

Optimized signal processing methods for NMR signal modeling and MRI data analysis for the estimation for relaxation time distributions

Saïd MOUSSAOUI

Ecole Centrale de Nantes, LS2N UMR CNRS 6004

said.moussaoui@ec-nantes.fr

Tuesday, September 18, 2018

Acknowledgments

• Reconstruction algorithms

Emilie Chouzenoux Jérôme Idier

• NMR signal modeling

François MARIETTE Corinne RONDEAU-MOURO

• MRI data analysis

Guylaine COLLEWET Maja MUSSE Christian EL HAJJ Qianyi JIANG

Outline

- 1. Overview of signal processing problems
 - Inverse problems
 - Resolution approaches
 - Examples
- 2. Relaxation times distribution estimation
 - 1D & 2D relaxation models
 - Optimized reconstruction approach
 - Dedicated computing tool
- 3. Summary

1.1 Inverse problem

*** Linear forward operators**

- (1) Convolution (Image restoration, deblurring)
- ⁽²⁾ Projection, Radon transform (*Tomography*)
- ③ Mixing (*Partial volume effect*)
- 4 Laplace transform (*NMR Relaxation*)

1.1 Inverse problem

*** Linear forward operators**

- (1) Convolution (Image restoration, deblurring)
- ⁽²⁾ Projection, Radon transform (*Tomography*)
- ③ Mixing (*Partial volume effect*)
- (4) Laplace transform (*NMR Relaxation*)
- * Well-posedness conditions [Hadamard, 1923]: a solution exists, it is unique and it is stable

1.1 Inverse problem

*** Linear forward operators**

- (1) Convolution (Image restoration, deblurring)
- ② Projection, Radon transform (*Tomography*)
- ③ Mixing (*Partial volume effect*)
- (4) Laplace transform (*NMR Relaxation*)
- * Well-posedness conditions [Hadamard, 1923]: a solution exists, it is unique and it is stable

 \rightarrow Otherwise the inverse problem is said *ill-posed*

III-posedness consequences

- Noise amplification \Rightarrow high uncertainty and inaccurate solution
- Non-meaningful solution (e.g. negative values)

 \rightarrow Exploit prior knowledge, add hypotheses or impose constraints on the quantities of interest

Ill-posedness consequences

- Noise amplification \Rightarrow high uncertainty and inaccurate solution
- Non-meaningful solution (e.g. negative values)
 - \rightarrow Exploit prior knowledge, add hypotheses or impose constraints on the quantities of interest

***** Inverse problem regularization approach

• Compound criterion minimization:
$$F(x) = Q(y, x) + \beta R(x)$$

data fitting penalization

- Main challenges:
 - \checkmark What are the relevant properties of the sought quantities?
 - ✓ How to quantify the data fitting Q(y, x)?
 - ✓ Which criterion R(x) is more appropriate to encode the solution properties?
 - \checkmark How to set β , the weight of the regularization criterion?
 - ✓ Is it possible to find an optimization algorithm having fast convergence speed and low computing cost?

1.2 Signal denoising

$$y_t = x_t + b_t, \quad (\forall t = 1, 2, \dots, T) \Leftrightarrow \boldsymbol{y} = \boldsymbol{x} + \boldsymbol{b},$$

with $\boldsymbol{x} = [x_1, x_2, \dots, x_T]^{t}$ (same notation for \boldsymbol{y} and \boldsymbol{b}).

1.2 Signal denoising

$$y_t = x_t + b_t, \quad (\forall t = 1, 2, \dots, T) \Leftrightarrow \boldsymbol{y} = \boldsymbol{x} + \boldsymbol{b},$$

with $\boldsymbol{x} = [x_1, x_2, \dots, x_T]^{t}$ (same notation for \boldsymbol{y} and \boldsymbol{b}).

