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Abstract In aero-engines, mutiperforation cooling systems are often used to shield the

combustor wall and ensure durability of the engine. Fresh air coming from the casing goes

through thousands of angled perforations and forms a film which protects the liner. When

performing Large Eddy Simulations (LES) of a real engine, the number of sub-millimetric

holes is far too large to allow a complete and accurate description of each aperture. Homoge-

neous models allow to simulate multiperforated plates with a mesh size bigger than the hole

but fail in representing the jet penetration and mixing. A heterogeneous approach is pro-

posed in this study, where the apertures are thickened if necessary so that the jet-crossflow

interaction is properly represented. Simulations using homogeneous and thickened-hole

models are compared to a fully resolved computation for various grid resolutions in order

to illustrate the potential of the method.

Keywords Aerodynamics · LES · Multiperforated plate · Modelling

1 Introduction

By increasing the compressor pressure ratio, manufacturers have successfully improved the

efficiency of the thermodynamic cycle used in aeronautical gas turbines [1]. In parallel, new

techniques used to reduce pollutants like the Rich-Burn, Quick-Mix, Lean-Burn (RQL [2])

imposed a drastic reduction of the amount of air available for the cooling of the combustor.

The price to pay for these improvements is a higher thermal constraint on the walls of the

combustion chamber. Indeed, hot gases can reach up to 2400K when the steel used in the

conception cannot sustain more than 1200K. In this context, optimizing the cooling devices
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Flow Turbulence Combust

Fig. 1 Principle of effusion cooling. Left: sketch of a combustor where the perforated plate separates the

casing from the combustion chamber. Right: flow organization around a perforated plate

becomes a priority [3]. In modern combustors, effusion cooling [4], Fig. 1, is often used

for its efficiency, compacity and lightness. During their manufacturing, the liners are laser

drilled [5] by thousands of holes with a diameter lower than 0.5 mm. Due to the pressure

difference between the casing and the combustor chamber, a micro-jet is formed at each

aperture of the perforated plate. These micro-jets interact together and form a consistent

film which interacts and mixes with the hot gases from the combustion chamber.

The cooling efficiency is controlled by few parameters: the hole-to-hole distances

(�x, �z) studied in [6–8], the perforation diameter (d) and α the angle between the plate

and the perforation direction explicited on Fig. 2 and studied in [9–12]. These geometric

Fig. 2 a Cut of a hole. b Upside view of the plate
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parameters yield the plate porosity σ , which represents the ratio of the drilled surface (Shole)

compared to the total surface (Stot ) delimitated by the diamond pattern visible on Fig. 2.

σ =
Shole

Stot

=
πd2

4sin(α)

1

�x�z
. (1)

Typical values of σ for aeronautical applications are in the range [0.02–0.06]. When per-

forming numerical simulations of combustor, for the fluid solver, Reynolds Average Navier

Stokes (RANS) and Large Eddy Simulation (LES) methods can be used. The first one, less

expensive, leads to average solutions when the second gives access to instantaneous solu-

tions and thus, better predicts the mixing and the turbulence flame interaction, which is

more desirable in combustor simulations. To represent the liners, various modelling strate-

gies have been used in the literature [13–18]. To distinguish these models and relate them

to corresponding mesh resolution constraints, it is useful to introduce the aperture-to-mesh

ratio:

R =
d

dx
, (2)

where d is the diameter of the perforations and dx the typical mesh size. To give an order of

magnitude, a coarse mesh would correspond to R ≤ 1 while a simulation can be considered

reasonably well resolved when R ≥ 10 (even if this specific values is only an approximation

and more cells could be needed to resolved the jet in cros flow as mentioned by Mendez

and Nicoud [19]). Typical values of R are illustrated on Fig. 3.

When R ≥ 10, the actual geometry, including effusion pipe, can be reasonably computed

and the effect of the multi-perforated liner is obtained by simply using the flow equations.

This kind of simulation has been carried out with RANS solvers [20] but is not expected

with LES solvers before 20 years for a computational cost reason [21]. At the opposite,

when R ≤ 1, the liner must be represented as a homogeneous surface; apertures are not

represented. In this case, either both injection and suction sides can be computed or just the

injection side. In both cases, the state-of-the-art is then to use the homogeneous model of

Mendez and Nicoud [16] where the coolant flux is homogeneously injected on the whole

boundary. This model has indeed proven reliable in many configurations [22]. Its drawbacks

are however a bad prediction of the mixing process close to the wall and no benefit from

better mesh resolution.

