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1. Overview of signal processing problems

1.1 Inverse problem

Perturbations

❄

Measured signals (observations)Quantity of interest (unknown) Sensing system
✲ ✲
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⊛ Linear forward operators
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⊛ Well-posedness conditions [Hadamard, 1923]: a solution exists, it is unique and it is stable
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❄
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K(·)x y = K(x, e)
linear
−−−→ y = Kx+ e

⊛ Linear forward operators

➀ Convolution (Image restoration, deblurring)

➁ Projection, Radon transform (Tomography)

➂ Mixing (Partial volume effect)

➃ Laplace transform (NMR Relaxation)

⊛ Well-posedness conditions [Hadamard, 1923]: a solution exists, it is unique and it is stable

→ Otherwise the inverse problem is said ill-posed
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⊛ Ill-posedness consequences

• Noise amplification ⇒ high uncertainty and inaccurate solution

• Non-meaningful solution (e.g. negative values)

→ Exploit prior knowledge, add hypotheses or impose constraints on the quantities of interest
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⊛ Ill-posedness consequences

• Noise amplification ⇒ high uncertainty and inaccurate solution

• Non-meaningful solution (e.g. negative values)

→ Exploit prior knowledge, add hypotheses or impose constraints on the quantities of interest

⊛ Inverse problem regularization approach

• Compound criterion minimization: F (x) = Q(y,x)
︸ ︷︷ ︸

data fitting

+ β R(x)
︸ ︷︷ ︸

penalization

• Main challenges:

X What are the relevant properties of the sought quantities?

X How to quantify the data fitting Q(y,x)?

X Which criterion R(x) is more appropriate to encode the solution properties?

X How to set β, the weight of the regularization criterion?

X Is it possible to find an optimization algorithm having fast convergence speed and low computing cost?
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1.2 Signal denoising

yt = xt + bt, (∀t = 1, 2, . . . , T ) ⇔ y = x + b,

with x = [x1, x2, . . . , xT ]
t (same notation for y and b).

measured signal
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−0.001
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0.008

✲

400 600 800 1000 1200 1400
0

0.005

0.01

+

useful signal

perturbation (noise)

∢ What are the noise statistics?
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∢ What are the noise statistics?

⊲ Noise : independent samples distributed according to a Gaussian probability density

bt ∼ N (0, σ
2
b) =⇒ p(y|x) =

T∏

t=1

N (yt − xt, σ
2
b)

1) Maximum likelihood estimation

x̂ = argmax
x

p(y|x) = argmin
x

(− log p(y|x))

= argmin
x

1

2σ2
b

T∑

t=1

(yt − xt)
2

(Least squares estimation)

⊲ Solution: x̂ = y =⇒ ∢ no processing !! ∢ How to describe the sought signal properties?
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2) Maximum a posteriori estimation

⊲ Smooth signal: k-th derivative distributed according to a zero-mean Gaussian probability density

dkxt

dtk
∼ N (0, σ

2
d) =⇒ p(x) =

T∏

t=1

N (Dkxt, σ
2
b)

Bayes’ theorem: p(x|y) ∝ p(y|x) × p(x)
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∼ N (0, σ
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d) =⇒ p(x) =

T∏

t=1

N (Dkxt, σ
2
b)

Bayes’ theorem: p(x|y) ∝ p(y|x) × p(x)

⊲ Solution: minimization of (− log p(x|y)) =
1

2σ2
b

T∑

t=1
(yt − xt)

2 +
1

2σ2
d

T∑

t=1
(Dkxt)

2

J(x) = ‖y − x‖2
2 + β‖Dkx‖

2
2 with β =

σ2
b

σ2
d
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1

2σ2
b

T∑

t=1
(yt − xt)

2 +
1

2σ2
d

T∑

t=1
(Dkxt)

2

J(x) = ‖y − x‖2
2 + β‖Dkx‖

2
2 with β =

σ2
b

σ2
d

=⇒ x̂ =
[
I + βDt

kDk

]−1
y

Frequency-domain formulation :

X̂(w) =
1

1 + βw2k
Y (w)

∢ Low-pass filter with a band-pass controlled by β

∢ Similar shape a Gaussien filter
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1.3 Parametric decomposition/modeling of a signal

xt = M(t, θ) =

K∑

k=1

αkfk(t;µk, σk),

with functions fk of known forms (Exponential, Gaussian, Lorentzian, Voigt, etc.).