▷ Noise : independent samples distributed according to a Gaussian probability density

$$b_t \sim \mathcal{N}(0, \sigma_b^2) \Longrightarrow p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{t=1}^T \mathcal{N}(y_t - x_t, \sigma_b^2)$$

1.2 Signal denoising

$$y_t = x_t + b_t, \quad (\forall t = 1, 2, \dots, T) \Leftrightarrow \boldsymbol{y} = \boldsymbol{x} + \boldsymbol{b},$$

with $\boldsymbol{x} = [x_1, x_2, \dots, x_T]^{\mathrm{t}}$ (same notation for \boldsymbol{y} and \boldsymbol{b}).

▷ Noise : independent samples distributed according to a Gaussian probability density

$$b_t \sim \mathcal{N}(0, \sigma_b^2) \Longrightarrow p(\boldsymbol{y}|\boldsymbol{x}) = \prod_{t=1}^T \mathcal{N}(y_t - x_t, \sigma_b^2)$$

1) Maximum likelihood estimation

$$\hat{\boldsymbol{x}} = rg\max_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x}) = rg\min_{\boldsymbol{x}} (-\log p(\boldsymbol{y}|\boldsymbol{x}))$$

$$= rgmin_x rac{1}{2\sigma_b^2} \sum_{t=1}^T (y_t - x_t)^2$$
 (Least squares estimation)

▷ Solution: $\hat{x} = y \implies \triangleleft$ no processing !! \triangleleft How to describe the sought signal properties?

2) Maximum a posteriori estimation

▷ **Smooth signal:** *k*-th derivative distributed according to a zero-mean Gaussian probability density

$$\frac{d^k x_t}{dt^k} \sim \mathcal{N}(0, \sigma_d^2) \Longrightarrow p(\boldsymbol{x}) = \prod_{t=1}^T \mathcal{N}(\boldsymbol{D}_k x_t, \sigma_b^2)$$

Bayes' theorem: $p({m x}|{m y}) \propto p({m y}|{m x}) imes p({m x})$

2) Maximum a posteriori estimation

▷ Smooth signal: k-th derivative distributed according to a zero-mean Gaussian probability density

$$\frac{d^k x_t}{dt^k} \sim \mathcal{N}(0, \sigma_d^2) \Longrightarrow p(\boldsymbol{x}) = \prod_{t=1}^T \mathcal{N}(\boldsymbol{D}_k x_t, \sigma_b^2)$$

Bayes' theorem: $p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x}) \times p(\boldsymbol{x})$ \triangleright Solution: minimization of $(-\log p(\boldsymbol{x}|\boldsymbol{y})) = \frac{1}{2\sigma_b^2} \sum_{t=1}^T (y_t - x_t)^2 + \frac{1}{2\sigma_d^2} \sum_{t=1}^T (\boldsymbol{D}_k x_t)^2$

$$J(\boldsymbol{x}) = \| \boldsymbol{y} - \boldsymbol{x} \|_2^2 + eta \| \boldsymbol{D}_k \boldsymbol{x} \|_2^2 \qquad ext{with } eta = rac{\sigma_b^2}{\sigma_d^2}$$

2) Maximum a posteriori estimation

▷ Smooth signal: k-th derivative distributed according to a zero-mean Gaussian probability density

$$\frac{d^k x_t}{dt^k} \sim \mathcal{N}(0, \sigma_d^2) \Longrightarrow p(\boldsymbol{x}) = \prod_{t=1}^T \mathcal{N}(\boldsymbol{D}_k x_t, \sigma_b^2)$$

Bayes' theorem:
$$p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x}) \times p(\boldsymbol{x})$$

> Solution: minimization of $(-\log p(\boldsymbol{x}|\boldsymbol{y})) = \frac{1}{2\sigma_b^2} \sum_{t=1}^T (y_t - x_t)^2 + \frac{1}{2\sigma_d^2} \sum_{t=1}^T (\boldsymbol{D}_k x_t)^2$

$$J(\boldsymbol{x}) = \| \boldsymbol{y} - \boldsymbol{x} \|_2^2 + eta \| \boldsymbol{D}_k \boldsymbol{x} \|_2^2 \qquad ext{with } eta = rac{\sigma_b^2}{\sigma_d^2}$$

$$\Longrightarrow \hat{oldsymbol{x}} = \left[oldsymbol{I} + eta oldsymbol{D}_k^{ ext{t}} oldsymbol{D}_k
ight]^{-1}oldsymbol{y}$$