Thanks to the increasing available computational resources, typical mesh resolutions

used for industrial LES predictions of actual burners already reach R above unity near the

wall and are a clear asset to improve the near wall mixing in a LES context. This however

goes with a modelling effort since the homogeneous formulation cannot benefit from such

improved resolutions. This approach should then be replaced by a better one, based on a

heterogeneous formulation as detailed thereafter.

Fig. 3 Projection of multiperforation holes over different grids. Left: R = 0.5. Middle: R = 2. Right: R = 4

Author's personal copy

Franck Nicoud
Zone de texte 

Franck Nicoud
Zone de texte 



Flow Turbulence Combust

In this paper, a new model is proposed and validated. It is based on heterogeneous

approach were holes are projected on the mesh. This approach, called thickened-hole model

is presented in Section 2. The model is then validated on the Maveric-H configuration rep-

resentative of aeronautical engines, described in Section 3. In Section 4, the results for a

variety of R ratios are examined and compared to a computation performed with the homo-

geneous model and a resolved computation ie hot and cold sides as well as perforations

simulated.

2 Multiperforated Plate Models

The thickened-hole model builds partly upon the homogeneous model, the latest is first

described in Section 2.1. After that, the thickened-hole model is presented in Section 2.2.

2.1 The homogeneous model

The homogeneous approach models the multiperforated plate as a porous plate injecting

mass over its whole surface with a uniform velocity. Mendez and Nicoud [19] showed that

a multiperforated plate model must represent the proper mass and longitudinal momentum

fluxes across the boundary. These two quantities can be written as:

∫

Stot

ρV mod
n (x, z)dS =

∫

Stot

ρV
jet
n (x, z)dS, (3)

∫

Stot

ρV mod
n (x, z)V mod

t (x, z)dS =

∫

Stot

ρV
jet
n (x, z)V

jet
t (x, z)dS, (4)

with ρ the density of the fluid. V mod
n (x, z) and V mod

t (x, z) are respectively the normal and

tangential velocity imposed by the homogeneous model on the plate at the position (x, z).

V
jet
n (x, z) and V

jet
t (x, z) are respectively the normal and tangential velocity at the outlet

of the hole for the real pipe at the position (x, z). When integrated over the control surface

Stot , diamond pattern visible on Fig. 2, Eqs. 3 and 4 become:

ρ < V mod
n > Stot = ρ < V

jet
n > Shole, (5)

ρ < V mod
n >< V mod

t > Stot = ρ < V
jet
n >< V

jet
t > Shole, (6)

with <> the associated mean surface value. It follows that the proper velocity to impose for

a homogeneous description of a multiperforated liner is:

< V mod
n > = < V

jet
n > /σ, (7)

< V mod
t > = < V

jet
t >, (8)

2.2 The thickened-hole model

The homogeneous model allows to represent the main effects of the effusion (proper

injected mass and momentum flux), as detailed in [19]. At the same time, representing the

heterogeneity of the injection through discrete holes would be beneficial in LES where

macro mixing plays a key role. Since typical mesh resolutions are not sufficient to represent

the intra jet flow, a basic idea is to make the apertures thicker so that the grid resolution can
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represent the modified holes. From the analysis of Mendez and Nicoud [16], (who consid-

ered infinitely thickened-holes in a sense), thickening the aperture modifies the momentum

flux and must be compensated.

The next step is then to limit the Mendez and Nicoud [16] formulation (7, 8) to the region

corresponding to each thickened-hole. Outside of this region, a wall law model, suitable for

an impermeable solid plate, is applied. It uses a two layer logarithmic law along with a slip

condition applied as detailed in [23]. The injection region of the hole whose center is (x0,

z0) and whose diameter is d is defined thanks to a distribution function f (x, z), equal to

unity in the hole region and zero outside (see Fig. 4):

f (x, z) = 0.5

(

1 − tanh

(
√

(x − x0)2 + (z − z0)2 − 0.5dŴ

βdx

))

. (9)

In Eq. 9, Ŵ is the thickening factor, defined as Ŵ = Max
(

E
R

, 1
)

, where E is the mini-

mum number of cells per hole diameter, defined by the user. The parameter β is introduced

to control the stiffness of the distribution function and avoid numerical stability issues. It

is also user-defined. Preliminary experiences points to E = 3 and β = 0.1 to be adequate

values.

