics as well 

as a modification of the skin friction, even for a relatively small 

bubble volume fraction injected in the near wall region. The key 

parameters seem to be the void fraction and the injection position 

whereas the bubble size is less important, at least as long as bub- 

bles are smaller than or of the order of the friction length. It seems 

that the drag is decreased when bubbles are injected in the viscous 

sub-layer while it is increased when they are injected in the buffer 

layer. We show that this drag behavior is related to a change of the 

near wall flow structures, and thus of their regeneration cycle, de- 

pending on the bubbles injection location. The resulting change in 

the intensity of the so-called ”sweep” and ”burst” causes a modifi- 

cation of the mean streamwise momentum flux in the wall normal 

direction, as confirmed by the Reynolds shear stress profiles result- 

ing in the change of the skin friction. However, it remains an open 

problem in turbulence how to quantitatively relate the alteration 

of the regeneration cycle (or at least the evolution of the different 

quadrants contribution) to the overall wall shear stress. 
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Appendix A. The Synthetic Eddy Method ( SEM ) 

The Synthetic Eddy Method SEM technique is based on the hy- 

pothesis that turbulence can be modeled as superpositions of co- 

herent structures. [46] suggested that superposition of analytical 

eddies with shapes inspired by real coherent structures provides 

a decent approximation of lower-order statistics of wall-bounded 

flows. Therefore, SEM deals with generating synthetic eddies at 

the inlet plane using specific shape function which contains their 

spatial and temporal characteristics. The inlet plane is located at 

x = 0 and has physical dimensions [0, L y ] × [0, L z ] in wall-normal 

and spanwise directions, while the full domain has the length L x 
in the streamwise direction. The grid is uniform in the streamwise 

( x ) and spanwise ( z ) directions with resolution 1x and 1z respec- 

tively and stretched in wall-normal direction ( y ) using a tangential 

stretching function, thus 1y increases away from the wall. 

As a first step a three-dimensional virtual box B containing the 

eddies is created around the inlet. The dimensions of the box B 

are [ −l x , l x ] × [ −l y , L y + l y ] × [ −l z , L z + l z ] and eddies are generated 

at some randomly chosen locations inside this domain. The volume 

of the box is denoted by V B and the number of eddies produced is 

N E . 

The stochastic velocity signal ˜ u at a point x is assumed to be 

the superimposition of the contribution from all the eddies N E in 

the box B , 

˜ u i (x ) = 
1

√ 

N E 

N E 
∑ 

k =1

ǫk f σ (x ) (x − x k ) (A.1) 

where ǫk accounts for the positive or negative contribution to the 
synthetic field and has equal probability to take value ±1. Here 

the shape function for the eddies is defined as 

f σ (x ) (x − x k ) = 

√

V B 
1 

σx σy σz 
f
(

x − x k 

σx 

)

f 
(

y − y k 

σy 

)

f 
(

z − z k 

σz 

)

(A.2) 

f has a compact support on [ −1 , 1] and satisfies the normalization 

condition 
∫ 1

−1
f 2 (x ) d x = 1 (A.3) 

Fig. A1. Pictorial representation of synthetic eddy method. Purple square represent

the inlet plane where the initial turbulent condition is supposed to be generated.

Black domain is the boundary of the virtual box whose size is dependent on the

length scales of the eddies generated.



Fig. A2. Schematic representation of Domain-A - Domain-B configuration. 

In the present study f is chosen to be a tent function, 

f (x ) = 

{√

3 
2 (1 − | x | ) , x ≤ 1

0 , otherwise 
(A.4) 

Here σ x , σ y , σ z control the size of the eddy generated. It is ad- 

vised to choose the length scales close to the one found in real tur- 

bulent flow as it strongly affects the turbulent fluctuations gener- 

ated downstream of the inlet (see [43] ). However, different choices 

for length scales have been investigated in [19] and [21] and sensi- 

tive dependence of the results on them is discussed in detail. In 

the present study we have chosen length scales to be isotropic 

( σx = σy = σz = σ (y ) ) and to vary with the wall normal direction 

( y ) based on Prandtl’s mixing-length hypothesis i.e. σ (y ) = k y . How- 

ever, due to the grid stretching in the wall-normal ( y ), close to the 

wall the size of the eddy becomes too small to be discretized in 

spanwise and streamwise direction, therefore the following rela- 

tion is used to estimate the size of the eddies 

σ (y ) = max { k y, 1} (A.5) 

where 1 = max (1x, 1y, 1z) and k = 0 . 41 is the Von Kármán con- 

stant. The eddies generated inside the box B are convected with 

constant velocity U c characteristic of the flow using Taylor’s frozen 

turbulence hypothesis. At each time step the new positions of the 

eddies are given by 

x k (t + dt) = x k (t) + U c dt (A.6) 

where dt is the time step of the simulation. When an eddy leaves 

the box B , a new eddy is generated on the inlet of the box with 

random spanwise and wall-normal locations. 