Frequency-domain formulation :

$$\hat{X}(w) = \frac{1}{1 + \beta w^{2k}} Y(w)$$

 $\sphericalangle Low-pass filter with a band-pass controlled by \beta \\ \sphericalangle Similar shape a Gaussien filter$

S.MOUSSAOUI • Tuesday, September 18, 2018 • NMR/MRI Inversion for relaxation time distributions estimation

1.3 Parametric decomposition/modeling of a signal

$$x_t = \mathcal{M}(t, \boldsymbol{\theta}) = \sum_{k=1}^K \alpha_k f_k(t; \mu_k, \sigma_k),$$

with functions f_k of known forms (Exponential, Gaussian, Lorentzian, Voigt, etc.).

The parameters $\boldsymbol{\theta} = [(\alpha_1, \mu_1, \sigma_1), \dots, (\alpha_K, \mu_K, \sigma_K)]^t$ are estimated by minimizing a least squares criterion

$$\hat{oldsymbol{ heta}} = rgmin_{oldsymbol{ heta}} \sum_{t=1}^{I} (y_t - \mathcal{M}(t,oldsymbol{ heta}))^2$$

1.3 Parametric decomposition/modeling of a signal

$$x_t = \mathcal{M}(t, \boldsymbol{\theta}) = \sum_{k=1}^K \alpha_k f_k(t; \mu_k, \sigma_k),$$

with functions f_k of known forms (Exponential, Gaussian, Lorentzian, Voigt, etc.).

The parameters $\boldsymbol{\theta} = [(\alpha_1, \mu_1, \sigma_1), \dots, (\alpha_K, \mu_K, \sigma_K)]^t$ are estimated by minimizing a least squares criterion

$$\hat{\boldsymbol{ heta}} = rgmin_{\boldsymbol{ heta}} \sum_{t=1}^{T} (y_t - \mathcal{M}(t, \boldsymbol{ heta}))^2$$

Iterative descent algorithms (Gauss-Newton, Levenberg-Marquardt) or Monte-Carlo methods are used.

S.MOUSSAOUI • Tuesday, September 18, 2018 • NMR/MRI Inversion for relaxation time distributions estimation

1.4 Background signal removal

 $y_t = x_t + p_t + b_t$

with $p_t = a_0 + a_1 t + \ldots + a_n t^n$, *n*-th order polynomial.

1.4 Background signal removal

 $y_t = x_t + p_t + b_t$

with $p_t = a_0 + a_1 t + \ldots + a_n t^n$, *n*-th order polynomial.

Estimation of the parameters $a = [a_0, \ldots, a_n]$ of the polynomial by weighted least squares minimization

$$J(a) = \sum_{t=1}^{T} \frac{1}{2\sigma_t^2} (y_t - p_t)^2$$
 such that σ_t^2 takes high values for large residuals.

It requires the specification of the values of σ_t^2 .

S.MOUSSAOUI • Tuesday, September 18, 2018 • NMR/MRI Inversion for relaxation time distributions estimation

Alternative approach: robust regression using non-convex cost functions

$$J(\boldsymbol{a}) = \sum_{t=1}^T \psi(y_t - p_t)$$

Example: asymmetric truncated quadratic, adapted for the estimation of spectra [Mazet, 2005].

Illustration

 \triangleleft Need to specify the polynomial order, the threshold level and the noise variance.

 \triangleleft trial and error test for the selection of these tuning parameters

S.MOUSSAOUI • Tuesday, September 18, 2018 • NMR/MRI Inversion for relaxation time distributions estimation

1.5 Image deconvolution

The optical response of an image acquisition system can introduce a blur that can be represented by a convolution

$$m{y}_{ij} = \sum_{k=0}^{K} \sum_{l=0}^{L} h_{k\ell} \, x_{(i-k,j-\ell)} + b_{ij}$$

 $H_{k\ell}$ are the coefficients of the point spread function (PSF) of the imaging system.