A numerical porosity is then introduced as:

σn =
Shole

Snum

=
Shole

∫

Stot
f (x, z)dS

, (10)

where Snum corresponds to the injection surface, that is equal to the surface of the thickened-

hole through which the jet velocity profile is imposed; σn is local and associated to each

hole. It ranges between 1 when the hole is perfectly represented and σ , the physical porosity

used in [16], when coolant air is injected on the whole plate in a homogeneous way. When

using the thickened-hole model, the velocity applied on the boundary, noted V thick
n (x, z) and

V thick
t (x, z) for the normal and tangential directions respectively, follow the expressions:

V thick
n (x, z) = Anf (x, z), (11)

V thick
t (x, z) = Atf (x, z), (12)

where f (x, y) introduced the spatial heterogeneity. An and At are constant values and are

determined by the following equations. The mass conservation corresponding to the inte-

gration of the normal velocity on the control surface Stot for the thicken hole and for the

real jet through the plate allows to find An:
∫

Stot

ρAnf (x, z)dS =

∫

Stot

ρV
jet
n (x, z)dS, (13)

An =
< V

jet
n > Shole

∫

Stot
f (x, z)dS

, (14)

Momentum conservation then allows to find At :
∫

Stot

ρAnf (x, z)Atf (x, z)dS =

∫

Stot

ρV
jet
n (x, z)V

jet
t (x, z)dS, (15)

At =< V
jet
t >

∫

Stot
f (x, z)dS

∫

Stot
f 2(x, z)dS

. (16)

When the mesh resolution is enough to properly represent the velocity field inside the

hole, R > E, this model is equivalent to a heterogeneous model without thickening. If

R < E apertures are thickened (See Fig. 4). Finally, when R << E the model degenerates
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Fig. 4 1D representation of the normal velocity profile (top figures) and representation on a 2D mesh of the

injecting surface (bottom figures) for R = 2 (left) and R = 4 (right)

to a homogeneous model. Note that no turbulence activity or equivalently turbulence shear

stress is added on the injection surface of the boundary. Indeed it would be complex to add

such terms since the jet size is variable (injection surface Snum depends on the thickening)

Fig. 5 Setup and boundary conditions of the fully resolved simulation
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Table 1 Characteristics of the

meshes. The last entries denote

the mesh size of the

multiperforated plate on the

injection side in wall units

Case R Cells Ŵ σn y+

Coarse 0.5 14 284 6 0.041 112

Medium 2 858 459 1.5 0.48 29

Fine 4 6 705 379 1 0.91 14

Very fine 16 31 982 977 1 1 4

Reference 16 51 077 506 N/A N/A 4

and since the RMS field [19] is quiet complex in terms of profile, it can not be imposed with

only few cells.

In the following section the test case used to evaluate the model when increasing mesh

resolution is described.

3 Description of the Validation Test Case

The homogeneous model of Mendez and Nicoud [16] has been validated on the LARA

experiment [24], which is an upscaled version of a real multiperforated plate in which holes

have a diameter of 5 mm. The present test case, Maveric-H, uses a more realistic hole

diameter of 0.4 mm and a porosity σ of 0.04 typical of a helicopter effusion plate [25]. It

is based on the Maveric experiment studied in [24, 26, 27] which consists of two parallel

channels communicating through 144 holes. Thanks to the periodicity of the setup, only

12 holes can be computed as shown on Fig. 5. When using homogeneous and thickened-

hole models, the apertures do not belong to the computational domain, and it was chosen

to compute only the injection side. In this case, the mass flux imposed by the models is

extracted from a the fully resolved simulation performed on the geometry presented on

Fig. 5.

To test the present model, four meshes corresponding to four values of the R ratio with

a uniform spatial resolution are considered, see Table 1. For the coarse, medium and fine

meshes, simulations are carried out with both the homogeneous and the thickened-hole

models. On the very fine mesh only the thickened-hole method is tested. A reference simula-

tion where holes are resolved and taking both sides of the multiperforated plate is added for

validation purposes. In the following section averaged and instantaneous results for various

R resolutions are analysed in order to validate the new model.

4 Numerical Predictions

Time averaged solutions are first considered. To provide a fair comparison between homo-

geneous and thickened-hole models, the profiles are averaged over the transverse direction

Fig. 6 Top view of the plate with the location of the averaging areas Pos1 and Pos2
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Fig. 7 Spatially and temporally averaged streamwise momentum ρU at positions Pos1 (top) and Pos2 (bot-

tom), for ratios R = 0.5; 2; 4; 16 (from left to right). : reference, •: thickened-hole model, +: homogeneous

model

in two portions of the flow: Pos1, where the flow is not established and Pos2, (grey rectan-

gles on Fig. 6), where the film cooling effect is present. Figures 7, 8 and 9 present profiles

of momentum in the tangential direction, momentum in the normal direction and temper-

ature, respectively, as a function of Y ∗, the distance from the plate in the normal direction