The parameters θ = [(α1, µ1, σ1), . . . , (αK, µK, σK)]
t are estimated by minimizing a least squares

criterion

θ̂ = argmin
θ

T∑

t=1

(yt − M(t, θ))2
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αkfk(t;µk, σk),

with functions fk of known forms (Exponential, Gaussian, Lorentzian, Voigt, etc.).

The parameters θ = [(α1, µ1, σ1), . . . , (αK, µK, σK)]
t are estimated by minimizing a least squares

criterion

θ̂ = argmin
θ

T∑

t=1

(yt − M(t, θ))2

Iterative descent algorithms (Gauss-Newton, Levenberg-Marquardt) or Monte-Carlo methods are used.
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1.4 Background signal removal

yt = xt + pt + bt

with pt = a0 + a1t+ . . . + ant
n, n-th order polynomial.
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Estimation of the parameters a = [a0, . . . , an] of the polynomial by weighted least squares minimization

J(a) =

T∑

t=1

1

2σ2
t

(yt − pt)
2

such that σ
2
t takes high values for large residuals.

It requires the specification of the values of σ2
t .
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Alternative approach: robust regression using non-convex cost functions

J(a) =

T∑

t=1

ψ(yt − pt).

Example: asymmetric truncated quadratic, adapted for the estimation of spectra [Mazet, 2005].

⊛ Illustration
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robust cost function estimation result

∢ Need to specify the polynomial order, the threshold level and the noise variance.

∢ trial and error test for the selection of these tuning parameters
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1.5 Image deconvolution

The optical response of an image acquisition system can introduce a blur that can be represented by a

convolution

yij =
K∑

k=0

L∑

l=0

hkℓ x(i−k,j−ℓ) + bij

Hkℓ are the coefficients of the point spread function (PSF) of the imaging system.

⊛ Example:

 actual image
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 restored image
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∢ Iterative optimization required to manage the computation cost and the memory usage
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1.6 Signal separation (Mixture analysis)

⊛ Partial volume effect due to low spatial image resolution.
observations
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Inverse problem: determine the pure signals and their fractions.
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⊛ Separation approaches:

sk

ek

xk
p

m

m
✲

mixing
(p×m)

✲

❄

✲ ✲ decomposition ✲ ŷk
p

hard constraints on the components
(decorrelation, statistical independence, non-negativity)

PCA, ICA, NMF,etc.
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hard constraints on the components
(decorrelation, statistical independence, non-negativity)
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✛✛ reconstructionŝk
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prior informations
on the pure signals and the mixing coefficients

maximum likelihoodBayesian approach
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⊛ Separation approaches:

sk

ek

xk
p

m

m
✲

mixing
(p×m)

✲

❄

✲ ✲ decomposition ✲ ŷk
p

hard constraints on the components
(decorrelation, statistical independence, non-negativity)

PCA, ICA, NMF,etc.

✛✛ reconstructionŝk
mp

prior informations
on the pure signals and the mixing coefficients

maximum likelihoodBayesian approach ✒

❨

Similar results when the constraints match prior information

ŷk ≡ ŝk
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2. Relaxation times distribution estimation

2.1 Data acquisition principle

M0

M(τ )

τ

xy

z

B1

B0

M1

Φ

• Static field B0 ⇒ nuclear spin alignment (z axis)

• Short magnetic pulse B1 ⇒ initial flip angle Φ

• Relaxation: return to the equilibrium state

1. Longitudinal dynamics (z axis)

⇒ T1 relaxation: x1(τ) = Mz(τ)

2. Transverse dynamics (xy plane)

⇒ T2 relaxation: x2(τ) = Mxz(τ)

⊛ Quantities of interest: values of longitudinal and transverse relaxation times T1 and T2.

X Modeling of the relaxation signal decay

X Recover the relaxation times distribution from the measured data
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1) One-dimensionnal analysis

X Measured signal: Laplace transform of relaxation times distribution

xi(τi) =

∫

ki(τi, Ti)S(Ti) dTi −→ y = Ks + e

with k1(τ1) = 1 − γe−τ1/T1 in T1 relaxation and k2(τ2) = e−τ2/T2 for T2 relaxation.