 \triangleleft Iterative optimization required to manage the computation cost and the memory usage

Example: *

1.6 Signal separation (Mixture analysis)

③ Partial volume effect due to low spatial image resolution.

observations

1.6 Signal separation (Mixture analysis)

③ Partial volume effect due to low spatial image resolution.

observations

1.6 Signal separation (Mixture analysis)

***** Partial volume effect due to low spatial image resolution.

observations

Inverse problem: determine the pure signals and their fractions.

Separation approaches:

Separation approaches:

Separation approaches:

Outline

- 1. Overview of signal processing problems
 - Inverse problems
 - Resolution approaches
 - Examples
- 2. Relaxation times distribution estimation
 - 1D & 2D relaxation models
 - Optimized reconstruction approach
 - Dedicated computing tool
- 3. Summary

2. Relaxation times distribution estimation

2.1 Data acquisition principle

- Static field $B_0 \Rightarrow$ nuclear spin alignment (z axis)
- Short magnetic pulse $B_1 \Rightarrow$ initial flip angle Φ
- Relaxation: return to the equilibrium state
 - 1. Longitudinal dynamics (z axis) $\Rightarrow T_1$ relaxation: $x_1(\tau) = M_z(\tau)$
 - 2. Transverse dynamics (xy plane) $\Rightarrow T_2$ relaxation: $x_2(\tau) = M_{xz}(\tau)$

 \circledast Quantities of interest: values of longitudinal and transverse relaxation times T_1 and T_2 .

- \checkmark Modeling of the relaxation signal decay
- \checkmark Recover the relaxation times distribution from the measured data

1) One-dimensionnal analysis

✓ Measured signal: Laplace transform of relaxation times distribution

$$x_i(\tau_i) = \int k_i(\tau_i, T_i) \, \boldsymbol{S(T_i)} \, dT_i \longrightarrow \boldsymbol{y} = \boldsymbol{Ks} + \boldsymbol{e}$$

with $k_1(\tau_1) = 1 - \gamma e^{-\tau_1/T_1}$ in T_1 relaxation and $k_2(\tau_2) = e^{-\tau_2/T_2}$ for T_2 relaxation. The parameter γ is related to the flip angle ($\gamma = 1 - \cos \Phi$).

 \triangleleft Find T1 or T2 distributions \implies Numerical inversion of a Laplace transform

S.MOUSSAOUI • Tuesday, September 18, 2018 • NMR/MRI Inversion for relaxation time distributions estimation

2) Two-dimensional analysis [English 1991]

 $\checkmark~$ Apply two successive magnetic pulses with a predefined time spacing au_1

$$x(\tau_1, \tau_2) = \int \int k_1(\tau_1, T_1) S(T_1, T_2) k_2(\tau_2, T_2) dT_1 dT_2$$
$$Y = K_1 S K_2^{t} + E \iff u = (K_1 \otimes K_2) s + e$$

$$\mathbf{I} = \mathbf{R}_1 \mathbf{S} \mathbf{R}_2 + \mathbf{L} \iff \mathbf{g} = (\mathbf{R}_1 \otimes \mathbf{R}_2)\mathbf{s} + \mathbf{s}_2$$

✓ Find the joint distribution $S(T_1, T_2)$ of the relaxation time constants

2.2 Relaxation times estimation ... Problem statement

• $k_1(au_1, T_1)$ and $k_2(au_2, T_2)$ depend on the used NMR sequence (CPMG, FID) [Rondeau-Mouro, 2016]

$$k_2(\tau_2, T_2) = \begin{cases} e^{-\tau_2/T_2} & \text{for CPMG} \\ (e^{-\tau_2/T_2} + e^{-\tau_2/T_2^2}) \operatorname{sinc} \left(w \, \frac{\tau_2}{T^2}\right) & \text{for FID} \end{cases}$$

- Large-size problem in the case of a two-dimensional analysis
 - 1. $m_1 = 50$ repetition time values τ_1
 - 2. $m_2 = 5000$ echo time instants au_2
 - 3. $N_1 = N_2 = 300$ values of T_1 and T_2

 \triangleleft Matrix $\mathbf{K} := \mathbf{K}_1 \otimes \mathbf{K}_2$ of size $m_1 m_2 \times N_1 N_2$ contains over 10^{10} elements !!