Once ˜ u is generated on the inlet plane with the appropriate 

temporal and spatial correlations, one obtains a velocity field u 

with the prescribed mean and covariance profiles, by linear trans- 

formation of ˜ u , (providing that ˜ u i ̃  u j = δi j ): 

u i (y, z, t) = U i (y ) + A i j (y ) ̃  u j (y, z, t) (A.7) 

where U i ( y ) is the mean velocity profile and A ij ( y ) is the Cholesky 

decomposition of the Reynolds stress tensor R ij ( y ) profile: 

A i j = 



 

√

R 11 0 0 

R 21 /A 11 
√

R 22 − A 2 21 0 

R 31 /A 11 (R 22 − A 21 A 31 ) /A 22 
√

R 22 − A 2 21 − A 32



 (A.8)

Because with SEM technic only the largest turbulent structures 

are generated, the flow presents a transient region downstream 

the inlet plane before reaching the fully realistic turbulent correla- 

tions and structures. Eddies of smaller size were found to undergo 

a long transient and therefore, require a longer computational do- 

main to reach higher Reynolds number. Moreover, away from the 

wall the smaller structures dissipate rather than to evolve into 

large-scale structures resulting in unphysical velocity field. How- 

ever, when Prandtl’s mixing-length hypothesis (see Eq. A.5 ) is used 

to provide inhomogeneity in the wall normal direction, the large- 

scale structures away from the wall break down and energy cas- 

cades to smaller scales, thereby proving more physical eddy distri- 

butions. 

To prevent the interaction of bubbles with unphysical structures 

due to the transient, we add bubbles after the transient and dis- 

regard the transient length in further analysis. To save computa- 

tional time the simulation is partitioned into two separate simula- 

tions ( [10] ). They are referred as Domain-A and Domain-B sim- 

ulations. The advantage of this setup is that we have to perform 

Domain-A simulation only once to make a database of more re- 

alistic inlet boundary conditions. Domain-B , when provided with 

the inlet condition issued from the Domain-A , simulation does not 

need any transition length to become turbulent. The strategy im- 

plemented could be summarized in the following steps: 

1. Domain-A utilizes SEM to generate boundary condition at the

inlet plane 61 .

2. At every time steps of Domain-A run, the velocity field in the

y − z plane 62 located at streamwise location 12 δ is saved to

the disc.

3. Domain-B reads this velocity field every time step as an inlet

boundary condition.

Appendix B. Verification and validation 

We present the different test cases used to verify and validate 

the new implementations in our JADIM code. We first report the 

validation of the turbulent boundary layer simulation in B.1 . Then 

in B.2 the momentum forcing term F d → c has been tested without 

any other void fraction effect by setting ε c = 1 (case 1), and even- 

tually in B.3 the different contributions of the variation εc in both 
the continuity and the momentum equations are verified without 

considering the effect of F d → c (cases 2 to 6). 

B1. Validation of the turbulent boundary layer simulation 

We report here the validation of the turbulent boundary layer 

simulation. As explained, in Section Appendix A , the synthetic ed- 

dies generated need some streamwise distance to evolve and pro- 

vide completely physical turbulent structures. Therefore, to avoid 



Fig. B1. (a) Mean flow profiles U + (y + ) ; (b) profile of the variance of the three velocity components u + rms , v 
+ 
rms and w + rms ; (c) Reynolds stress −u 

′ v ′ 
+ 
profile. Comparison with 

the DNS of [23] .

Table B1

Relative error for the pressure gradient as a function of the mean

void fraction.