The parameter γ is related to the flip angle (γ = 1 − cos Φ).
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∢ Find T1 or T2 distributions =⇒ Numerical inversion of a Laplace transfrom
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2) Two-dimensional analysis [English 1991]

X Apply two successive magnetic pulses with a predefined time spacing τ1

x(τ1, τ2) =

∫ ∫

k1(τ1, T1)S(T1, T2)k2(τ2, T2) dT1 dT2

Y = K1SK
t
2 + E ⇐⇒ y = (K1 ⊗ K2)s + e

X Find the joint distribution S(T1, T2) of the relaxation time constants

1
2

3 2
4

0

1

2

τ
1
 [s]

T1−T2 data

τ
2
 [s] 0
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T
2
 (s)T

1
 (s)
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2.2 Relaxation times estimation ... Problem statement

• k1(τ1, T1) and k2(τ2, T2) depend on the used NMR sequence (CPMG, FID) [Rondeau-Mouro, 2016]

k2(τ2, T2) =






e−τ2/T2 for CPMG

(e−τ2/T2 + e−τ2/T
2
2 ) sinc

(
w

τ2
T2

)
for FID

• Ill-conditioned matrices K1,K2. The singular values of K1 and K2 decay exponentially

∢ Direct inversion yields unstable results and negative intensities

• Large-size problem in the case of a two-dimensional analysis

1. m1 = 50 repetition time values τ1

2. m2 = 5000 echo time instants τ2

3. N1 = N2 = 300 values of T1 and T2

∢ Matrix K := K1 ⊗ K2 of size m1m2 ×N1N2 contains over 1010 elements !!
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2.3 Relaxation times estimation ... Regularization framework
⊛ The relaxation times distribution is a solution of

min
s∈RN+

(

F (s) =
1

2
‖y − Ks‖2

2 + βR(s)

)

where R(s) is a convex and differentiable regularization criterion

−→ Solve a non-negativity constrained optimization problem

⊲ Classical approach [Venkataramanan, 2002]

– Data compression and Tikhonov regularization

– Non-negativity constrained least squares

⊲ Low complexity iterative resolution [Mariette, 1996] [Chouzenoux, 2010]

X Regularization criterion based on Maximum entropy

R(s) = s
t log s =

N∑

i=1

si log si

=⇒ ensure non-negativity and sparsity of the distribution
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⊛ Optimized reconstruction algorithm

Solve

min
s∈RN+

(

F (s) =
1

2
‖y − Ks‖2

2 + βR(s)

)

Starting from an initial value s0 and for each iteration k, repeat steps (1) and (2) until convergence,

⊲ (1) Truncated Newton direction

– Evaluate (gk,Hk), first and second order derivatives of F (s) at sk,

– Calculate the descent direction dk, approximate solution of a linear system Hkd = −gk

⊲ (2) Descent step length

– Find a step length αk ensuring a sufficient decrease of φ(α) = F (sk+αdk) (dedicated search method)

– Make the update of the distribution value : sk+1 = sk + αkdk

⊲ Implementation issues

– Solving the linear system Hkd = −gk using preconditioned conjugate gradient

– Avoid the storing of matrix K in the 2D case by exploiting the factorized form Y = K1SK
t
2

– On the fly tuning of the regularization parameter (Khi-2 test: residuals at the same level as noise)
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2.4 Relaxation times estimation ... Dedicated tool (Emilio)

⊛ Entropy Maximization for Iterative Laplace Inversion by Optimization
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⊛ Main features of Emilio tool

1. Load measurement data file, (T1, T2 and T1-T2

data) including CPMG and/or FID data

2. Define the forward model parameters

• Model on T1 and T2 relaxations

• Flip angle value

• FID sequence duration and frequency

3. Specify the resolution algorithm parameters

• Noise variance estimation

• Automatic setting of the regularization parameter

• Algorithm stopping criteria

4. Exploit the estimated results

• Calculate and visualize 1D/2D distributions

• Quantify peak area

• Export in various file formats
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2.5 Relaxation times estimation ... Challenges

1) Processing magnitude signals [Jiang, 2017]

• Methods based on least squares assumes Gaussian noise

• Magnitude data follow a Rician distribution

p(M |A) = M
σ2
e
−M

2+A2

2σ2 I0
(
AM
σ2

)

∢ Gaussian approximation valid only for high SNR

X Adequate optimization methods for Maximum likelihood estimation

2) Relaxation times from MRI data [El Hajj, 2018]

• Model the partial volume effect

• Account for spatial information

• Handle the large-scale optimization problem
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3. Summary

• Signal processing methods

– Need adequate forward models

– Relevant information related to the sought quantities

• Relaxation times estimation

– Exponential and/or Gaussian decay curves ... depending on the applied MR sequences

– Maximum entropy regularization adapted for distribution estimation

– Handle large-size optimization problems ... dedicated optimization tools

• Challenging issues

– Accounting for the Rician noise model

– Applications to MR images
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