2.3 Relaxation times estimation ... Regularization framework

The relaxation times distribution is a solution of

$$\min_{\boldsymbol{s} \in \mathbb{R}^{N+}} \left(F(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{K}\boldsymbol{s}\|_2^2 + \beta R(\boldsymbol{s}) \right)$$

where R(s) is a *convex and differentiable* regularization criterion

- Classical approach [Venkataramanan, 2002]
 - Data compression and Tikhonov regularization
 - Non-negativity constrained least squares
- ▷ Low complexity iterative resolution [Mariette, 1996] [Chouzenoux, 2010]
- ✓ Regularization criterion based on Maximum entropy

$$R(s) = s^{\mathrm{t}} \log s = \sum_{i=1}^{N} s_i \log s_i$$

 \implies ensure non-negativity and sparsity of the distribution

③ Optimized reconstruction algorithm

Solve

$$\min_{\boldsymbol{s} \in \mathbb{R}^{N+}} \left(F(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{K}\boldsymbol{s}\|_2^2 + \beta R(\boldsymbol{s}) \right)$$

Starting from an initial value s_0 and for each iteration k, repeat steps (1) and (2) until convergence,

- \triangleright (1) Truncated Newton direction
 - Evaluate (g_k, H_k) , first and second order derivatives of F(s) at s_k ,
 - Calculate the descent direction d_k , approximate solution of a linear system $H_k d = -g_k$
- \triangleright (2) Descent step length
 - Find a step length α_k ensuring a sufficient decrease of $\phi(\alpha) = F(s_k + \alpha d_k)$ (dedicated search method)
 - Make the update of the distribution value : $s_{k+1} = s_k + lpha_k d_k$
- ▷ Implementation issues
 - Solving the linear system $H_k d = -g_k$ using preconditioned conjugate gradient
 - Avoid the storing of matrix $m{K}$ in the 2D case by exploiting the factorized form $m{Y}=m{K}_1m{S}m{K}_2^{ ext{t}}$
 - On the fly tuning of the regularization parameter (Khi-2 test: residuals at the same level as noise)

2.4 Relaxation times estimation ... Dedicated tool (Emilio)

® Entropy Maximization for Iterative Laplace Inversion by Optimization

Main features of Emilio tool

- 1. Load measurement data file, (T1, T2 and T1-T2 data) including CPMG and/or FID data
- 2. Define the forward model parameters
 - Model on T1 and T2 relaxations
 - Flip angle value
 - FID sequence duration and frequency
- 3. Specify the resolution algorithm parameters
 - Noise variance estimation
 - Automatic setting of the regularization parameter
 - Algorithm stopping criteria
- 4. Exploit the estimated results
 - Calculate and visualize 1D/2D distributions
 - Quantify peak area
 - Export in various file formats

2.5 Relaxation times estimation ... Challenges

1) Processing magnitude signals [Jiang, 2017]

- Methods based on least squares assumes Gaussian noise
- Magnitude data follow a Rician distribution

 $p(M|A) = \frac{M}{\sigma^2} e^{-\frac{M^2 + A^2}{2\sigma^2}} I_0\left(\frac{AM}{\sigma^2}\right)$

 $\vartriangleleft \ Gaussian \ approximation \ valid \ only \ for \ high \ SNR$

✓ Adequate optimization methods for Maximum likelihood estimation

2) Relaxation times from MRI data [El Hajj, 2018]

- Model the partial volume effect
- Account for spatial information
- Handle the large-scale optimization problem

3. Summary

- Signal processing methods
 - Need adequate forward models
 - Relevant information related to the sought quantities
- Relaxation times estimation
 - Exponential and/or Gaussian decay curves ... depending on the applied MR sequences
 - Maximum entropy regularization adapted for distribution estimation
 - Handle large-size optimization problems ... dedicated optimization tools
- Challenging issues
 - Accounting for the Rician noise model
 - Applications to MR images