α 5 . 1 × 10 −4 5 . 1 × 10 −3 5 . 1 × 10 −2 

Relative error for 1P 5 . 4 × 10 −6 7 . 3 × 10 −6 6 . 3 × 10 −6 

the interaction of bubbles with these un-physical structures and 

save computational time, we have broken the simulation into two 

parts Domain-A - Domain-B ( Fig. A2 ). In Domain-A we per- 

formed a single phase simulation in order to generate an inlet 

boundary condition database that will be subsequently used for 

the two-phase flow simulations carried out in the Domain-B . 

Table 3 presents the dimension and the mesh resolution of the 

Domain-B . Note that Domain-A is three times longer in stream- 

wise direction than Domain-B and of the same size in spanwise 

and wall-normal directions. 

Figure B1 shows the statistics of turbulence for the single phase 

flow compared against the DNS results of [23] at Re θ ≈1100 where 

Re θ = U 0 δθ /ν . These statistics are computed by temporal and span- 
wise average at a given streamwise location. The streamwise mean 

velocity profile is in good agreement with [23] . Similarly, the pro- 

files of the variance of the streamwise and wall-normal velocity 

components are in good agreement, but, for the spanwise velocity 

component we observe a slight discrepancy which is likely due to 

the smaller spanwise width considered in our simulations. 

B2. Verification of the implementation of the momentum forcing 

term F d → c 

We first verify the momentum forcing term F d → c by consid- 

ering the pressure drop generated by a random distribution of 

fixed identical bubbles. We consider a 3D channel as shown in 

the figure B2 . The dimensions of the channel are L x , L y and L z in 

the x , y and z directions, respectively. They are chosen such that 

L x = 5 L y and L z = 1 . 175 L y . N b bubbles of volume V b are randomly 

distributed and maintained fixed in the central part of the domain 

Fig. B2. Sketch of the geometrical configuration used for the verification in the case

1 with N b = 40 , 0 0 0 uniformly distributed bubbles of radius R b = 2 × 10 −4 L y . 

L x /4 ≤ x b ≤3 L x /4. In this region the mean void fraction is thus 

α = 
N b V b

L x L y L z / 2 

Three different void fractions, α = 5 . 1 × 10 −4 , 5 . 1 × 10 −3 and 5 . 1 ×

10 −2 , are considered. We impose a constant inlet velocity U = 

U 1 e x . Stress-free boundary conditions are imposed on the four 

boundaries parallel to the mean flow and inflow-outflow condi- 

tions in the axial direction. The mesh is regular in the x and z di- 

rections while it is non-uniform in the y direction. The numbers of 

cells in each direction are N x = 50 and N y = N z = 64 , respectively. 

In this case, we do not consider the effect of the void fraction 

in the system of equations (9–10) . By imposing the momentum 

source term −F b e x for each bubble, the pressure jump between the 

inlet pressure P in and the outlet pressure P out is given by: 

( P out − P in ) S = −N b F b (B.1) 

P (x ) − P in 
0 . 5 ρ f U 2 

in 

= −
L x F b α

V b ρ f U 2 
in 

(B.2) 



Table B2

Verification tests and corresponding analytic solutions for non-uniform void fraction distributions.

Case Governing Equations Volume fraction Velocity Pressure

(imposed) (Exact solution) (Exact solution)

∂ ε c U k 
∂x k 

= 0 

2 ρ f

[

ε c 
∂ U i 
∂t

+ U k 
∂ U i
∂xk

]

= ε c (x ) = ε in / (1 + αx ) U(x ) = U in (1 + αx ) P(x ) = − 1 
2 ρ f (U 

2 (x ) −U 2 (L x )) 

− ∂P
∂xi

+ µ ∂ 
∂x k

[

∂U i
∂x k

+ ∂U k
∂xi

]

∂ ε c
∂t + ∂ ε c U k 

∂x k
= 0 

3 ρ f

[

ε c 
∂ U i 
∂t

+ U k 
∂ U i
∂x k 

]

= ε c (t) = ε in (1 − t/T o ) U(x ) = U in + x 
t−T o P(x ) = −ρ f 

1 
2 

[

U 2 −U 2 (x = L x ) 
]

− ∂P
∂xi

+ µ ∂ 
∂x k

[

∂U i 
∂x k

+ ∂U k
∂xi

]

−
ε in

2 T o (T o −t) 

[

x 2 − L 2 x 
]