-4 -2 0 2 4

Pos1Pos1Pos1Pos1

Pos2Pos2Pos2Pos2

R=16R=4R=2R=0.5
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Fig. 8 Spatially and temporaly averaged normal momentum ρV at positions Pos1 (top) and Pos2 (bottom),

for ratios R = 0.5; 2; 4; 16 (from left to right). : reference, •: thickened-hole model, +: homogeneous

model
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Fig. 9 Spatially and temporaly averaged temperature profiles at positions Pos1 (top) and Pos2 (bottom), for

ratios R = 0.5; 2; 4; 16 (from left to right). : reference, •: thickened-hole model, +: homogeneous model

normalized by � the inter-row distance, Fig. 6. On Figs. 10 and 11, profiles for temperature

RMS fluctuations as well as streamwise velocity RMS fluctuations are also presented.

When the ratio R is lower than one, the homogeneous and thickened-hole model give,

as expected, very similar results, in bad agreement with the resolved computation. Figure 7

shows that the tangential momentum is too large close to the plate leading to a thinner

0 50 100 150
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Fig. 10 Spatially and temporaly averaged RMS temperature profiles at positions Pos1 (top) and Pos2 (bot-

tom), for ratios R = 0.5; 2; 4; 16 (from left to right). : reference, •: thickened-hole model, +: homogeneous

model
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Fig. 11 Spatially and temporaly averaged streamwise RMS velocity profiles at positions Pos1 (top) and

Pos2 (bottom), for ratios R = 0.5; 2; 4; 16 (from left to right). : reference, •: thickened-hole model, +:

homogeneous model

mixing layer and to a lower temperature at the wall as shown on Fig. 9. When the flow is

established (Pos2), normal momentum is well represented since the mass flow rate through

the multiperforated plate is correctly imposed (see Fig. 8).

When R is equal or bigger to 4, the thickened-hole model gives better results than

the homogeneous model. With this resolution, results are close to the fully resolved one

whatever the position and for all variables.

For intermediate values, R = 2, the thickened-hole model better predicts the evolution

of the flow compared to the homogeneous model. Indeed, the shape of the mixing layer is

accurately predicted both for established (Pos2) and non-established (Pos1) flows. In the

non-established region, the thickened-hole model is able to capture the negative values for

ρV observed in the resolved computation for Y ∗ > 0.4 (Fig. 8). This specific feature is

crucial if one focuses on non-established flows.

RMS temperature fluctuations (Fig. 10) and streamwise RMS velocity fluctuations

(Fig. 11) are produced when R is greater or equal to 4 with the thickened-hole model. For

R = 4, the model predicts very small fluctuations at the first position (Pos1) where the film

cooling is not established; the agreement beeing much better for Pos2 which points to poten-

tial issues when facing non fully established flows. Note that this specific difficulty can not

be adequately treated with existing models other than the thickened-hole model. When R =

16, the RMS fluctuations match the reference data even in the non established region.

At this point, the thickened-hole model has been validated based solely on time and space

averaged fields. The discrete form of this model however also allows to represent the flow

fluctuations in LES as hinted by Figs. 11 and 10 . This capacity is further illustrated by
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Fig. 12 Visualisation of the coolant film. Comparison between simulations using homogeneous model (left)

and thickened-hole model (right) for various R values

Fig. 12 where instantaneous temperature fields for the homogeneous and the thickened-hole

models for various R values are compared to the resolved simulation. With the thickened-

hole model, jets can be distinguished for R ≥ 2. This is a major step forward as the

interaction between jets can now be examined. Furthermore, for R ≥ 4, the jets are very

similar to the resolved ones.

Note that results are presented for a uniform mesh resolution since it is the most general

case with mesh used by academic and industry. However, the model is local (the cell size is

taken from the mesh, not as an input parameter) and react to the local variation of wall res-

olution. Mesh variations could indeed have effects on the global result of a multiperforated

plate. To enhance predictions, automatic mesh adaption could be envisioned so as to refine

near jet wakes while coarsening between jets.

5 Conclusion

A heterogeneous thickened-hole approach has been introduced. Compared to a homo-

geneous model, it benefits from increasing mesh resolution. For high resolutions (large

aperture-to-mesh ratio, R > 2, say), the thickened-hole model outperforms the homoge-

neous model [19]. Moreover, the solution converges to the one obtained with a fully resolved
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computation when R is further increased. At the opposite, for small to moderate aperture-

to-mesh ratio, the model proposed degenerates to a homogeneous model which is the best

method for coarse meshes.

This new method allows a huge design process enhancement compared to a resolved

simulation where holes are meshed. Indeed, with the thickened-hole model, from a unique

mesh of an engine, many hole layouts can be tested: ”One mesh fits all”. This methodology

was recently used in the design of a real engines [28–30].

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

References

1. Schulz, A.: Combustor liner cooling technology in scope of reduced pollutant formation and rising

thermal efficiencies. Ann. N. Y. Acad. Sci. 934(1), 135–146 (2001)

2. Rizk, N., Mongia, H.: Low NOx rich-lean combustion concept application. AIAA paper (91-1962)

(1991)

3. Goldstein, R.J.: Film cooling. Adv. Heat Tran. 7, 321–379 (1971)

4. Lefebvre, A.H.: Gas Turbines Combustion. Taylor & Francis, New York (1999)

5. Poprawe, R., Kelbassa, I., Walther, K., Witty, M., Bohn, D., Krewinkel, R.: Optimising and manufactur-

ing a laser-drilled cooling hole geometry for effusion-cooled multi-layer plates. Proc. of ISROMAC-12,

Paper (20091) (2008)

6. Mayle, R.E., Camarata, F.J.: Multihole cooling effectiveness and heat transfer. J. Heat Transf. 97, 534–

538 (1975)

7. Pietrzyk, J.R., Bogard, D.G., Crawford, M.E.: Hydrodynamic measurements of jets in crossflow for gas

turbine film cooling applications. J. Turbomach. 111, 139–145 (1989)

8. Sinha, A.K., Bogard, D.G., Crawford, M.E.: Film-cooling effectiveness downstream of a single row of

holes with variable density ratio. J. Turbomach. 113, 442–449 (1991)

9. Crawford, M.E., Kays, W.M., Moffat, R.J.: Full-coverage film cooling. part I: comparison of heat transfer

data for three injection angles. J. Eng. Gas Turbines Power 102, 1000–1005 (1980)

10. Hale, C.A., Plesniak, M.W., Ramadhyani, S.: Film cooling effectiveness for short film cooling holes fed

by a narrow plenum. J. Turbomach. 122, 553–557 (2000)

11. LeBrocq, P.V., Launder, B.E., Priddin, C.H.: Discrete hole injection as a means of transpiration cooling;

an experimental study. Proc. Inst. Mech. Eng. 187(17), 149–157 (1973)

12. Metzger, D.E., Takeuchi, D.I., Kuenstler, P.A.: Effectiveness and heat transfer with full-coverage film-

cooling. ASME Paper 73-GT-18 (1973)

13. Briones, A.M., Rankin, B.A., Stouffer, S.D., Erdmann, T.J., Burrus, D.L.: Parallelized, automated, and

predictive imprint cooling model for combustion systems. J. Eng. Gas Turbines Power 139(3), 031505

(2017)

14. Burdet, A., Abhari, R.S., Rose, M.G.: Modeling of film cooling—Part II model for use in three-

dimensional computational fluid dynamics. J. Turbomach. 129(2), 221–231 (2007)

15. Mazzei, L., Mazzei, L., Andreini, A., Andreini, A., Facchini, B., Facchini, B.: Assessment of modelling

strategies for film cooling. Int. J. Numer. Methods Heat Fluid Flow 27(5), 1118–1127 (2017)

16. Mendez, S., Nicoud, F.: Adiabatic homogeneous model for flow around a multiperforated plate. AIAA

J. 46(10), 2623–2633 (2008)

17. Rida, S., Reynolds, R., Chakracorty, S., Gupta, K.: Imprinted effusion modeling and dynamic cd

calculation in gas turbine combustors. ASME Paper No GT2012-68804 (2012)

18. Voigt, S., Noll, B., Aigner, M.: Development of a macroscopic CFD model for effusion cooling

applications. ASME Paper No GT2012-68251 (2012)

19. Mendez, S., Nicoud, F.: Large-eddy simulation of a bi-periodic turbulent flow with effusion. J. Fluid

Mech. 598, 27–65 (2008)

Author's personal copy

Franck Nicoud
Zone de texte 

Franck Nicoud
Zone de texte 



Flow Turbulence Combust
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25. Florenciano, J.-L., Bruel, P.: LES fluid–solid coupled calculations for the assessment of heat transfer

coefficient correlations over multi-perforated walls. Aerosp. Sci. Technol. 53, 61–73 (2016)
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