∂εc U k 
∂x k

= 0 

4 ρ f

[

ε c 
∂ U i 
∂t

+ U k 
∂ U i
∂xk

]

= ε c (x ) = ε in / (1 + αx ) U(x ) = U in (1 + αx ) P(x ) = − 1 
2 ρ f 

U in 
ε in [(1 + αx ) 2 

− ∂ ε c P
∂xi

+ µ ∂
∂x k

[

∂U i
∂x k

+ ∂U k
∂xi

]

−(1 + αL x ) 2 ](1 + αx ) 
∂ εc U k 
∂x k 

= 0 

5 ρ f 
[

ε c 
∂ U i 
∂t + ε c U k 

∂ U i
∂xk

]

= ε c (x ) = ε in / (1 + αx ) U(x ) = U in (1 + αx ) P(x ) = −ρ f αU 
2 
in (x − L x )(1 + αx ) 

− ∂ ε c P
∂xi

+ µ ∂
∂x k

[

∂U i 
∂x k

+ ∂U k
∂xi

]

∂ ε c
∂t

+ ∂ ε c U k 
∂x k

= 0 

6 ε c U k 
∂ U i 
∂xk

= ε c (x ) = ε in / (1 + αx ) U(x ) = U in (1 + αx ) P(x ) = −ρ f ε in U 
2 
in α(x − L x ) /ε(x ) 

− ∂ ε c P
∂xi

+ µ ∂ 
∂x k

[

ε c
(

∂Ui

∂x k
+ ∂U k

∂xi

)]

+2 µαU in 
ε(x ) −ε L x

ε(x ) 

Table B3

Errors obtained for the different tests reported in the Table B.6 .

Case Max relative error for U Max relative error for P Max error for V Max error for W

2 4 . 0 × 10 −4 4 . 80 × 10 −4 10−11 10−11

3 3 . 80 × 10 −4 3 . 30 × 10 −3 10−14 10−14

4 4 . 5 × 10 −4 5 . 7 × 10 −4 10−11 10−12

5 1 . 0 × 10 −4 4 . 0 × 10 −4 10−11 10−11

6 4 . 0 × 10 −4 3 . 1 × 10 −4 10−13 10−13

Fig. B3. Evolution in the x direction of (a) the pressure averaged in the channel section, and (b) the same pressure scaled by the global void fraction.

Fig. B4. Summary of the mean fluid concentration (left), pressure (middle) and velocity (right) for the different cases in the x direction (for case 3 it corresponds to time

t = 0 . 05 L y /U in ). 

where S = L y L z is the channel section. In fact the pressure gradient 

is constant through the bubble cloud and is proportional to the 

void fraction α. This is confirmed by Fig. B3 that reports the nor- 
malized pressure gradient 1P/ 0 . 5 ρ f U 

2 
in as a function of the nor- 

malized position x / L x in the channel. The relative error of the pres- 

sure jump is reported in Table B1 for the three void fractions con- 

sidered. As shown agreement is very good. 

B3. Verification of the implementation of the void fraction 

contribution 

In order to check the effect of the presence of the dispersed 

bubbly phase via εc in the system of equations (9–10) , we have 

defined several test cases reported in Table B2 . This table gives 

the system of equations considered, the imposed expressions of εc 
and the corresponding exact solutions for both the velocity and 



the pressure. As shown, the complexity of the tests is progres- 

sive. For all the cases, we proceed as following: we consider the 

configuration of case 1 (same mesh, as well), the inlet velocity is 

U = U in e x at x = 0 and we imposed simple variations of εc , in time 
or in space, so that the exact solution of the velocity and pressure 

evolutions can be derived and compared to the simulations. With 

cases 2 and 3, we tested the modification of the continuity equa- 

tion. The aim of case 4 was to verify the modification of the pres- 

sure gradient while the modification of the advective term is tested 

with case 5. Finally, the modification of the viscous contribution 

into the momentum equation is verified using case 6. For cases 

2 to 5, we neglected the viscous contribution while for case 6 it 

has been accounted for with Re = 0 . 12 . Fig. B4 gives the evolution 

of the volume fraction of the fluid, the velocity and the pressure. 

Table B3 summarizes the errors of the computed fields compared 

to analytic solutions. The error is always below O (10 −10 ) for the 

velocity and O (10 −4 ) for the pressure which verifies the numerical 

implementation. 
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